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ABSTRACT. In the setting of the standard weighted Bergman spaces over the
unit disk, compactness characterizations for linear combinations of composition
operators have been known. One of those characterizations asserts that degen-
erate double differences, compared with each single difference, do not improve
the compactness at all in the sense that a degenerate double difference is compact
only when each difference is individually compact. Such a rigid phenomenon is
actually known to hold for a certain broader class of linear combinations. In this
paper we investigate into similar properties for Hilbert-Schmidtness with main
focus on double differences.

We first obtain a complete characterization for Hilbert-Schmidt double differ-
ences of composition operators. We then observe that double differences, com-
pared with each single difference, can improve the Hilbert-Schmidtness even
in the degenerate case, by constructing concrete examples of Hilbert-Schmidt
double differences with each difference not being Hilbert-Schmidt. We also in-
clude some remarks concerning connection between Hilbert-Schmidtness on the
standard weighted Bergman spaces and weak-to-strong boundedness on certain
vector-valued weighted Bergman spaces.

1. INTRODUCTION

Let H(D) be the class of all holomorphic functions on the unit disk D of the
complex plane C. Denote by S(D) the set of all holomorphic self-maps of D.
Given φ ∈ S(D), the composition operator Cφ with symbol φ is defined by

Cφf := f ◦ φ

for f ∈ H(D). The main subject in the study of composition operators is to de-
scribe operator theoretic properties of Cφ in terms of function theoretic properties
of φ. We refer to standard monographs by Cowen-MacCluer [5] and Shapiro [12]
for an overview of various aspects on the theory of composition operators acting
on classical holomorphic function spaces.
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During the past three decades, initiated by the Shapiro-Sundberg Question raised
in 1990 (see [13]), many significant results concerning topics related to the topo-
logical structure of composition operators have been achieved in the literature. For
general historical remarks on the progress of the Shapiro-Sundberg Question, we
refer to [3] and references therein. One of such topics is to characterize compact-
ness for differences, or more generally, for linear combinations of composition op-
erators acting on the standard weighted Bergman spaces. As the first result in that
direction, Moorhouse [11] characterized compactness for differences of composi-
tion operators. Her characterization shows that differences of composition opera-
tors, compared with each operator, can improve the compactness by way of certain
natural cancellations.

Inspired by the aforementioned result of Moorhouse, Koo and Wang [9] char-
acterized compactness for the degenerate double differences, i.e., operators of the
form 2Cφ1 −Cφ2 −Cφ3 . Quite unexpectedly, their characterization reveals a rigid
phenomenon asserting that such an operator is compact only when both Cφ1 −Cφ2

and Cφ1 − Cφ3 are individually compact. Thus, intuitively speaking, degener-
ate double differences, compared with each single difference, do not improve the
compactness anymore. This rigid phenomenon was later extended to general linear
combinations under the so-called Coefficient Non-cancellation Condition(CNC),
which means that the whole sum of the coefficients vanishes, but any proper sum
does not; see [4, Theorem 1.2]. More recently, Choe, Koo and Wang characterized
(see [3, Theorem 1.1]) compactness for double differences, i.e., operators of the
form (Cφ1−Cφ2)−(Cφ3−Cφ4), and exhibited an explicit example demonstrating
that non-compact differences can form a compact double difference; see [3, Exam-
ple 6.4]. Note that CNC does not hold in general for double differences.

The purpose of the current paper is to study Hilbert-Schmidt analogues of what
have been mentioned in the preceding paragraph; see Section 2.3 for the notion
of Hilbert-Schmidt operators. We obtain a complete characterization for Hilbert-
Schmidt double differences. Using our result, we also exhibit concrete examples
demonstrating that the rigid phenomenon for compactness mentioned above does
not extend to Hilbert-Schmidtness.

Before proceeding, we first recall our function spaces to work on. For α > −1,
we denote by dAα the normalized weighted measure defined by

dAα(z) := (α+ 1)(1− |z|2)αdA(z), z ∈ D

where dA denotes the area measure on D normalized to have the total mass 1. Now,
the α-weighted Bergman space A2

α(D) is the space consisting of all f ∈ H(D)
for which

∥f∥A2
α
:=

{∫
D
|f |2 dAα

}1/2

< ∞.

As is well known, the space A2
α(D) is a closed subspace of the Lebesgue space

L2
α(D) := L2(D, dAα) and thus is a Hilbert space. Also is well known that every

composition operator is bounded on A2
α(D) thanks to the Littlewood Subordination

Principle. In case α = 0, we write A2(D) := A2
0(D) and L2(D) := L2

0(D).



HILBERT-SCHMIDT DOUBLE DIFFERENCES 3

We also introduce some notation to be used throughout the paper. Given φ1, φ2,
φ3, φ4 ∈ S(D), not necessarily distinct, we will save notation by setting

ρij := ρ(φi, φj)

and
Mij := ρij

(
∥Kφi∥A2

α
+ ∥Kφj∥A2

α

)
for i, j = 1, 2, 3, 4 where ∥Kφi∥A2

α
denotes the function z 7→ ∥Kφi(z)∥A2

α
. Here,

ρ denotes the pseudohyperbolic distance on D and K(·) denotes the reproducing
kernel for A2

α(D); see Sections 2.1 and 2.2, respectively.
In addition, we use the abbreviated notation

R1 := M12 +M34 and R2 := M13 +M24. (1.1)

Using the function σ to be specified in Section 2.1, we further set

σij := σ(φi, φj)

for i, j = 1, 2, 3, 4 and put

R3 :=

[
|φ1 − φ2 − φ3 + φ4|∑4

j=1(1− |φj |2)
+ (ρ12 + ρ34)(ρ13 + ρ24)

]
4∑

j=1

∥Kφj∥A2
α
,

R4 :=
(
|σ12 + σ13|+ ρ212 + ρ213

) 3∑
j=1

∥Kφj∥A2
α
.

Finally, we put

Ωs :=

{
z ∈ D : max

1≤i<j≤4
ρij(z) < s

}
for 0 < s < 1. For all the abbreviated notation specified above, the dependency on
the self-maps φj’s (and α) should be clear from the context.

We obtain the next characterization for Hilbert-Schmidt double differences.

Theorem 1.1. For φ1, φ2, φ3, φ4 ∈ S(D), put

T := Cφ1 − Cφ2 − Cφ3 + Cφ4 .

Given α > −1, there exists a positive number s0 ∈ (0, 1), depending only on α,
with the following property: T is Hilbert-Schmidt on A2

α(D) iff∫
D\Ωs

(min{R1, R2})2 dAα +

∫
Ωs

R2
3 dAα < ∞ (1.2)

for some/all s ∈ (s0, 1). Moreover, the above condition reduces to∫
D
R2

4 dAα < ∞ (1.3)

in the degenerate case φ1 = φ4.
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Note. Condition (1.2) can be replaced by a bit simpler one which is not sym-
metric; see Remark 3.6. Meanwhile, we have R4 ≈ M12 when both φ1 = φ4 and
φ2 = φ3 hold. Thus, the known characterization for Hilbert-Schmidt differences,
which can be derived from (2.9) and (2.8) below, is recovered by the degenerate
case of Theorem 1.1.

Applying Theorem 1.1, we also construct examples φ1, φ2, φ3 ∈ S(D) demon-
strating the following on A2(D):

♦ Cφ1 − Cφj is not Hilbert-Schmidt for j = 2, 3, but 2Cφ1 − Cφ2 − Cφ3 is;

see Example 5.2. See also Example 5.4 for a more general example. So, in sharp
contrast to the rigid phenomenon for compactness mentioned above, we see that
double differences, compared with each single difference, can improve the Hilbert-
Schmidtness even in the degenerate case.

Our proof of Theorem 1.1 is supported by many technical lemmas and thus is
quite long. So, in order to help readers to keep up with the direction of the details on
the whole, it seems worth mentioning the overall scheme regarding the motivation,
the key steps, the subtlety, and the strategies.

Overall Scheme. The Hilbert-Schmidt norm of T is precisely the same (see
(2.9)) as the square root of the integral∫

D

∥∥Kφ1(z) −Kφ2(z) −Kφ3(z) +Kφ4(z)

∥∥2
A2

α
dAα(z). (1.4)

The main difficulty is caused by the fact that the integrand behaves quite differently,
according as all the points φj(z)’s are hyperbolically close to one another or some
of them are apart.

To show the subtlety of our estimations, we briefly compare with the compact-
ness case where one needs to estimate (see [3,4,9]) (1−|a|)α+2∥TKa∥2A2

α
, or more

explicitly,

(1− |a|)α+2

∫
D

∣∣Kφ1(z)(a)−Kφ2(z)(a)−Kφ3(z)(a) +Kφ4(z)(a)
∣∣2 dAα(z).

For the sake of simplicity, consider the degenerate case φ1 = φ4. In [9] it is proved
that this quantity vanishes as |a| → 1 only when each of the integrals

(1− |a|)α+2

∫
D

∣∣∣Kφ1(z)(a)−Kφj(z)(a)
∣∣∣2 dAα(z), j = 2, 3

does, which turns out to be equivalent to the compactness of corresponding differ-
ences of composition operators. This means that compactness cannot be achieved
through double cancellation in general.

On the contrary in the case of Hilbert-Schmidtness, it is possibly the case that
the integral in (1.4) is finite, but at the same time∫

D

∥∥∥Kφi(z) −Kφj(z)

∥∥∥2
A2

α

dAα(z) = ∞

for (i, j) ∈ {(1, 2), (3, 4)}. This demonstrates that double cancellation in a non-
trivial way may end up with Hilbert-Schmidtness. It is possibility of such double
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cancellation which causes the subtlety in studying Hilbert-Schmidtness of double
differences.

Eventually, the hardest and most crucial part in our proof of Theorem 1.1 is to
establish a sharp estimate of the integrand in (1.4). So, we are forced to establish a
sharp estimate of the ratio

∥Kz1 −Kz2 −Kz3 +Kz4∥A2
α

4∑
j=1

∥Kzj∥A2
α

(1.5)

for general z1, z2, z3, z4 ∈ D in terms of the hyperbolic distances between the
points. Our approaches are quite different in two cases: (i) when all the points are
close to one another and (ii) when they are not. Both cases are quite delicate as
follows:

• Case (i), where cancellation occurs, is a bit more delicate to handle. Us-
ing the binomial expansions, we express |Kz1(w)−Kz2(w)−Kz3(w) +
Kz4(w)| as the sum of a major term and an error term, which might be
probably the only way in general one may think of. We estimate the inte-
gral of the major term and then use it to control the error term. Section 3 is
entirely devoted to Case (i).

• Case (ii), where no cancellation is expected, is not easy at all, either. The
difficulty is not only the presence of too many subcases to consider, but also
the need to devise right approaches depending on the subcases. Section 4
is entirely devoted to Case (ii).

We hope these preliminary information to help readers in understanding the long
and technical steps towards Theorem 1.1.

In Section 2 we collect basic known results to be used in later sections.
In Sections 3 and 4 we establish the aforementioned ratio estimate. For the case

when the four points are close to one another, see Theorems 3.5 and 3.7. For the
remaining case, see Theorem 4.6.

In Section 5, relying on the optimal ratio estimates, we prove Theorem 1.1.
Our proof actually produces optimal Hilbert-Schmidt norm estimates; see Remark
5.1. Applying our result, we exhibit an explicit example demonstrating that the
rigid phenomenon, analogous to the one for compactness mentioned before, fails
to hold Hilbert-Schmidtness; see Example 5.2. We also construct a more general
example demonstrating the same pathology; see Example 5.4.

Finally, in Section 6, for linear combinations of composition operators and re-
lated operators, we notice some remarks revealing the connection between Hilbert-
Schmidtness on A2

α(D) and boundedness from certain weak to strong vector-valued
weighted Bergman spaces.

Constants. Throughout the paper various constants C are used with no attempt
to calculate their exact values, which may change from one occurrence to the next.
Variables indicating the dependency of constants C will be often specified in the
parenthesis. Given two non-negative quantities A and B, we write A ≲ B to
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indicate that there exists some inessential constant C > 0 so that A ≤ CB. The
converse relation A ≳ B is defined in an analogous manner, and if A ≲ B and
B ≲ A both hold, we write A ≈ B.

2. PRELIMINARIES

In this section, we collect some basic facts and preliminary results to be used in
later sections.

2.1. Pseudohyperbolic Distance. Put

σ(a, b) :=
a− b

1− ab

for a, b ∈ D. The hyperbolic distance between a and b is given by

tanh−1 ρ(a, b) where ρ(a, b) := |σ(a, b)|.

It is well known that ρ itself is a distance, called the pseudohyperbolic distance.
In most cases it is more convenient to work with this pseudohyperbolic distance
rather than the original hyperbolic distance.

The well-known identity

1− ρ2(a, b) =
(1− |a|2)(1− |b|2)

|1− ab|2

is straightforward. This yields an inequality

1− |a|2

2
√

1− ρ(a, b)
≤ |1− ab| for |b| ≤ |a|, (2.1)

which is useful for our purpose. We also recall the following inequalities:

ρ(a, b)

1 + ρ(a, b)
≤ |a− b|

1− |a|2
≤ ρ(a, b)

1− ρ(a, b)
; (2.2)

1− ρ(a, b)

1 + ρ(a, b)
≤ 1− |a|2

1− |b|2
≤ 1 + ρ(a, b)

1− ρ(a, b)
; (2.3)

1− ρ(a, b) ≤ 1− |a|2

|1− ab|
≤ 1 + ρ(a, b). (2.4)

These inequalities, which are well-known and elementary to prove, will be quite
frequently used later in our proofs.
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2.2. Reproducing Kernel. Given α > −1, subharmonicity yields

|g(0)|2 ≤
∫
D
|g(w)|2 dAα(w)

for g ∈ H(D). Given z ∈ D, applying this inequality to the function

g(w) := (f ◦ σz)(w)

(√
1− |z|2
1− wz

)α+2

where σz := σ(z, ·)

and then making a change-of-variable, one obtains

(1− |z|2)α+2|f(z)|2 ≤ ∥f∥2A2
α

(2.5)

for f ∈ H(D). In particular, this shows that each point evaluation is a continuous
linear functional on A2

α(D). Thus, to each z ∈ D corresponds a unique reproduc-
ing kernel K(α)

z whose explicit formula is well known as

K(α)
z (w) :=

1

(1− wz̄)α+2
, w ∈ D. (2.6)

We will use the abbreviated notation

Kz := K(α)
z ;

this will cause no confusion, because α is the only weight parameter we consider
throughout the paper.

Using the reproducing property, one may explicitly compute the norm of repro-
ducing kernels as

∥Kz∥2A2
α
= Kz(z) =

1

(1− |z|2)α+2
(2.7)

for z ∈ D. As for the differences of reproducing kernels, we have the norm esti-
mates (see [2, Proposition 3.5])

∥Kz −Kw∥A2
α
≈ ρ(z, w)

(
∥Kz∥A2

α
+ ∥Kw∥A2

α

)
(2.8)

for all z, w ∈ D; the constants suppressed above depend only on α.

2.3. Hilbert-Schmidt Operator. Let X be a separable Hilbert space with or-
thonormal basis {en}. A linear operator S : X → X is called Hilbert-Schmidt
if

∥S∥HS(X) :=

{∑
n

∥Sen∥2X

}1/2

< ∞.

The above Hilbert-Schmidt norm of S is known to be independent of the choice of
orthonormal basis {en}. It is well known that every Hilbert-Schmidt operator is
compact and therefore bounded.

Given α > −1, the Hilbert-Schmidt norm of a linear combination of composi-
tion operators on A2

α(D) is known to be represented as an elegant integral. Namely,
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given a positive integer n, we have∥∥∥∥ n∑
j=1

cjCφj

∥∥∥∥2
HS(A2

α)

=

∫
D

∥∥∥∥ n∑
j=1

cjKφj(z)

∥∥∥∥2
A2

α

dAα(z) (2.9)

for all c1, . . . , cn ∈ C and for all φ1, . . . , φn ∈ S(D); see [2, Proposition 3.1]. So,
for the operators

T := Cφ1 − Cφ2 − Cφ3 + Cφ4

being considered throughout the paper, we have

∥T∥2HS(A2
α)

=

∫
D
∥K∥2A2

α
dAα (2.10)

where K := Kφ1 −Kφ2 −Kφ3 +Kφ4 .

3. THE RATIO ESTIMATE: PART 1

In this section we establish optimal norm estimates for the ratio (1.5) when the
points are close to one another. For that purpose we need several technical lemmas.
In what follows we denote by Dr(a) the Euclidean disk with center a and radius r,
i.e.,

Dr(a) := {z ∈ C : |z − a| < r}
for a ∈ C and r > 0.

Lemma 3.1. The inequality

|a1p1 + a2p2|+
∣∣a1p1λ+ a2p2λ

2
∣∣ ≥ λ(1− λ)

2
(|a1p1|+ |a2p2|) (3.1)

holds for all λ ∈ (0, 1) and a1, a2, p1, p2 ∈ C.

Proof. For arbitrary λ ∈ (0, 1) and a1, a2, p1, p2 ∈ C, we note(
a1p1
a2p2

)
=

(
1 1
λ λ2

)−1(
a1p1 + a2p2

a1p1λ+ a2p2λ
2

)
,

or said differently,

λ(λ− 1)

(
a1p1
a2p2

)
=

(
λ2 −1
−λ 1

)(
a1p1 + a2p2

a1p1λ+ a2p2λ
2

)
.

This implies the asserted inequality. The proof is complete. □

Lemma 3.2. For r > 0 the following assertions hold:
(a) The estimate

|z + w − ξ|+ |z2 + w2 − ξ2| ≈ |z + w − ξ|+ |zw|
holds for z, w, ξ ∈ Dr(0); the constants suppressed in this estimate de-
pends only on r.

(b) The inequality

|z3 + w3 − ξ3| ≤ 5r2|z + w − ξ|+ 4r|zw|
holds for z, w, ξ ∈ Dr(0).
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Proof. Note

|(z2 + w2 − ξ2) + 2zw| = |(z + w + ξ)(z + w − ξ)| ≤ 3r|z + w − ξ|

and thus ∣∣∣2|zw| − |z2 + w2 − ξ2|
∣∣∣ ≤ 3r|z + w − ξ|

for z, w, ξ ∈ Dr(0). This implies (a). Meanwhile, (b) is an easy consequence of
the identity

z3 + w3 − ξ3 = −zw(z + w + 2ξ)

+ (z + w − ξ)(w2 + z2 + ξ2 + zξ + wξ).

The proof is complete. □

Lemma 3.3. Let η > 0. Then there is a constant C = C(η) > 0 such that∣∣∣∣ z3

(1− z)η
+

w3

(1− w)η
− ξ3

(1− ξ)η

∣∣∣∣ ≤ C
(
r2|z + w − ξ|+ r|zw|

)
for all 0 < r < 1

3 and z, w, ξ ∈ Dr(0).

Proof. Let 0 < r < 1
3 and consider arbitrary z, w, ξ ∈ Dr(0). Setting

A0 : = z3 + w3 − ξ3,

A1 : =
1− (1− z)η

(1− w)η
w3,

A2 : =

[
1− 1

(1− w)η

]
(w3 − ξ3),

A3 : =

[
(1− z)η

(1− ξ)η
− 1

(1− w)η

]
ξ3,

we note

z3

(1− z)η
+

w3

(1− w)η
− ξ3

(1− ξ)η
=

A0 −A1 −A2 −A3

(1− z)η

and hence∣∣∣∣ z3

(1− z)η
+

w3

(1− w)η
− ξ3

(1− ξ)η

∣∣∣∣ ≲ |A0|+ |A1|+ |A2|+ |A3|. (3.2)

For A0, we have by Lemma 3.2(b)

|A0| ≲ r2|z + w − ξ|+ r|zw|. (3.3)

For A1, since |1− (1− z)η| ≲ |z|, we have

|A1| ≲ |zw3| ≤ r2|zw|. (3.4)
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For A2, we have

|A2| =
|(1− w)η − 1||w3 − ξ3|

|1− w|η

≲ r2|w||w − ξ|
≤ r2(|z + w − ξ|+ |zw|). (3.5)

For A3, since |z + w − zw| ≤ 2r + r2 < 7
9 , we have

|(1− z)η(1− w)η − (1− ξ)η| = |(1− z − w + zw)η − (1− ξ)η|
≲ |z + w − zw − ξ|

and thus

|A3| = |ξ|3
∣∣∣∣(1− z)η(1− w)η − (1− ξ)η

(1− ξ)η(1− w)η

∣∣∣∣
≲ r3|z + w − zw − ξ|
≤ r3(|z + w − ξ|+ |zw|). (3.6)

One may check that all the constants suppressed so far depend only on η. So, insert-
ing the estimates (3.3), (3.4), (3.5) and (3.6) into (3.2), we conclude the lemma. □

Lemma 3.4. Let η > 0. Given z, w, ξ ∈ D, put

A0 : = 1− 1

(1− z)η
− 1

(1− w)η
+

1

(1− ξ)η
,

A1 : = z + w − ξ,

A2 : = z2 + w2 − ξ2.

Then there is a constant C = C(η) > 0 such that∣∣∣∣A0 + ηA1 +
η(η + 1)

2
A2

∣∣∣∣ ≤ C
(
r2|z + w − ξ|+ r|zw|

)
for all 0 < r ≤ 1

3 and z, w, ξ ∈ Dr(0).

Proof. Let 0 < r ≤ 1
3 and consider arbitrary z, w, ξ ∈ Dr(0). Put

g(λ) := 1− 1

(1− λz)η
− 1

(1− λw)η
+

1

(1− λξ)η

for λ ∈ D. Clearly, g is holomorphic in an open set containing D. Applying
integration by parts successively, we note

g(1) = g(0) + g′(0) +
g′′(0)

2
+

1

2

∫ 1

0
(1− λ)2g′′′(λ) dλ.

Noting that g(1) = A0, g(0) = 0, g′(0) = −ηA1 and g′′(0) = −η(η + 1)A2, we
obtain ∣∣∣∣A0 + ηA1 +

η(η + 1)

2
A2

∣∣∣∣ ≤ 1

2
max
0≤λ≤1

|g′′′(λ)|. (3.7)
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In conjunction with this, we note

g′′′(λ) = −η(η + 1)(η + 2)

[
z3

(1− λz)η+3
+

w3

(1− λw)η+3
− ξ3

(1− λξ)η+3

]
.

Thus, for 0 ≤ λ ≤ 1, we have by Lemma 3.3

|λ3g′′′(λ)| ≤ C[(rλ)2|λz + λw − λξ|+ rλ|(λz)(λw)|]

for some constant C = C(η) > 0, i.e.,

|g′′′(λ)| ≤ C(r2|z + w − ξ|+ r|zw|).

This, together with (3.7), yields the asserted inequality. The proof is complete. □

We are now ready to prove the following optimal norm estimate for double dif-
ferences of kernel functions when the points are close to one another.

Theorem 3.5. Let α > −1 and 0 < s < 1. Given z1, z2, z3, z4 ∈ D, put

A : =
|z1 − z2 − z3 + z4|∑4

j=1(1− |zj |2)

and

B : = [ρ(z1, z2) + ρ(z3, z4)][ρ(z1, z3) + ρ(z2, z4)].

Then there exists r = r(α, s) ∈ (0, 1) such that

∥Kz1 −Kz2 −Kz3 +Kz4∥A2
α
≈ (A+B)

4∑
j=1

∥Kzj∥A2
α

whenever 1 − |zj | ≤ r and ρ(zi, zj) ≤ s for i, j = 1, 2, 3, 4; the constants sup-
pressed in this estimate depend only on α and s.

Proof. Throughout the proof we use the notation

c1 = c4 := 1 and c2 = c3 := −1

for simplicity. For a large number N = N(α, s) > 4 to be specified later, put

r :=
1

4N
√
N

. (3.8)

With such r, note |zj | > 1
2 .

Consider arbitrary z1, z2, z3, z4 ∈ D such that ρ(zi, zj) ≤ s for all i, j with
i ̸= j. We also assume 1− |zj | ≤ r for all j. By symmetry and (2.3) it suffices to
establish

∥
∑4

j=1 cjKzj∥A2
α∑4

j=1 ∥Kzj∥A2
α

≈
|
∑4

j=1 cjzj |
1− |z1|2

+ ρ(z1, z2)ρ(z1, z3) (3.9)

where the hidden constants depend only on α and s.
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First, we proceed to establish the lower estimate. Put

f :=

4∑
j=1

cjKzj and fj(z) :=
z(zj − z1)

1− zz1

for j = 1, . . . , 4. Note f1 ≡ 0 and

f(z) = Kz1(z)
4∑

j=1

cj
(1− fj(z))α+2

(3.10)

for z ∈ D.
Put

bi :=
(
1−MiN(1− |z1|2)

)
z1 (i = 1, 2) (3.11)

where M1 := 1 and M2 :=
√
N . Note

1− |bi| = (1− |z1|)
[
1 +MiN |z1|(1 + |z1|)

]
and

1− biz1 = (1− |z1|2)(1 +MiN |z1|2) (3.12)

for each i. This yields bi ∈ D and

1− |bi| ≈ MiN(1− |z1|2) ≈ 1− biz1 (3.13)

for i = 1, 2; the constants suppressed here are absolute. Combining this with (2.5),
we obtain

∥f∥A2
α

∥Kz1∥A2
α

≳
[
(1− |bi|2)(1− |z1|2)

]
)α/2+1|f(bi)|

≈ 1

(MiN)α/2+1

|f(bi)|
|Kz1(bi)|

≥ 1

(N
√
N)α/2+1

|f(bi)|
|Kz1(bi)|

for i = 1, 2. Since

∥Kz1∥A2
α
≈

4∑
j=1

∥Kzj∥A2
α

by (2.3), (3.14)

we obtain

∥f∥A2
α

 4∑
j=1

∥Kzj∥A2
α

−1

≳
1

(N
√
N)α/2+1

2∑
i=1

|f(bi)|
|Kz1(bi)|

; (3.15)

the constants suppressed above depend only on α and s.
In order to estimate |f(bi)|

|Kz1 (bi)|
in (3.15) we first note

fj(b1) =
b1(zj − z1)

1− b1z1
=

b1(zj − z1)

(1− |z1|2)(1 +N |z1|2)
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and thus

|fj(b1)| =
|b1|ρ(z1, zj)|1− z1zj |
(1 +N |z1|2)(1− |z1|2)

. (3.16)

We also have

fj(b2)

fj(b1)
=

1 +N |z1|2

1 +N
√
N |z1|2

· 1−N
√
N(1− |z1|2)

1−N(1− |z1|2)
< 1, (3.17)

So, since |z1| ≥ 1
2 , we have by (3.16) and (2.4)

|fj(b2)| < |fj(b1)| ≤
4

N(1− s)
ρ(z1, zj) (3.18)

for all j. In conjunction with this we take N so large that

N ≥ 12

1− s
(3.19)

so that |fj(bi)| ≤ 1
3 by (3.18) for all i and j. Accordingly, setting p1 := α+ 2 and

p2 := (α+ 2)(α+ 3)/2, we note by Lemma 3.4∣∣∣∣ f(bi)

Kz1(bi)

∣∣∣∣ =
∣∣∣∣∣∣

4∑
j=1

cj(
1− fj(bi)

)α+2

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
2∑

k=1

pk

4∑
j=2

cj [fj(bi)]
k

∣∣∣∣∣∣
− C

N(1− s)

∣∣∣∣∣∣
4∑

j=2

cjfj(bi)

∣∣∣∣∣∣+
∣∣∣f2(bi)f3(bi)∣∣∣

 (3.20)

for i = 1, 2 and for some constant C = C(α) > 0.
For the last term in (3.20), we note∣∣∣f2(b2)f3(b2)∣∣∣ ≤ ∣∣∣f2(b1)f3(b1)∣∣∣.

by (3.17). We now consider the remaining terms in(3.20). To begin with, we note
1− |z1|2 ≤ 2r = 1

2N
√
N

. So, in conjunction with (3.17), put

λ(t) :=
1 +Nt

1 +N
√
Nt

· 1−N
√
N(1− t)

1−N(1− t)
, 1− 1

2N
√
N

≤ t ≤ 1.

For t as above, we have

1

2
≤ 1−N

√
N(1− t) ≤ 1−N(1− t) ≤ 1
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and thus

λ(t)[1− λ(t)] ≥ 1 +Nt

2(1 +N
√
Nt)

· N(
√
N − 1)

(1 +N
√
Nt)(1−N(1− t))

≥ 1 +N

2(1 +N
√
N)

· N(
√
N − 1)

1 +N
√
N

≥ N2(
√
N − 1)

8N3

>
1

16
√
N

. (3.21)

Accordingly, setting λ1(t) ≡ 1 and λ2(t) = λ(t), we note from the equality in
(3.17)

2∑
i=1

∣∣∣∣∣∣
2∑

k=1

pk

4∑
j=2

cj [fj(bi)]
k

∣∣∣∣∣∣
=

2∑
i=1

∣∣∣∣∣∣
2∑

k=1

pk

 4∑
j=2

cj [fj(b1)]
k

λk
i (|z1|2)

∣∣∣∣∣∣
≥ 1

32
√
N

2∑
k=1

∣∣∣∣∣∣
4∑

j=2

cj [fj(b1)]
k

∣∣∣∣∣∣ by Lemma 3.1 and (3.21)

≈ 1√
N

∣∣∣∣∣∣
4∑

j=2

cjfj(b1)

∣∣∣∣∣∣+
∣∣∣f2(b1)f3(b1)∣∣∣

 by Lemma 3.2(a);

the constants hidden in the last estimate are absolute (recall |fj(b1)| ≤ 1
3 ). Mean-

while, we have∣∣∣∣∣∣
4∑

j=2

cjfj(bi)

∣∣∣∣∣∣ = |z1 − z2 − z3 + z4|
1− |z1|2

· |bi|
1 +MiN |z1|2

≤

∣∣∣∣∣∣
4∑

j=2

cjfj(b1)

∣∣∣∣∣∣ (3.22)

for i = 1, 2; note |bi| ≤ |b1| for the last inequality.
Combining the estimates observed in the preceding paragraph, we obtain

2∑
i=1

∣∣∣∣ f(bi)

Kz1(bi)

∣∣∣∣ ≳ 1√
N

(
1− C1√

N

)∣∣∣∣∣∣
4∑

j=2

cjfj(b1)

∣∣∣∣∣∣+
∣∣∣f2(b1)f3(b1)∣∣∣

 (3.23)

for some constant C1 depending only on α and s; the constant hidden in this esti-
mate is absolute. Note from (3.22)∣∣∣∣∣∣

4∑
j=2

cjfj(b1)

∣∣∣∣∣∣ ≈ |z1 − z2 − z3 + z4|
1− |z1|2

; (3.24)
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the constants suppressed above depend only on N . Finally, in addition to (3.19),
requiring N to be so large that

C1√
N

≤ 1

2
,

we conclude the lower estimate in (3.9) by (3.24), (3.23), (3.18) and (3.15), as
required.

We now consider the upper estimate in (3.9). By symmetry we may assume

ρ(z1, z2) ≤ ρ(z1, z3).

Put

τ :=
(1− s)2

8
and η :=

τ2

1 + τ
.

Consider the following subcases:

(i) ρ(z1, z2) ≥ η;
(ii) τρ(z1, z2) ≥ ρ(z3, z4) or τρ(z3, z4) ≥ ρ(z1, z2);

(iii) τρ(z1, z2) ≤ ρ(z3, z4) ≤ 1
τ ρ(z1, z2) and ρ(z1, z2) ≤ η ≤ ρ(z1, z3);

(iv) τρ(z1, z2) ≤ ρ(z3, z4) ≤ 1
τ ρ(z1, z2) and ρ(z1, z3) ≤ η.

Now, we will save notation by setting

G := Kz1 −Kz2 −Kz3 +Kz4 (3.25)

for the rest of the proof.
In Case (i), we have ρ(z1, z2)ρ(z1, z3) ≥ η2 and thus

∥G∥A2
α
≤ ρ(z1, z2)ρ(z1, z3)

η2

4∑
j=1

∥Kzj∥A2
α
,

as desired.
Consider Case (ii). First, assume τρ(z1, z2) ≥ ρ(z3, z4). We then have

|z1 − z2 − z3 + z4|
1− |z1|2

≥ |z1 − z2|
1− |z1|2

− |z3 − z4|
1− |z3|2

· 1− |z3|2

1− |z1|2

≥ ρ(z1, z2)

1 + s
− ρ(z3, z4)

1− s
· 2

1− s
by (2.2) and (2.3)

≥ ρ(z1, z2)

2

[
1− 4τ

(1− s)2

]
=

ρ(z1, z2)

4
.
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It follows that

∥G∥A2
α
≤ ∥Kz1 −Kz2∥A2

α
+ ∥Kz3 −Kz4∥A2

α

≲ (1 + τ)ρ(z1, z2)

4∑
j=1

∥Kzj∥A2
α

by (2.8)

≤ 4(1 + τ)
|z1 − z2 − z3 + z4|

1− |z1|2
4∑

j=1

∥Kzj∥A2
α
,

as desired. Since 1− |z1| ≈ 1− |z4| by (2.3), the case τρ(z3, z4) ≥ ρ(z1, z2) can
be treated similarly.

In Case(iii), we have

ρ(z1, z2) + ρ(z3, z4) ≤
(
1 +

1

τ

)
ρ(z1, z2)

≤ 1

η

(
1 +

1

τ

)
ρ(z1, z2)ρ(z1, z3)

and thus

∥G∥A2
α
≤ ∥Kz1 −Kz2∥A2

α
+ ∥Kz3 −Kz4∥A2

α

≲ [ρ(z1, z2) + ρ(z3, z4)]
4∑

j=1

∥Kzj∥A2
α

by (2.8)

≤ 1

η

(
1 +

1

τ

)
ρ(z1, z2)ρ(z1, z3)

4∑
j=1

∥Kzj∥A2
α
,

as desired.
Finally, consider Case (iv). Note from (2.4)

|fj(z)| ≤ ρ(z1, zj)
|z||1− z1zj |
1− |z1|

≤ 2

1− s
ρ(z1, zj) (3.26)

for z ∈ D. So, since η < τ and

ρ(z1, z4) ≤ ρ(z1, z3) + ρ(z3, z4) ≤ η +
η

τ
= τ,

we obtain

|fj(z)| ≤
2τ

1− s
≤ 1

4
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for all z ∈ D and j. Thus, applying Lemma 3.4, we obtain∣∣∣∣ f(z)

Kz1(z)

∣∣∣∣ =
∣∣∣∣∣∣

4∑
j=1

cj(
1− fj(z)

)α+2

∣∣∣∣∣∣
≲

2∑
k=1

∣∣∣∣∣∣
4∑

j=2

cj [fj(z)]
k

∣∣∣∣∣∣+
∣∣∣∣∣∣

4∑
j=2

cjfj(z)

∣∣∣∣∣∣+
∣∣∣f2(z)f3(z)∣∣∣


≲

∣∣∣∣∣∣
4∑

j=2

cjfj(z)

∣∣∣∣∣∣+
∣∣∣f2(z)f3(z)∣∣∣

for all z ∈ D; the last inequality holds by Lemma 3.2(a). Moreover, we have

fj(z) =
z

b1
· 1− b1z1
1− zz1

fj(b1)

and ∣∣∣∣ zb1 · 1− b1z1
1− zz1

∣∣∣∣ ≤ |1− b1z1|
|b1|(1− |z1|)

≈ 1;

the last estimate holds by (3.12). Combining these observations, we obtain∣∣∣∣ f(z)

Kz1(z)

∣∣∣∣ ≲
∣∣∣∣∣∣

4∑
j=2

cjfj(b1)

∣∣∣∣∣∣+
∣∣∣f2(b1)f3(b1)∣∣∣

for all z ∈ D. This, together with (3.24) and (3.18), implies the upper estimate in
(3.9). The proof is complete. □

Remark 3.6. As a byproduct of the proof of Theorem 3.5, we see that the second
integral in (1.2) can be replaced by a bit simpler one. Namely, by (3.9) and (2.3),
we can replace R3 in (1.2) by the quantity

|φ1 − φ2 − φ3 + φ4|
1− |φ1|2

+ ρ12ρ13.

While this quantity is not symmetric, it might be more useful in applications be-
cause of its simplicity.

When z1 = z4, we have two additional optimal estimates as in the next theorem.

Theorem 3.7. Let α > −1 and 0 < s < 1. Given z1, z2, z3 ∈ D, put

A1 :=
|2z1 − z2 − z3|

1− |z1|2
and A2 := |σ(z1, z2) + σ(z1, z3)| .

Let A = A1 or A2. Then there exists r = r(s) > 0 such that

∥2Kz1 −Kz2 −Kz3∥A2
α
≈
[
A+ ρ2(z1, z2) + ρ2(z1, z3)

] 3∑
j=1

∥Kzj∥A2
α

whenever 1− |zj | ≤ r and ρ(zi, zj) ≤ s for i, j = 1, 2, 3 with i ̸= j; the constants
suppressed above depend only on α and s.
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Proof. Consider arbitrary z1, z2, z3 ∈ D such that ρ(zi, zj) ≤ s for all i ̸= j. The
estimate for A = A1 is immediate from Theorem 3.5 (with z1 = z4) and (2.3).

For the case A = A2, we note

2z1 − z2 − z3
1− |z1|2

− [σ(z1, z2) + σ(z1, z3)] =

3∑
j=2

σ(z1, zj)
z1(z1 − zj)

1− |z1|2
(3.27)

and thus by (2.2)

|A1 −A2| ≤
1

1− s

3∑
j=2

ρ2(z1, zj),

which yields

A1 +

3∑
j=2

ρ2(z1, zj) ≈ A2 +

3∑
j=2

ρ2(z1, zj).

So, we also conclude the estimate for A = A2. The proof is complete. □

4. THE RATIO ESTIMATE: PART II

In Theorem 3.5 we established optimal estimates for the ratio (1.5) when the
points are close to one another. In this section we complete such estimates for the
remaining case, which are not covered by Theorem 3.5. We will split the remaining
case into four subcases and treat them one by one in separate lemmas.

Before proceeding, we first fix some notation. Given a positive number N ≥ 2,
we put

aN := [1−N(1− |a|2)]a
for a ∈ D with 2N(1− |a|2) < 1. For easier reference later, we note

1− aNa = (1− |a|2)(1 +N |a|2). (4.1)

Meanwhile, since

1− |aN | = (1− |a|)
[
1 +N |a|(1 + |a|)

]
≥ 1− |a|,

we note |aN | ≤ |a| and thus

1− |aN |2 ≥ 1− |a|2. (4.2)

Also, since N ≥ 2, we note |a| > 1
2 and hence |aN | > 1

4 .
The following technical lemma will play essential roles in the proofs of subse-

quent four lemmas.

Lemma 4.1. Let α > −1, N ≥ 2 and 0 < ϵ < δ < 1. Then the following
assertions hold for a, z, w ∈ D with 2N(1 − |a|2) < 1 and for some constant
cα > 0 depending only on α.

(a) If N(1− ϵ) ≥ 6 and ρ(a, z) ≤ ϵ, then

1

cα
· ρ(a, z)

N
≤
∣∣∣∣1− Kz(aN )

Ka(aN )

∣∣∣∣ ≤ cα · ρ(a, z)

N(1− ϵ)
.
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If, in addition, N(1− ϵ) ≥ 2cα, then∣∣∣∣1 + Kz(aN )

Ka(aN )

∣∣∣∣ ≥ 3

2
.

(b) If |z| ≤ |a| and

N
√

1− ρ(a, z)

|aN |ρ(a, z)
≤ 1

8
, (4.3)

then ∣∣∣∣Kz(aN )

Ka(aN )

∣∣∣∣ ≤ cα

(
N
√
1− ρ(a, z)

|aN |ρ(a, z)

)α+2

.

(c) If |w| ≤ |a|, ρ(z, w) ≤ ϵ, ρ(a,w) ≥ δ, M ≥ 5 and

1− |w|2

1− |a|2
≤ M ≤

(
1− ϵ√
1− δ

)1/2

, (4.4)

then ∣∣∣∣1− Kw(aN )

Kz(aN )

∣∣∣∣ ≤ cαρ(z, w)

(√
1− δ

1− ϵ

)1/2

.

Proof. Consider a ∈ D with 2N(1 − |a|2) < 1 and let z, w ∈ D. For simplicity
we put b := aN throughout the proof. Recall |a| > 1

2 and |aN | > 1
4 .

First, we prove (a). To begin with, we note

Kb(z)

Kb(a)
=

[
1− b(a− z)

1− zb

]α+2

=

[
1− bσ(a, z) · 1− za

1− zb

]α+2

. (4.5)

In order to see whether the binomial expansion is legitimate for the last expression,
we need to estimate the size of |1−za

1−zb
|. Assuming ρ(a, z) ≤ ϵ, we have by (2.2)

|z| ≥ |a| − |z − a| ≥ |a|2 − 1− |a|2

1− ϵ
= 1− (1− |a|2)

(
1 +

1

1− ϵ

)
and thus

|z| ≥ 1− 1

2N

(
1 +

1

1− ϵ

)
≥ 1− 1

N(1− ϵ)
.

It follows that

N ≥ |z||a− b|
1− |a|2

= |z||a|N ≥ 1

2

(
N − 1

1− ϵ

)
.

This, together with (2.4), yields

|1− zb|
1− |a|2

=
|1− za+ z(a− b)|

1− |a|2
≤ |z||a− b|

1− |a|2
+

|1− za|
1− |a|2

≤ N +
1

1− ϵ

and
|1− zb|
1− |a|2

≥ |z||a− b|
1− |a|2

− |1− za|
1− |a|2

≥ 1

2

(
N − 3

1− ϵ

)
.
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Now, further assuming N(1− ϵ) ≥ 6 and applying (2.4) once more, we obtain∣∣∣∣1− za

1− zb

∣∣∣∣ ≥ 1

1 + ϵ
· 1− |a|2

|1− zb|
≥ 1

2N
· N(1− ϵ)

N(1− ϵ) + 1
≥ 3

7N
(4.6)

and ∣∣∣∣1− za

1− zb

∣∣∣∣ ≤ 1

1− ϵ
· 1− |a|2

|1− zb|
≤ 2

N(1− ϵ)− 3
≤ 4

N(1− ϵ)
. (4.7)

Note ∣∣∣∣bσ(a, z) · 1− za

1− zb

∣∣∣∣ = |b|ρ(a, z)
∣∣∣∣1− za

1− zb

∣∣∣∣ ≤ 2

3

by (4.7). Accordingly, we may consider the binomial expansion of (4.5) to see that∣∣∣∣1− Kz(b)

Ka(b)

∣∣∣∣ = ∣∣∣∣1− Kb(z)

Kb(a)

∣∣∣∣ ≈ ∣∣∣∣σ(a, z)b(1− za)

1− zb

∣∣∣∣ ≈ ρ(a, z)

∣∣∣∣1− za

1− zb

∣∣∣∣;
the constants suppressed in these estimates depend only on α. So, combining this
with (4.6) and (4.7), we conclude the first part of (a). Since∣∣∣∣1 + Kz(b)

Ka(b)

∣∣∣∣ = ∣∣∣∣2 + (Kz(b)

Ka(b)
− 1

) ∣∣∣∣ ≥ 2−
∣∣∣∣1− Kz(b)

Ka(b)

∣∣∣∣,
one may see that the second part is immediate from the first part.

Next, we prove (b). Note

Kz(b)

Ka(b)
=

(
1− ba

1− bz

)α+2

. (4.8)

To estimate the size of the right-hand side of the above, we note

1− bz

1− ba
= 1 +

b(a− z)

1− ba
= 1 +

b

1 + |a|2N
· a− z

1− az
· 1− az

1− |a|2
.

So, assuming |z| ≤ |a| and (4.3), we obtain∣∣∣∣1− bz

1− ba

∣∣∣∣ ≥ |b|ρ(a, z)
2N

· |1− az|
1− |a|2

− 1

≥ |b|ρ(a, z)
4N
√

1− ρ(a, z)
− 1 by (2.1)

≥ |b|ρ(a, z)
8N
√

1− ρ(a, z)
by (4.3).

This, together with (4.8), yields the asserted inequality.
Finally, we prove (c). To begin with, we note

Kb(w)

Kb(z)
=

[
1− b(z − w)

1− wb

]α+2

(4.9)

as in the proof of (a). In conjunction with this representation, we note

z − w

1− wb
= σ(z, w)

(
1− wz

1− wa

)(
1− wa

1− wb

)
.
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Now, assume |w| ≤ |a|, ρ(z, w) ≤ ϵ, ρ(a,w) ≥ δ and (4.4). Since |w| ≤ |a|, we
have

|1− wz| · 1

|1− wa|
≤ 1− |w|2

1− ϵ
· 2

√
1− δ

1− |a|2
≤ 2

(√
1− δ

1− ϵ

)1/2

;

the first inequality holds by (2.4) and (2.1), and the second one by (4.4). We also
have∣∣∣∣1− wa

1− wb

∣∣∣∣ = ∣∣∣∣1− w(a− b)

1− wb

∣∣∣∣ ≤ 1 +
|a− b|
1− |b|

= 1 +
|a|N(1 + |a|)
1 +N(1 + |a|)

< 2.

Combining these observations, we obtain by the second inequality of (4.4)∣∣∣∣b(z − w)

1− wb

∣∣∣∣ ≤ ∣∣∣∣ z − w

1− wb

∣∣∣∣ ≤ 4

(√
1− δ

1− ϵ

)1/2

≤ 4

M
≤ 4

5

for M ≥ 5. So, considering the binomial expansion of (4.9), we conclude the
asserted inequality as in the proof of (a). The proof is complete. □

We now introduce several auxiliary notation and auxiliary numbers, which will
be used repeatedly in the rest of the paper.

Auxiliary notation. Let α > −1. Given z1, z2, z3, z4 ∈ D, we continue using
the notation G specified in (3.25). We also put

Q1 : = ∥Kz1 −Kz2∥A2
α
+ ∥Kz3 −Kz4∥A2

α
,

Q2 : = ∥Kz1 −Kz3∥A2
α
+ ∥Kz2 −Kz4∥A2

α
.

For these abbreviated notation, the dependency on the points zj’s (and α) should
be clear from the context. Clearly, we have

∥G∥A2
α
≤ min{Q1, Q2}. (4.10)

We will see that this estimate can be reversed, except when the underlying four
points are all close enough to one another. To this end we introduce below certain
positive numbers, depending only on α. For the rest of the section, these notation
G, Q1 and Q2 will be used without any further reference.

Auxiliary numbers. Given α > −1, let cα > 0 be the constant provided by
Lemma 4.1 and pick β1 = β1(α) ∈ (0, 1) such that(

2
√

1− β1
)α+2

<
1

8
. (4.11)

Take N1 = N1(α) = N1(cα, β1) ≥ 2 such that

N1(1− β1) ≥ max{6, 4cα}. (4.12)

This N1 will be required to have additional properties specified later in (4.29),
(4.31), (4.34) and (4.35), which are conditions depending only on α (but indepen-
dent of the choice of β2 below). For such a choice of N1, choose β2 = β2(N1) ∈
(β1, 1) with the following three properties:

√
1− β2
β2

≤ 1

4N7
1

; (4.13)



22 B. CHOE, X. GUO, T. HOSOKAWA, H. KOO, S. OHNO, AND M. WANG

max
{
N

2(α+4)
1 , N12

1

}
≤ 1− β1√

1− β2
; (4.14)

cα

(
4N1

√
1− β2
β2

)α+2

≤ 1

4N1
. (4.15)

Once β1 ∈ (0, 1) satisfying (4.11) is given, one may find N1 ≥ 2 and β2 ∈
(β1, 1) satisfying (4.12)-(4.15). Noting β1 < β2 < 1, one may start with β2 in
place of β1 to find N2 ≥ N1 and β3 ∈ (β2, 1) such that Lemmas 4.2-4.5 hold with
(β2, N2, β3) in place of (β1, N1, β2). Repeating the same procedure, one can find
(β3, N3, β4). Note that each βj can be chosen as close to 1 as we want. Fix those
two triples (β2, N2, β3) and (β3, N3, β4) satisfying

2 tanh−1 β3 ≤ tanh−1 β4; (4.16)

this will be used in the proof of Theorem 4.6 later. For the rest of the section, these
numbers cα, βj and Nj will be used without any further reference.

Lemma 4.2. Let α > −1. For z1, z2, z3, z4 ∈ D, assume the following:
(i) |zj | ≤ |z1| for j = 2, 3, 4;

(ii) β1 ≤ ρ(z1, zj) for j = 2, 3, 4.
Then the estimate

∥G∥A2
α
≈ Q1 ≈ Q2 ≈ ∥Kz1∥A2

α

holds; the constants suppressed above are absolute.

Proof. Using (i) and (ii), we obtain by (2.7) and (2.1)

|G(z1)|
∥Kz1∥2A2

α

=
|G(z1)|
Kz1(z1)

≥ 1−
4∑

j=2

(
2
√
1− β1

)α+2
>

1

2
;

the last inequality holds by (4.11). So, we obtain by (2.5)

∥G∥A2
α
≥ |G(z1)|

∥Kz1∥A2
α

≥ 1

2
∥Kz1∥A2

α
.

Meanwhile, it is clear by (i) and (2.7) that

∥G∥A2
α
≤ Qj ≤ 4∥Kz1∥A2

α
(4.17)

for j = 1, 2. So, the proof is complete. □

Lemma 4.3. Let α > −1. For z1, z2, z3, z4 ∈ D, assume the following:
(i) 2N1(1− |z1|2) < 1 and |zj | ≤ |z1| for j = 2, 3, 4;

(ii) ρ(z1, z4) ≤ β1;
(iii) either one of the following holds;

(iii-a) β2 ≤ ρ(z1, z2) ≤ ρ(z1, z3).
(iii-b) ρ(z1, z2) ≤ β1 and β2 ≤ ρ(z1, z3).

Then the estimate
∥G∥A2

α
≈ Q1 ≈ Q2 ≈ ∥Kz1∥A2

α

holds; the constants suppressed above depend only on α.
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Proof. Throughout the proof, we use the notation

b := (z1)N1 =
[
1−N1(1− |z1|2)

]
z1 (4.18)

for simplicity. As in the proof of Lemma 4.2, it suffices to establish

∥G∥A2
α
≥ C∥Kz1∥A2

α
(4.19)

for some constant C = C(α) > 0.
To begin with, we note

∥G∥A2
α
≥ (1− |b|2)1+α/2

|1− bz1|α+2
· |G(b)|
|Kz1(b)|

by (2.5)

≥
∥Kz1∥A2

α

(1 +N1|z1|2)α+2
· |G(b)|
|Kz1(b)|

by (4.1) and (4.2)

≥
∥Kz1∥A2

α

(2N1)α+2
· |G(b)|
|Kz1(b)|

. (4.20)

In addition, we note

|G(b)|
|Kz1(b)|

≥
∣∣∣∣1 + Kz4(b)

Kz1(b)

∣∣∣∣− ∣∣∣∣Kz2(b)

Kz1(b)
+

Kz3(b)

Kz1(b)

∣∣∣∣
≥ 3

2
−
∣∣∣∣Kz2(b)

Kz1(b)
+

Kz3(b)

Kz1(b)

∣∣∣∣ ; (4.21)

the second inequality holds by (4.12) and Lemma 4.1(a).
To estimate the quantity in (4.21), we first consider the case (iii-a). Note from

(4.13) √
1− ρ(z1, zj)

ρ(z1, zj)
≤

√
1− β2
β2

≤ 1

4N7
1

<
|b|
N7

1

(4.22)

for j = 2, 3; recall |b| > 1
4 for the last inequality. Thus we have by Lemma 4.1(b)∣∣∣∣Kz2(b)

Kz1(b)
+

Kz3(b)

Kz1(b)

∣∣∣∣ ≤ ∣∣∣∣Kz2(b)

Kz1(b)

∣∣∣∣+ ∣∣∣∣Kz3(b)

Kz1(b)

∣∣∣∣
≤ cα

3∑
j=2

(
N1

√
1− ρ(z1, zj)

|b|ρ(z1, zj)

)2+α

≤ 2cα

(
4N1

√
1− β2
β2

)2+α

≤ 1

4
; (4.23)

the last inequality holds by (4.15). Combining this with (4.20) and (4.21), we
obtain

∥G∥A2
α
≥ 5

4
·
∥Kz1∥A2

α

(2N1)α+2

and thus conclude (4.19) for the case (iii-a).
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We now consider the case (iii-b). Note that (4.22) is still valid for j = 3. Thus∣∣∣∣Kz3(b)

Kz1(b)

∣∣∣∣ ≤ 1

8
.

We also have by Lemma 4.1(a)∣∣∣∣Kz2(b)

Kz1(b)
− 1

∣∣∣∣ ≤ cα
ρ(z1, z2)

N1(1− β1)
≤ 1

4
;

the last inequality holds by (4.12). It follows that∣∣∣∣Kz2(b)

Kz1(b)
+

Kz3(b)

Kz1(b)

∣∣∣∣ ≤ 1 +

∣∣∣∣Kz2(b)

Kz1(b)
− 1

∣∣∣∣+ ∣∣∣∣Kz3(b)

Kz1(b)

∣∣∣∣ ≤ 11

8
.

Combining this with (4.20) and (4.21), we obtain

∥G∥A2
α
≥ 1

8
·
∥Kz1∥A2

α

(2N1)α+2

and thus conclude (4.19) for the case (iii-b). The proof is complete. □

Lemma 4.4. Let α > −1. For z1, z2, z3, z4 ∈ D, assume the following:
(i) 2N1(1− |z1|2) < 1 and |zj | ≤ |z1| for j = 2, 3, 4;

(ii) ρ(z1, z2) ≤ β1;
(iii) β2 ≤ ρ(z1, zj) for j = 3, 4.

Then the estimate
∥G∥A2

α
≈ min{Q1, Q2}

holds; the constants suppressed above depend only on α.

Proof. As in the proof of Lemma 4.2, it suffices to establish

∥G∥A2
α
≥ Cmin{Q1, Q2} (4.24)

for some constant C = C(α,N) = C(α) > 0.
If

∥Kz1 −Kz2∥A2
α

∥Kz3 −Kz4∥A2
α

≤ 1

2
or

∥Kz1 −Kz2∥A2
α

∥Kz3 −Kz4∥A2
α

≥ 2,

then we have
Q1

3
≤
∣∣∣∣∥Kz1 −Kz2∥A2

α
− ∥Kz3 −Kz4∥A2

α

∣∣∣∣ ≤ ∥G∥A2
α
≤ Q2

and thus (4.24) holds with C = 1
3 .

We now assume
1

2
<

∥Kz1 −Kz2∥A2
α

∥Kz3 −Kz4∥A2
α

< 2 (4.25)

for the rest of the proof. By symmetry we may further assume

|z4| ≤ |z3| (4.26)

for the rest of the proof. Setting

M := max{Nα+4
1 , N6

1 }
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for short, we consider the following three subcases:

(a) ρ(z3, z4) ≤ β1 and
1− |z3|2

1− |z1|2
≤ M ;

(b) ρ(z3, z4) ≤ β1 and
1− |z3|2

1− |z1|2
> M ;

(c) ρ(z3, z4) > β1.
For the rest of the proof, we keep using the notation specified in (4.18).

Case (a): Since

|Kz4(b)| = Kz4(z4)

(
1− |z4|2

|1− z4b|

)2+α

≤ 2α+2∥Kz4∥2A2
α

and

M2 ≤ 1− β1√
1− β2

,

we obtain by Lemma 4.1(c)

|Kz3(b)−Kz4(b)| =
∣∣∣∣1− Kz3(b)

Kz4(b)

∣∣∣∣ |Kz4(b)|

≲ ρ(z3, z4)

(√
1− β2
1− β1

)1/2

∥Kz4∥2A2
α

≤ ρ(z3, z4)

M
∥Kz1∥A2

α
∥Kz4∥A2

α
;

recall |z4| ≤ |z1| for the last inequality. Meanwhile, since

|Kz1(b)| ≥
∥Kz1∥2A2

α

(2N1)α+2

by (4.1), we note from (4.12) and Lemma 4.1(a) that

|Kz1(b)−Kz2(b)| = |Kz1(b)|
∣∣∣∣1− Kz2(b)

Kz1(b)

∣∣∣∣
≳

ρ(z1, z2)

Nα+3
1

∥Kz1∥2A2
α
. (4.27)

Combining these observations and using M ≥ Nα+4
1 , we obtain

|G(b)| ≥ |Kz1(b)−Kz2(b)| − |Kz3(b)−Kz4(b)|

≳
∥Kz1∥A2

α

Nα+3
1

[
ρ(z1, z2)∥Kz1∥A2

α
− C

N1
ρ(z3, z4)∥Kz4∥A2

α

]
(4.28)

where C > 0 is a constant depending only on α. In addition, we have by (i) and
(2.8)

ρ(z1, z2)∥Kz1∥A2
α
≈ ∥Kz1 −Kz2∥A2

α
.

Similarly, by (4.26) and (2.3), we have

ρ(z3, z4)∥Kz4∥A2
α
≈ ∥Kz3 −Kz4∥A2

α
.
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The constants suppressed so far depend only on α (and β1). Inserting these esti-
mates into (4.28), we obtain by (2.5) and (4.2)

∥G∥A2
α
≥ (1− |z1|2)α/2+1|G(b)|

≥ C1

Nα+3
1

(
∥Kz1 −Kz2∥A2

α
− C2

N1
∥Kz3 −Kz4∥A2

α

)
≥ C1

Nα+3
1

(
1− 2C2

N1

)
∥Kz1 −Kz2∥A2

α

where C1 and C2 are positive constants depending only on α. Accordingly, choos-
ing N1 with

N1 ≥ 4C2, (4.29)

we obtain

Q2 ≥ ∥G∥A2
α
≥ C1

2Nα+3
1

∥Kz1 −Kz2∥A2
α
≥ C1

6Nα+3
1

Q1;

the last inequality holds by (4.25). So, we conclude (4.24) for Case (a).

Case (b): Using the elementary inequality (see, for example, [2, Lemma 3.2])∣∣∣∣ 1

(1− ξ)t
− 1

(1− ζ)t

∣∣∣∣ ≤ t|ξ − ζ|
[

1

(1− |ξ|)t+1
+

1

(1− |ζ|)t+1

]
valid for all ξ, ζ ∈ D and t > 0, we obtain

|Kz3(b)−Kz4(b)| ≲
|z3 − z4|

(1− |z3|)α+3
(recall |z4| ≤ |z3|)

=
ρ(z3, z4)

(1− |z3|)α+3
· |1− z3z4|

≤ ρ(z3, z4)

(1− |z3|)α+3
· 1− |z3|2

1− β1
by (2.4)

≈ 1

1− β1
· ρ(z3, z4)

(1− |z3|2)α+2
. (4.30)

In addition, we have by (2.7) and the second condition in (b)

1

(1− |z3|2)α+2
=

(
1− |z1|2

1− |z3|2

)α/2+1

∥Kz1∥A2
α
∥Kz3∥A2

α

≤
∥Kz1∥A2

α
∥Kz3∥A2

α

N
3(α+2)
1

<
∥Kz1∥A2

α
∥Kz3∥A2

α

Nα+4
1

;

we have used α > −1 for the last inequality. Inserting this into (4.30), we obtain

|Kz3(b)−Kz4(b)| ≲
ρ(z3, z4)∥Kz1∥A2

α
∥Kz3∥A2

α

Nα+4
1 (1− β1)

;
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the constant suppressed here depends only on α. Note that (4.27) is still valid. So,
combining the above with (4.27), we obtain

|G(b)| ≥ |Kz1(b)−Kz2(b)| − |Kz3(b)−Kz4(b)|

≳
∥Kz1∥A2

α

Nα+3
1

[
ρ(z1, z2)∥Kz1∥A2

α
− C

N1(1− β1)
ρ(z3, z4)∥Kz3∥A2

α

]
for some constant C > 0 depending only on α. Thus, proceeding as in the proof
of Case (a), we obtain

∥G∥A2
α
≥ C3

Nα+3
1

(
1− C4

N1(1− β1)

)
∥Kz1 −Kz2∥A2

α

where C3 and C4 are positive constants depending only on α. Accordingly, choos-
ing N1 with

N1 ≥
2C4

1− β1
, (4.31)

we obtain

Q2 ≥ ∥G∥A2
α
≥ C3

6Nα+3
1

Q1

as in the proof of Case (a). So, we conclude (4.24) for Case (b).

Case (c): Taking j0 ∈ {3, 4} such that

max {|Kz3(b)|, |Kz4(b)|} = |Kzj0
(b)|,

we claim

(1− |b|2)α/2+1|Kzj0
(b)| ≤ C

Nα+4
1

∥Kz3∥A2
α

(4.32)

for some constant C = C(α) > 0. To see this we consider two subcases

(c1) :
1− |b|
1− |zj0 |

≤ 1

N6
1

and (c2) :
1− |zj0 |
1− |b|

≤ N6
1 .

In case of (c1), we have

(1− |b|)α/2+1|Kzj0
(b)| ≤

(
1− |b|
1− |zj0 |

)α/2+1 1

(1− |zj0 |)α/2+1

≲
1

N
3(α+2)
1

∥Kz3∥A2
α
;

recall |z4| ≤ |z3| for the second inequality. Since α > −1, this yields (4.32). In
case of (c2), we note from (iii) and (4.13)

N1

√
1− ρ(z1, zj0)

|b|ρ(z1, zj0)
≤ 4N1

√
1− β2
β2

≤ 1

N6
1

;
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recall |b| > 1
4 for the second inequality. It follows from Lemma 4.1(b) that

|Kzj0
(b)| ≲ |Kz1(b)|

N
6(α+2)
1

≤ 1

N
6(α+2)
1

(
1

1− |b|

)α+2

.

We thus obtain

(1− |b|)α/2+1|Kzj0
(b)| ≤ 1

N
6(α+2)
1

(
1− |zj0 |
1− |b|

)α/2+1 1

(1− |zj0 |)α/2+1

≲
∥Kz3∥A2

α

N
3(α+2)
1

and thus conclude (4.32) as above.
Now, noting that (4.27) is still valid, we have by (2.5), (4.2) and (4.32)

∥G∥A2
α
≥ (1− |b|2)α/2+1|G(b)|

≥ (1− |z1|2)α/2+1|Kz1(b)−Kz2(b)| − 2(1− |b|2)α/2+1|Kj0(b)|

≳
1

Nα+3
1

[
ρ(z1, z2)∥Kz1∥A2

α
− C

∥Kz3∥A2
α

N1

]
(4.33)

for some constant C = C(α) > 0. In connection with this, we recall from (2.8)
and (2.3) (recall |z2| ≤ |z1| and |z4| ≤ |z3|)

ρ(z1, z2)∥Kz1∥A2
α
≈ ∥Kz1 −Kz2∥A2

α
≈ ∥Kz3 −Kz4∥A2

α
≈ ∥Kz3∥A2

α
,

which, in turn, yields

ρ(z1, z2)∥Kz1∥A2
α
≈ Q1 ≈ ∥Kz3∥A2

α
.

The constants suppressed so far depend only on α. Thus, combining the above
with (4.33), we obtain

∥G∥A2
α
≥ C5

Nα+3
1

(
1− C6

N1

)
Q1

where C5 and C6 are positive constants depending only on α. Accordingly, choos-
ing N1 with

N1 ≥ 2C6, (4.34)

we obtain

Q2 ≥ ∥G∥A2
α
≥ C5

2Nα+3
1

Q1.

So, we conclude (4.24), as required. This completes the proof for Case (c) and thus
the proof of the lemma. □

Lemma 4.5. Let α > −1. For z1, z2, z3, z4 ∈ D, assume the following:
(i) 2N1(1− |z1|2) < 1 and |zj | ≤ |z1| for j = 2, 3, 4;

(ii) ρ(z1, z2) ≤ β1;
(iii) ρ(z1, z3) ≤ β1 and β2 ≤ ρ(z1, z4).
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Then the estimate
∥G∥A2

α
≈ Q1 ≈ Q2 ≈ ∥Kz1∥A2

α

holds; the constants suppressed above depend only on α.

Proof. We keep using the notation (4.18). Using (4.12), we obtain by Lemma
4.1(a) ∣∣∣∣1− Kzj (b)

Kz1(b)

∣∣∣∣ ≤ cα
N1(1− β1)

for j = 2, 3. Meanwhile, using (4.13) and (4.15), we obtain by Lemma 4.1(b)∣∣∣∣Kz4(b)

Kz1(b)

∣∣∣∣ ≤ 1

4N1
.

It follows that

|G(b)| ≥ |Kz1(b)|
(∣∣∣∣1− Kz2(b)

Kz1(b)
− Kz3(b)

Kz1(b)

∣∣∣∣− |Kz4(b)|
|Kz1(b)|

)
≥ |Kz1(b)|

(
1−

∣∣∣∣1− Kz2(b)

Kz1(b)

∣∣∣∣− ∣∣∣∣1− Kz3(b)

Kz1(b)

∣∣∣∣− |Kz4(b)|
|Kz1(b)|

)
≥

∥Kz1∥2A2
α

(N1 + 1)α+2

[
1− 2cα

N1(1− β1)
− 1

4N1

]
.

Hence, taking N1 with

2cα
N1(1− β1)

+
1

4N1
≤ 1

2
, (4.35)

we obtain by (2.5) and (4.2)

∥G∥A2
α
≥ (1− |b|2)1+α/2|G(b)| ≥

∥Kz1∥A2
α

2(N1 + 1)α+2
.

By this and (4.17) we conclude the lemma. The proof is complete. □

Having established Lemmas 4.2-4.5, we now proceed to obtain optimal ratio
estimates for the remaining case, which are not covered by Theorem 3.5.

Theorem 4.6. Let α > −1. For z1, z2, z3, z4 ∈ D, assume

β4 ≤ max
1≤i<j≤4

ρ(zi, zj) (4.36)

and

min
1≤j≤4

(1− |zj |2) ≤
1

2N2
. (4.37)

Then the inequalities

Cmin{Q1, Q2} ≤ ∥G∥A2
α
≤ min{Q1, Q2}

hold for some constant C = C(α) > 0.
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Proof. The roles of z1 and z4 are the same and the roles of z2 and z3 are the same
for the estimate of ∥G∥A2

α
. Moreover, the roles of {z1, z4} and {z2, z3} can be

interchanged by taking −G. Therefore, we may assume

max
2≤j≤4

|zj | ≤ |z1| and ρ(z1, z2) ≤ ρ(z1, z3).

Note 2N2(1− |z1|2) < 1 by (4.37). We have

Cmin{Q1, Q2} ≤ ∥G∥A2
α
≤ min{Q1, Q2}; (4.38)

for some constant C = C(β1, N1, β2) = C(α) > 0 in the following four cases:
(a) min

2≤j≤4
ρ(z1, zj) ≥ β1 (by Lemma 4.2);

(b) ρ(z1, z4) ≤ β1, ρ(z1, z2) /∈ [β1, β2] and β2 ≤ ρ(z1, z3) (by Lemma 4.3);
(c) ρ(z1, z2) ≤ β1 and β2 ≤ min

j=3,4
ρ(z1, zj) (by Lemma 4.4);

(d) max
j=2,3

ρ(z1, zj) ≤ β1 and β2 ≤ ρ(z1, z4) (by Lemma 4.5).

Recalling that tanh−1 ρ is the well-known hyperbolic distance on D, we have by
the triangle inequality

max
1≤i<j≤4

tanh−1 ρ(zi, zj) ≤ 2 max
2≤j≤4

tanh−1 ρ(z1, zj).

Thus, we see from (4.16) and (4.36) that

β3 ≤ max
2≤j≤4

ρ(z1, zj).

So, one may check that the following three cases are missing in the four cases listed
above:

(b1) ρ(z1, z4) ≤ β1 ≤ ρ(z1, z2) ≤ β2 and β3 ≤ ρ(z1, z3);
(c1) ρ(z1, z2) ≤ β1 ≤ ρ(z1, z4) ≤ β2 and β3 ≤ ρ(z1, z3);
(c2) ρ(z1, z2) ≤ β1 ≤ ρ(z1, z3) ≤ β2 and β3 ≤ ρ(z1, z4).

Note that Cases (b1) and (c1) reduce to Case (b) with (β2, β3) in place of (β1, β2).
Case (c2) reduces Case (d) in the similar way. The proof is complete. □

5. HILBERT-SCHMIDT DOUBLE DIFFERENCES

In this section, applying the optimal ratio estimates established in the previous
two sections, we prove Theorem 1.1. We also provide explicit examples demon-
strating that the rigid phenomenon for compactness mentioned in the Introduction
is no longer available for Hilbert-Schmidtness.

In the proof below we will use the auxiliary sets Γt given by

Γt :=

{
z ∈ D : min

1≤j≤4
(1− |φj(z)|) < t

}
for 0 < t < 1. Also, we continue using auxiliary numbers specified in Section 4.

Proof of Theorem 1.1. Put s0 = s0(α) := β4. For s ∈ (s0, 1), let r = r(s) > 0
be a number provided by Theorem 3.5. Pick a sufficiently small t = t(α, s) > 0
with the following two properties:

(i) t ≤ min{ 1
4N2

, r2};



HILBERT-SCHMIDT DOUBLE DIFFERENCES 31

(ii) ρ(a, b) ≥ s whenever 1− |a| ≤ t and 1− |b| > r.

Note from (2.10)

∥T∥2HS(A2
α)

=

∫
D\Γt

+

∫
Γt\Ωs

+

∫
Γt∩Ωs

∥K∥2A2
α
dAα

where K := Kφ1 −Kφ2 −Kφ3 +Kφ4 . First, note from (i) that Theorem 4.6 holds
with 2t in place of 1

2N2
. Thus we see from Theorem 4.6 and (2.8)

∥K∥A2
α
≈ min{R1, R2} on Γt \ Ωs.

Next, note from (ii) that 1 − |φj(z)| ≤ r for all j and z ∈ Γt ∩ Ωs. Thus we see
from Theorem 3.5

∥K∥A2
α
≈ R3 on Γt ∩ Ωs.

The constants suppressed so far depend only on α, s and t. Finally, since φj(D\Γt)

is contained in the closed disk D1−t(0) for each j, it is clear that the integrals over
D \ Γt of ∥K∥2A2

α
, (min{R1, R2})2 and R2

3 are all finite. So, we conclude the first
part of the theorem.

Now assume φ1 = φ4 so that R1 = R2 =: R. Note

R = (ρ12 + ρ13)∥Kφ1∥A2
α
+ ρ12∥Kφ2∥A2

α
+ ρ13∥Kφ3∥A2

α
. (5.1)

Also, note by Theorem 3.7

R4 ≈ R3 on Γt ∩ Ωs;

the constants suppressed in this estimate depend only α, s and t. Thus, as in the
proof of the first part, it suffices to show that

R4 ≈
3∑

j=1

∥Kφj∥A2
α
≈ R on D \ Ωs; (5.2)

the constants suppressed in this estimate depend only α and s. Since

ρ12 + ρ13 ≥ max{ρ12, ρ13} ≥ s

2
on D \ Ωs, (5.3)

the first estimate in (5.2) is clear. To see the second estimate, consider arbitrary
z ∈ D \ Ωs. Using the inequality in (5.3), we may assume ρ12(z) ≤ ρ13(z) by
symmetry so that ρ13(z) ≥ s

2 . If ρ12(z) ≥ s
2 , then it is clear from (5.1) that

R(z) ≈
3∑

j=1

∥Kφj(z)∥A2
α
.

If ρ12(z) < s
2 , then we also have the same estimate by (5.1), (2.3) and (2.7).

Accordingly, we conclude the second estimate in (5.2). The proof is complete. □
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Remark 5.1. When (1.2) holds, closely looking at the proof of Theorem 1.1, one
may obtain the norm estimate

∥T∥2HS(A2
α)

≈
∫
D\Γt

∥K∥2A2
α
dAα

+

∫
Γt\Ωs

(min{R1, R2})2 dAα +

∫
Γt∩Ωs

R2
3 dAα.

Here, we use the same notation introduced in the proof of Theorem 1.1. Similarly,
when (1.3) holds, one may obtain the norm estimate

∥T∥2HS(A2
α)

≈
∫
D\Γt

∥K∥2A2
α
dAα +

∫
Γt

R2
4 dAα.

The constants suppressed in these norm estimates depend only on α, s and t.

As is mentioned in the Introduction, non-compact differences of composition
operators cannot form a compact linear combination, when coefficients in that com-
bination satisfy CNC. In the next two examples we will exhibit explicit examples
demonstrating that such a rigid phenomenon for compact combinations does not
extend to Hilbert-Schmidt combinations. We take α = 0 for simplicity. Recall
A2(D) = A2

0(D).

Example 5.2. Let 1
4 < δ ≤ 1

2 and 0 < ϵ < 1
2 . For φ1(z) :=

z+1
2 , put

φ2 := φ1 + ϵ(1− φ1)
2+δ and φ3 := φ1 − ϵ(1− φ1)

2+δ.

Put T := 2T1 − T2 − T3 where Tj := Cφj . Then the following assertions hold on
A2(D):

(a) T1 − T2 and T1 − T3 are not Hilbert-Schmidt;
(b) T is Hilbert-Schmidt.

Proof. To begin with, we note

1− |φ1(z)|2 = |1− φ1(z)|2 +
1− |z|2

2
and thus

|1− φ1|2+δ ≤ |1− φ1|2 < 1− |φ1|2 ≤ 2(1− |φ1|) (5.4)

for any δ > 0. So, we obtain

|(1− |φ1|)− (1− |φ2|)| ≤ |φ1 − φ2| ≤ 2ϵ(1− |φ1|)
and thus (recall 2ϵ < 1)

1− |φ1| ≈ 1− |φ2|.
In particular, φ2 ∈ S(D). We also note

ρ12 =
ϵ|1− φ1|2+δ

(1− |φ1|2)
∣∣∣1− ϵφ1(1−φ1)2+δ

1−|φ1|2

∣∣∣ ≈ |1− φ1|2+δ

1− |φ1|2
;

the last estimate holds by (5.4). Similarly, we have the same estimates with φ3 in
place of φ2.
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In summary, we have φ2, φ3 ∈ S(D) and, in addition,

1− |φj | ≈ 1− |φ1| and ρ1j ≈
|1− φ1|2+δ

1− |φ1|
on D (5.5)

for each j = 2, 3. This, together with (2.8), yields

∥Kφ1(z) −Kφj(z)∥A2 ≈ ρ1j(z)
(
∥Kφ1(z)∥A2 + ∥Kφj(z)∥A2

)
≈ |1− φ1(z)|2+δ

(1− |φ1(z)|)2

≈ (1− x)δ +
y2+δ

(1− x)2

for z ∈ D and j = 2, 3. Here, x := Re z and y := Im z. For the last estimate
above, we used the inequality 1−x

2 ≤ 1−|φ1(z)|2 ≤ 1−x. We note by elementary
calculus ∫

D

y4+2δ

(1− x)4
dA(z) ≈

∫ 1

0

dx

(1− x)
3
2
−δ

= ∞;

recall δ ≤ 1/2. Thus (a) holds by (2.9).
We now prove (b). Note

|1− φ1φj | ≤ 1− |φ1|2 + ϵ|1− φ1|2+δ

for j = 2, 3. So, since 2φ1 = φ2 + φ3, we have∣∣∣∣∣∣
3∑

j=2

σ(φ1, φj)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

3∑
j=2

σ2(φ1, φj)
φ1(1− φ1φj)

1− |φ1|2

∣∣∣∣∣∣ by (3.27)

≤
3∑

j=2

ρ21j

(
1 +

ϵ|1− φ1|2+δ

1− |φ1|2

)
≈ ρ212(z) + ρ213 by (5.5)

and thus

R4 ≈
(
ρ212 + ρ213

) 3∑
j=1

∥Kφj(z)∥A2 ≈ |1− φ1|2(2+δ)

(1− |φ1|)3
by (5.5).

Now, since

R2
4(z) ≈

|1− φ1(z)|4(2+δ)

(1− |φ1(z)|)6
≈ (1− x)2+4δ +

y8+4δ

(1− x)6

for z ∈ D and∫
D

y8+2δ

(1− x)6
dA(z) ≈

∫ 1

0

dx

(1− x)
3
2
−2δ

< ∞ (recall δ > 1/4),

we conclude
∫
DR2

4 dA < ∞. Thus (b) holds by Theorem 1.1. The proof is
complete. □
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In fact Example 5.2 can be generalized to general linear combinations. To this
end we need the following lemma.

Lemma 5.3. Let α > −1 and 0 < s < 1. Let n ≥ 2 be a positive integer. Given
z1, . . . , zn ∈ D and c1, . . . , cn ∈ C with

∑n
j=1 cj = 0 and max1≤j≤n |cj | = 1,

put

A :=
2∑

k=1

∣∣∣∣∣∣
n∑

j=2

cj

(
zj − z1
1− |z1|2

)k
∣∣∣∣∣∣ and B :=

n∑
j=2

ρ3(z1, zj).

Then there is a constant C = C(α, s, n) > 0 such that∥∥∥∥ n∑
j=1

cjKzj

∥∥∥∥
A2

α

≤ C(A+B)

n∑
j=1

∥Kzj∥A2
α

whenever ρ(z1, zj) ≤ s for all j.

Proof. Let z1, . . . , zn ∈ D and consider c1, . . . , cn ∈ C with
∑n

j=1 cj = 0 and
max1≤j≤n |cj | = 1. Assume ρ(z1, zj) ≤ s for all j in the rest of the proof.

As in the proof of Lemma 3.5, we set

f :=
n∑

j=1

cjKzj and fj(z) :=
z(zj − z1)

1− zz1

for j = 1, . . . , n. We note

f(z) = Kz1(z)

n∑
j=1

cj
(1− fj(z))α+2

(5.6)

for z ∈ D. Also, we note from (2.4)

|fj(z)| ≤ ρ(z1, zj)
|z||1− z1zj |
1− |z1|

≤ 2

1− s
ρ(z1, zj), z ∈ D (5.7)

for all j. In case ρ(z1, zj) ≥ 1−s
4 for some j, the desired estimate is trivial by the

triangle inequality. So, we may assume ρ(z1, zj) < 1−s
4 for all j so that |fj(z)| ≤ 1

2
for all j and z ∈ D. Thus, setting

pk :=
(α+ 2)(α+ 3) · · · (α+ 1 + k)

k!

for k = 1, 2, . . . and

h(z) :=

∞∑
k=3

pkz
k,

we may represent the right hand side of (5.6) in the binomial series to obtain

f(z)

Kz1(z)
=

2∑
k=1

pk

n∑
j=2

cj
[
fj(z)

]k
+

n∑
j=1

cjh
(
fj(z)

)
(5.8)
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for all z ∈ D; recall f1 ≡ 0 and
∑n

j=1 cj = 0. It follows that

|f(z)|
|Kz1(z)|

≤
2∑

k=1

∣∣∣∣∣∣
n∑

j=2

cj(fj(z))
k

∣∣∣∣∣∣+
n∑

j=1

∣∣h(fj(z))∣∣ =: I + II;

recall |cj | ≤ 1. It is clear that

I ≤ (1 + |z1|)2
2∑

k=1

∣∣∣∣∣∣
n∑

j=2

cj

(
zj − z1
1− |z1|2

)k
∣∣∣∣∣∣ ≤ 4A.

Since |fj(z)| ≤ 1
2 , we also have by (5.7)

II ≲
n∑

j=2

|fj(z)|3 ≲ B;

the constants suppressed above depend only on α and s. Combining these obser-
vations, we conclude the lemma. The proof is complete. □

The following example generalizes Example 5.2 to general linear combinations.

Example 5.4. Let 1
4 < δ ≤ 1

2 and J be a set of finitely many real numbers con-
taining 0. For φ0(z) :=

z+1
2 , put

φβ = φ0 + βϵ(1− φ0)
2+δ, β ∈ J

where ϵ > 0 is chosen so that φβ ∈ S(D) for all β ∈ J . Put Lβ := Cφβ
and

L :=
∑
β∈J

cβLβ

where cβ’s are coefficients satisfying∑
β∈J

cβ =
∑
β∈J

βcβ = 0 but
∑
β∈J

β2cβ ̸= 0. (5.9)

Then the following assertions hold on A2(D):
(a) Lβ − Lγ is not Hilbert-Schmidt for all distinct β, γ ∈ J;
(b) L is Hilbert-Schmidt.

Proof. As in the proof of Example 5.2, we have

1− |φβ| ≈ 1− |φ0| and ρβγ ≈ ρ0β ≈ |1− φ0|2+δ

1− |φ0|
on D (5.10)

for all β, γ ∈ J with β ̸= 0 and β ̸= γ. Here, ρβγ := ρ(φβ, φγ). Thus (a) holds
by the same proof of Example 5.2(a).

Pick s ∈ (0, 1) and choose t = t(s) ∈ (0, 1) as in the proof of Theorem 1.1.
Also, choose r = r(s) provided by Theorem 1.1. Shrinking r if necessary, we may
further assume that r plays the role of ϵ in Lemma 5.3. Note that φβ(z) tends to 1
as z → 1 for each β. Also, note from (5.10) that ρβγ(z) and ρ0β(z) tend to 0 as
z → 1 for all β and γ under consideration. Thus, there is an open disk U centered
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at 1 such that U ∩D ⊂ Γt ∩ Ωs. Accordingly, in order to prove (b), it suffices to
show ∫

U∩D

∥∥∥∥∥∥
∑
β∈J

cβKφβ

∥∥∥∥∥∥
2

A2

dA < ∞ (5.11)

by (2.9).
In order to see (5.11), put

η :=

∣∣∣∣∣∣
∑
β∈J

β2cβ

∣∣∣∣∣∣ > 0 and B :=
∑
β<γ

ρ2βγ

for short. Since
∑

β∈J βcβ = 0 by assumption, we note

2∑
k=1

∣∣∣∣∣∣
∑
β∈J

cβ
(φ0 − φβ)

k

(1− |φ0|)k

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
β∈J

cβ
(φ0 − φβ)

2

(1− |φ0|)2

∣∣∣∣∣∣
=

ηϵ2|1− φ0|2(2+δ)

(1− |φ0|)2
≈ ηB by (5.10) (5.12)

on D. Now, assuming maxβ |cβ| = 1 for simplicity and applying Lemma 5.3, we
obtain ∥∥∥∥∥∥

∑
β∈J

cβKφβ

∥∥∥∥∥∥
A2

≲ ηB
∑
β∈J

∥Kφβ
∥A2 (5.13)

on Γt ∩ Ωs; the constant suppressed above depends only on s and the number of
elements of J . This implies (5.11) as in the proof of Example 5.2(b). Thus (b)
holds. The proof is complete. □

Remark 5.5. (1) In the notation of Example 5.4, we note that the operator con-
sidered in Example 5.2 is precisely 2L0 − L1 − L−1. More generally, double
differences of the form

L0 − Lβ − Lγ + Lβ+γ with βγ ̸= 0 (5.14)

are covered by Example 5.4. Of course, one may find various examples of different
type. For example:

3L0 − Lβ − L−γ − Lγ−β;

5L0 − 2Lβ − L−2γ − 2Lγ−β;

5L0 − L1 − L2 − Lβ − L−γ − Lγ−β−3.

Except for a few exceptional choices of β and γ in each operator, one may check
that these operators are covered by Example 5.4. One may also check that these
operators satisfy CNC mentioned in the Introduction.
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(2) Note from (2.8), (2.10) and (4.10) that if

min{R1, R2} ∈ L2
α(D), (5.15)

then the corresponding double difference is Hilbert-Schmidt on A2
α(D). So, one

may ask whether the converse also holds, or said differently, whether Condition
(1.2) can be reduced to Condition (5.15). The answer is no. To see it, closely look
at the proofs of Example 5.2(a) and Example 5.4(a) (for the operators as in (5.14)).

6. REMARKS

Recently, study of composition operators on vector-valued holomorphic func-
tions has been of growing interest. In this section we consider general linear com-
binations of composition operators, as well as related operators, and notice some
remarks on the Hilbert-Schmidtness of such operators. Our results involve com-
position operators between certain vector-valued weighted Bergman spaces which
are described below.

Given a (complex) Banach space X , let H(D, X) be the class of all X-valued
holomorphic functions on D. For α > −1, we denote by A2

α(D, X) the strong
X-valued α-weighted Bergman space consisting of all functions g ∈ H(D, X) for
which

∥g∥A2
α(D,X) :=

{∫
D
∥g(z)∥2X dAα(z)

}1/2

< ∞

where ∥ · ∥X denotes the norm on X . We also denote by wA2
α(D, X) the weak

X-valued α-weighted Bergman space consisting of all functions g ∈ H(D, X) for
which

∥g∥wA2
α(D,X) := sup

x∗∈BX∗
∥x∗ ◦ g∥A2

α
< ∞.

Here, X∗ is the dual space of X and BX∗ is the closed unit ball of X∗.
The notion of composition operators naturally extends to the vector-valued set-

ting. To be more precise, we note g ◦ φ ∈ H(D, X) for all φ ∈ S(D) and
g ∈ H(D, X). We will use the same notation Cφ to denote the composition oper-
ator g 7→ g ◦ φ for g ∈ H(D, X). With this convention we have

x∗(Cφg) = x∗ ◦ g ◦ φ = Cφ(x
∗ ◦ g) (6.1)

for x∗ ∈ X∗ and g ∈ H(D, X).
We now recall the well-known notion of order-boundedness which is closely

related to the Hilbert-Schmidtness. Let X be a Banach space and µ be a positive
finite Borel measure on D. A linear operator S : X → L2(µ) is called order-
bounded if there exists a nonnegative h ∈ L2(µ) such that |Sg| ≤ h [µ]-a.e. for
each g in the closed unit ball of X; we refer to [6, Chapters 4-5] for more general
approach to order-boundedness and related facts. We recall the following well-
known result for a linear operator S : L2(µ) → L2(µ):

S is Hilbert-Schmidt iff it is order-bounded; (6.2)

see [8, Page 226].
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In what follows, we say that a linear operator S : A2
α(D) → A2

α(D) is order-
bounded if S : A2

α(D) → L2
α(D) is order-bounded. Recall L2

α(D) := L2(D, Aα).
The following is an easy consequence of (6.2).

Corollary 6.1. Let α > −1 and S be a linear operator on A2
α(D). Then S is

Hilbert-Schmidt iff it is order-bounded.

Proof. Let P : L2
α(D) → A2

α(D) be the Hilbert-space orthogonal projection.
Regard the operator SP acting from L2

α(D) into itself. Then it is not hard to
verify that SP is Hilbert-Schmidt(order-bounded, resp) on L2

α(D) iff S is Hilbert-
Schmidt(order-bounded, resp) on A2

α(D). Thus the corollary holds by (6.2). □

Laitila, Tylli and Wang [10] first investigated the boundedness of composition
operators in the setting of the vector-valued Bergman spaces, revealing that the
spaces A2

α(D, X) and wA2
α(D, X) are quite different for any infinite-dimensional

Banach space X . They noticed an interesting result (see [10, Theorem 3.2]): The
boundedness of composition operators acting from weak to strong vector-valued
weighted Bergman spaces is equivalent to their Hilbert-Schmidtness (or equiva-
lently, to the order-boundedness by Corollary 6.1) on the corresponding scalar-
valued weighted Bergman spaces.

Inspired by the ideas of [10], Guo and Wang extended the aforementioned result
of Laitila-Tylli-Wang to the difference of composition operators; see [7, Corollary
3.5]. Such a result actually extends to general linear combinations of composition
operators as in the next theorem.

Theorem 6.2. Let α > −1 and X be an infinite-dimensional Banach space. Let T
be a linear combination of composition operators. Then the following assertions
are equivalent:

(a) T : A2
α(D) → A2

α(D) is Hilbert-Schmidt/order-bounded;
(b) T : wA2

α(D, X) → A2
α(D, X) is bounded.

Proof. First, we prove that (a) implies (b). So, assume (a). By Corollary 6.1 we
may assume that T : A2

α(D) → A2
α(D) is order-bounded. Pick a nonnegative

h ∈ L2
α(D) such that |Tf | ≤ h∥f∥A2

α
almost everywhere on D for all f ∈ A2

α(D).
We will complete the proof by showing

∥T∥wA2
α(D,X)→A2

α(D,X) ≤ ∥h∥L2
α
; (6.3)

the left-hand side denotes the operator norm of T : wA2
α(D, X) → A2

α(D, X).
Consider arbitrary g ∈ wA2

α(D, X). Let x∗ ∈ BX∗ . Note x∗ ◦ g ∈ A2
α(D)

by definition of the space wA2
α(D, X). Using the aforementioned property of the

function h, we also note

∥Tg(z)∥X = sup
x∗∈BX∗

|x∗[Tg(z)]|

= sup
x∗∈BX∗

|T (x∗ ◦ g)(z)| by (6.1)

≤ h(z) sup
x∗∈BX∗

∥x∗ ◦ g∥A2
α

≤ h(z)∥g∥wA2
α(D,X)
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for almost every z ∈ D. We thus obtain

∥Tg∥2A2
α(D,X) =

∫
D
∥Tg(z)∥2X dAα(z) ≤ ∥h∥2L2

α
∥g∥2wA2

α(D,X).

Since this holds for arbitrary g ∈ wA2
α(D, X), we conclude (6.3), as desired.

Now, we prove that (b) implies (a). So, assume (b). By Corollary 6.1, it suffices
to show

∥T∥2HS(A2
α(D)) ≤ ∥T∥2wA2

α(D,X)→A2
α(D,X). (6.4)

In order to prove this, one may modify in a straightforward way the proof of the
implication (a) =⇒ (h) in [7, Theorem 4.3] based on Dvoretzky’s Theorem and
obtain

∥T∥2wA2
α(D,X)→A2

α(D,X) ≥
1

(1 + ϵ)2

∞∑
k=0

∫
D
|Tωk|2 dAα

=
1

(1 + ϵ)2
∥T∥2HS(A2

α)

for arbitrary ϵ > 0 where ωk is the A2
α-normalized monomial of degree k. Thus

we conclude (6.4), as desired. The proof is complete. □

Let u ∈ H(D) and φ ∈ S(D). For a non-negative integer n, the weighted
differentiation composition operator Dn

u,φ (with weight u and symbol φ) is defined
as

Dn
u,φf := u ·

(
f (n) ◦ φ

)
, f ∈ H(D).

Given uj ∈ H(D) and φj ∈ S(D) for j = 0, 1, . . . , n, put

Tn
u,Φ :=

n∑
j=0

Dj
uj ,φj

. (6.5)

In the setting of the weighted Bergman spaces, the order-boundedness of these
operators has been recently characterized by Acharyya and Ferguson [1]. We may
extend their result to the vector-valued setting as in the next theorem.

Theorem 6.3. Let α > −1 and X be an infinite-dimensional Banach space. Given
a positive integer n, let Tn

u,Φ be the operator given in (6.5). Then the following
assertions are equivalent:

(a) Tn
u,Φ : A2

α(D) → A2
α(D) is Hilbert-Schmidt/order-bounded;

(b) Tn
u,Φ : wA2

α(D, X) → A2
α(D, X) is bounded;

(c) Dj
uj ,φj : A

2
α(D) → A2

α(D) is Hilbert-Schmidt/order-bounded for each j;
(d) Dj

uj ,φj : wA
2
α(D, X) → A2

α(D, X) is bounded for each j;
(e) uj and φj satisfy∫

D

|uj |2

(1− |φj |2)α+2+2j
dAα < ∞

for each j.
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Proof. For the Hilbert-Schmidtness, the equivalence of (a), (c) and (e) is due to
Acharyya and Ferguson [1, Theorem 1]. So, we deduce from Corollary 6.1 the
equivalences (a) ⇐⇒ (c) ⇐⇒ (e). The implication (d) =⇒ (b) is trivial. Follow-
ing the argument in the second part of the proof of Theorem 6.2, one may derive
the implication (b) =⇒ (a). Now, in order to complete the proof, we show below
the implication (e) =⇒ (d).

Fix j and consider an arbitrary g ∈ wA2
α(D, X). For z ∈ D, note∥∥g(j)(z)∥∥

X
= sup

x∗∈BX∗

∣∣x∗[g(j)(z)]∣∣ = sup
x∗∈BX∗

∣∣(x∗ ◦ g)(j)(z)∣∣.
In addition, by the Cauchy Estimates based on (2.5), we have∣∣(x∗ ◦ g)(j)(z)∣∣2 ≲ ∥x∗ ◦ g∥2A2

α

(1− |z|2)α+2+2j
≤

∥g∥2wA2
α(D,X)

(1− |z|2)α+2+2j

for x∗ ∈ BX∗ . It follows that∥∥Dj
uj ,φj

g
∥∥2
A2

α(D,X)
=

∫
D

∥∥g(j)(φj)
∥∥2
X
|uj |2 dAα

≲ ∥g∥2wA2
α(D,X)

∫
D

|uj |2

(1− |φj |2)α+2+2j
dAα.

As a consequence, we conclude that (e) implies (d). The proof is complete. □
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