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Abstract. In this paper, we propose a mathematical model and present numerical

simulations for ice melting phenomena. The model is based on the phase-field mo-

deling for the crystal growth. To model ice melting, we ignore anisotropy in the
crystal growth model and introduce a new melting term. The numerical solution

algorithm is a hybrid method which uses both the analytic and numerical solutions.
We perform various computational experiments. The computational results confirm

the accuracy and efficiency of the proposed method for ice melting.
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1. Introduction

Melting is an important problem which is associated to various engineering field

such as electroslag melting, welding and thawing of moist soil. Melting is the pro-

cess of heating a substance to change it from solid to liquid, which is a common type

of state change. Heat transfer is a physical phenomenon in physics, which refers to

the phenomenon of heat transfer caused by temperature difference. Some melting

models of heat transfer have been proposed in the past decades [20, 31, 40, 41, 45].

In [24], the authors applied a melting model based on the enthalpy-porosity method
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to investigate the effects of porosity on the ice melting process and heat transfer. Ex-

perimental results for the characterisation of the freezing and melting processes for

water contained in spherical ice thermal storage elements were described and evalu-

ated [10]. Three-dimensional melting of ice around a liquid-carrying tube placed in

an adiabatic rectangular cavity was investigated by numerical analysis [39]. Fujishiro

and Aoki [13] presented volume modeling of the phenomenon by mathematical mor-

phology and cellular automaton using voxels to represent ice objects and calculated the

heat conduction and melting effects based on volume operation. Zheng [49] used a lat-

tice Boltzmann method with an interfacial tracking method to solve melting problem in

an enclosure. Jones presented a method for animating melting solids and proposed a

method to simulate the melting process taking account of the thermal flow and the la-

tent heat caused by the phase change [19]. For animating materials that melt, flow, and

solidify, Carlson presented a fast and stable system and simulated the melting of solids

such as waxes by treating solids as fluids with very high viscosities [5]. Melting and

flowing behaviors were simulated by solving the Navier-Stokes equations. Although

this method can simulate the melting and flowing of high viscosity materials, it is not

applicable to simulations of ice melting because the viscosity of water is low. Paiva et

al. proposed a physical simulation for melting viscoplastic objects [32].

In addition, some works presented the melting phenomena with a perspective of

computational vision [12, 15, 26, 28, 38, 48]. In this study, we focus on ice melting by

using a mathematical modeling. We propose a model to investigate the ice melting with

the modified Allen-Cahn (AC) equation [1,8]. In the proposed model, the temperature

field is added to model the phenomenon of heat transfer for ice melting. Furthermore,

we analyze the physical phenomenon of the ice cubes with different shapes. The pro-

posed model is based on the phase-field method. The most significant computational

advantage of the phase-field method is that an explicit tracking of the interface is un-

necessary [11]. In a sharp interface method, it is necessary to solve highly coupled

equations to track the evolution of individual interfaces during transformation [33]. In

the phase-field method, however, we can describe the evolution of the phase-field with

relatively simple equations involving mass and heat changes. As the reverse process

of ice melting, the phenomena of crystal growth have been widely simulated by using

a phase-field model [3,7,18,34,43]. However, there is little investigation for ice melting

such as the melting process from ice to water. Therefore, we propose a mathematical

modeling and present numerical simulations for ice melting in this paper.

The contents of this paper are as follows. In Section 2, we present a phase-field

model for ice melting based on the modified AC equation. In Section 3, we describe

a robust hybrid numerical method for the proposed model. In Section 4, we perform

numerical experiments. Finally, we conclude in Section 5.

2. The phase-field model

We propose a phase-field method [29,35] for ice melting simulation. We introduce

a phase-field φ(x, t) whose value is close to 1 if x is in the ice and is close to −1 if x
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Figure 1: a) Shape of the phase-field function φ. b) Contour of φ at the zero level.

is in the liquid at time t. In addition, we have the temperature field U(x, t) = 0 and

U(x, t) = 1 in the model, corresponding to ice and liquid, respectively. Due to the

heat transfer, the phase-field φ(x, t) of ice changes from 1 to −1, which results in the

temperature field U(x, t) of the liquid decreases from 1. Fig. 1 shows a rectangular ice

and we interpret the zero level set of the phase-field as the interface between ice and

liquid.

The anisotropic form of the phase-field equation for the solidification is given by

ǫ2(φ)
∂φ

∂t
= ∇

(

ǫ2(φ)∇φ
)

+
[

φ− λU(1− φ2)
] (

1− φ2
)

+

(

|∆φ|2 ǫ(φ)∂ǫ(φ)
∂φx

)

x

+

(

|∆φ|2 ǫ(φ)∂ǫ(φ)
∂φy

)

y

+

(

|∆φ|2 ǫ(φ)∂ǫ(φ)
∂φz

)

z

, (2.1)

∂U

∂t
= D∆U − 1

2

∂φ

∂t
, (2.2)

where φ is the order parameter and ǫ(φ) is the anisotropic function [25]. The order

parameter is defined by φ ≈ 1 in the solid phase and φ ≈ −1 in the liquid phase.

The interface is defined by φ = 0. λ is the dimensionless coupling parameter, U is the

dimensionless temperature field, and D is the thermal diffusivity. In Fig. 2, we can see

the crystal growth using a phase-field equation [46].

If the crystal growth process is isotropic, then ǫ(φ) is constant, i.e., ǫ(φ) = ǫ and

Eq. (2.1) becomes

∂φ

∂t
= ∆φ− 1

ǫ2
(

φ3 − φ
)

− 1

ǫ2
λU
(

1− φ2
)2
, (2.3)

which is the AC equation with a nonlinear source term.

Based on this observation, we propose a phase-field equation for modeling ice melt-

ing by ignoring the anisotropic interfacial energy and adding a melting term. According

to [22], we can easily get our energy functional as

W =

∫

Ω

[

M

2
|∇φ|2 +M

F (φ)

ǫ2
+ λU

φ− (1/3)φ3

√
2ǫ

]

dx. (2.4)
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a) t = 2.94 b) t = 10.30 c) t = 16.19

d) t = 2.94 e) t = 5.89 f) t = 8.83

Figure 2: Crystal growth under undercooling of 4Kelvin and 6Kelvin for the top and the bottom rows,
respectively. Reprinted from Yang et al. [46] with permission from the Elsevier.

Then,

δW

δφ
= −M∆φ+M

F ′(φ)
ǫ2

+ λU
1− φ2

√
2ǫ

, (2.5)

where δ
δφ denotes the variational derivative with respect to φ and F (φ) = 0.25(φ2 − 1)2

is a double well potential energy [9] (see Fig. 3). Here, M is a constant mobility.

Following Jacqmin and Ceniceros et al. [6,16], we take M = O(ǫ), where the parameter

ǫ is a measure of interface thickness.

Therefore, we have

∂φ

∂t
= −δW

δφ
= M

(

∆φ− F ′(φ)
ǫ2

)

− λU

√

2F (φ)

ǫ
, (2.6)

∂U

∂t
= D∆U − 1

2

∂φ

∂t
. (2.7)

In Eq. (2.6), we use the form
√

2F (φ)/ǫ to give the melting effect on interfacial tran-

sition region, |∇φ| 6= 0, because the phase-field φ at the equilibrium state satisfies

F (φ) = 0.5ǫ2|∇φ|2 [17, 23]. The phase-field φ in the ice can be less than 1 because of

the source term in Eq. (2.6). Then, the form 4F (φ)/ǫ2 allows melting inside the ice.

Therefore, the melting effect only at the interfacial region was given by using the term
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Figure 3: A double well potential, F (φ) = 0.25(φ2 − 1)2.

|∇φ| =
√

2F (φ)/ǫ. By differentiation of the total energy W (φ),

d

dt
W (φ) =

∫

Ω

δW

δφ

∂φ

∂t
dx =

∫

Ω

(

−∂φ

∂t

)

∂φ

∂t
dx = −

∫

Ω

(

∂φ

∂t

)2

dx ≤ 0. (2.8)

Thus, we can see that the total energy decreases with t. The term −λU
√

2F (φ)/ǫ mod-

els melting in this paper and its detailed derivation for evaporation phenomenon will

be published elsewhere. For the interested readers, we briefly describe the derivation

of the melting term under the constant ambient temperature. We consider a spheri-

cal ice with radius R. Let V = 4πR3

3 and S = 4πR2 be its volume and surface area,

respectively, and we assume that the melting rate dV
dt is proportional to S, i.e.,

dV

dt
= −λS, (2.9)

where λ is a melting rate constant. Then, Eq. (2.9) becomes dR
dt = −λ and its solution

is R(t) = R0 − λt, where R0 is an initial radius of the spherical ice. Let us consider

a profile,

φ(R, t) = tanh

(

R0 −R− λt√
2ǫ

)

. (2.10)

Then, differentiating Eq. (2.10) with respect to time variable t yields

∂φ(R, t)

∂t
= − λ√

2ǫ
sech2

(

R0 −R− λt√
2ǫ

)

= − λ√
2ǫ

(

1− tanh2
(

R0 −R− λt√
2ǫ

))

= − λ√
2ǫ

(

1− φ2(R, t)
)

= −λ

ǫ

√

2F (φ(R, t)). (2.11)
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Finally, we multiply the temperature U to the right hand side of Eq. (2.11) to get the

melting term.

3. Numerical solution

In this section, we propose a robust hybrid numerical method for ice melting sim-

ulation. Let Ω = (−a, a) × (−b, b) × (−c, c) be the computational domain. Let Nx, Ny,

and Nz be positive even integers, h = 2a
Nx

= 2b
Ny

= 2c
Nz

be the uniform mesh size, and

Ωh =
{

(xi, yj, zk) : xi = −a+ (i− 0.5)h, yj = −b+ (j − 0.5)h,

zk = −c+ (k − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz

}

be the set of cell-centers. Let φn
ijk and Un

ijk be approximations of φ(xi, yj, zk, n∆t) and

U(xi, yj , zk, n∆t), where ∆t = T
Nt

is the time step, T is the final time, and Nt is the

total number of time steps. For a numerical solution of the governing equations, there

are various methods [14, 27, 37, 44, 47]. In this paper, we use a Crank-Nicolson type

scheme for Eqs. (2.6) and (2.7):

1

∆t

(

φn+1
ijk − φn

ijk

)

=
M

2

(

∆dφ
n+1
ijk − 1

ǫ2
F ′(φn+1

ijk

)

+∆dφ
n
ijk −

1

ǫ2
F ′(φn

ijk

)

)

− λ

2ǫ

(

3Un
ijk − Un−1

ijk

)

√

2F
(

0.5
(

3φn
ijk − φn−1

ijk

)

)

, (3.1)

1

∆t

(

Un+1
ijk − Un

ijk

)

=
D

2
∆d

(

Un+1
ijk + Un

ijk

)

− 1

2∆t

(

φn+1
ijk − φn

ijk

)

, (3.2)

where ∆d is the standard discrete Laplacian operator, defined as

∆dφijk =
1

h2
(

φi−1,jk + φi+1,jk + φi,j−1,k + φi,j+1,k + φij,k−1 + φij,k+1 − 6φijk

)

.

We use homogeneous Neumann boundary conditions [30] for φ and U for simplicity.

We set the initial settings φ−1
ijk = φ0

ijk and U−1
ijk = U0

ijk. The first order temporal accuracy

due to the first time step reduction does not affect the overall second order accuracy of

the numerical scheme [36], as shown in Section 4.1. We solve the discrete equations

(3.1) and (3.2) using a multigrid method [2,42].

4. Computational results

In this section, we present numerical results using the proposed phase-field model.

Before we start, we define the interfacial length parameter ǫm as

ǫm =
mh

2
√
2 tanh−1(0.9)

,

which implies that we have approximately mh transition layer width [21]. For all tests,

we use ǫ = ǫm for some integer m, unless otherwise specified.
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4.1. Convergence test

We first present the convergence rates of the numerical scheme for the phase-field

φ and temperature field U as the mesh size h gets refined. The initial condition of

a sphere is given by

φ(x, y, z, 0) = tanh

(

R0 −R√
2ǫ

)

,

where R =
√

x2 + y2 + z2 and the initial radius R0 = 35 on a computational domain

Ω = (−50, 50)3. We take the initial condition of temperature as U(x, y, z, 0) = 0.5(1 −
φ(x, y, z, 0)). We perform the convergence tests on the uniform grids, h = 100

Nh
for

Nh = 16, 32, 64, 128, which is the number of grid points in each axis with respect to

h. The time step size is fixed at ∆t = 0.03 and the final time is T = 5∆t. We use the

parameters such as ǫ = 20,M = 10ǫ, λ = 5, and D = 1. We define the discrete l2-norm

of relative error to the space as follows:

∥

∥eh,
h
2

∥

∥

2
=

√

1

N3
h

∑

i,j,k

(

e
h,h

2

ijk

)2
, (4.1)

where e
h,h

2

ijk is an absolute error between values of coarse and of fine grids defined as

e
h,h

2

ijk =
∣

∣

∣
φn,h
ijk − 0.125

(

φ
n,h

2

2i−1,2j−1,2k−1 + φ
n,h

2

2i−1,2j−1,2k + φ
n,h

2

2i−1,2j,2k−1

+ φ
n,h

2

2i−1,2j,2k + φ
n,h

2

2i,2j−1,2k−1 + φ
n,h

2

2i,2j−1,2k + φ
n,h

2

2i,2j,2k−1 + φ
n,h

2

2i,2j,2k

)
∣

∣

∣
.

Here, φn,h
ijk refers to φn

ijk with the space step h and φ
n,h

2

ijk refers to φn
ijk with the space

step h
2 . The rate of convergence is examined by the following ratio:

log2

(

‖eh,h2 ‖2
‖eh

2
,h
4 ‖2

)

.

The errors and rates of convergence are illustrated in Table 1. The results show that

the scheme for both the phase-field φ and the temperature field U are second-order

accurate in space.

For the following step, we present the convergence test of the Crank–Nicolson type

scheme for both phase-field φ and temperature field U in time. We define the discrete

Table 1: Convergence rates with respect to the mesh sizes.

Case 16-32 Rate 32-64 Rate 64-128

φ l2-error 7.959e-04 1.973 2.028e-04 1.979 5.144e-05

U l2-error 3.984e-04 1.973 1.015e-04 1.980 2.574e-05
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l2-norm of error to the time as

∥

∥e∆t,∆tref
∥

∥

2
=

√

1

N3
h

∑

i,j,k

(

e
∆t,∆tref
ijk

)2
, (4.2)

where e
∆t,∆tref
ijk is an absolute error between two numerical solutions defined as

e
∆t,∆tref
ijk =

∣

∣φn,∆t − φn,∆tref
∣

∣,

where φn,∆t is φn with the time step ∆t, and φn,∆tref is that with the reference time

step ∆tref . To demonstrate the convergence rates in time, we fix the mesh size.

Tables 2 list the numerical convergence rates of Crank-Nicolson type scheme with

respect to time step size ∆t at T = 64∆tref , and the reference time step is ∆tref =
0.0125h2, where h = 100

128 , ∆t = 4∆tref , 8∆tref , 16∆tref are used in this test.

Table 2: Convergence rates with respect to time step sizes at the final time T = 64∆tref .

∆t 4∆tref Rate 8∆tref Rate 16∆tref

φ l2-error 1.41e-05 2.1615 6.31e-05 2.1568 2.814e-04

U l2-error 1.47e-05 2.0688 6.18e-05 2.0029 2.475e-04

Now, we consider the convergence analysis for parameters h and λ. Let us consider

a spherical ice in three-dimensional domain Ω = (−50, 50)3. We use parameters such

as N = Nx = Ny = Nz = 64, 128, 256 and ǫ = ǫ3, ǫ6, ǫ12, respectively. M = 0.1, h = 100
Nx

,

∆t = 0.05h2. In this test, U ≡ 1 are used. Then, the governing equation (2.6) becomes

∂φ

∂t
= M

(

∆φ− F ′(φ)
ǫ2

)

− λ

√

2F (φ)

ǫ
. (4.3)

The initial condition is

φ(x, y, z, 0) = tanh

(

R0 −R√
2ǫ

)

,

where R =
√

x2 + y2 + z2 and the initial radius R0 = 35. Then, the theoretical radius

at time t is given as RT (t) = R0 − λt. We select λ = 0, 5 and change N . Figs. 4(a),

4(b), and 4(c) show the results with N = 64, 128, and 256, respectively. We can observe

that the numerical solutions are consistent with the theoretical values when N = 128
and 256, i.e., the numerical solution with the grid size N = 128 is accurate enough.

Therefore, from now on, we will use N = 128 for the following tests.

Fig. 5 shows the temporal evolution of the spherical melting ice. Here, we set

N = 128, λ = 5, ǫ = ǫ6, and M = 0.1. Figs. 5(a), 5(b), and 5(c) are the results with the

radius of sphere R = 35, 21.7594, and 15.4966, respectively.
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Figure 4: Convergence test for grid size.

a) t = 0 b) t = 100∆t c) t = 200∆t

Figure 5: Temporal evolution of a spherical melting ice.

4.2. Physical validation of model through Stefan problem

We conduct the numerical simulation in order to verify the physical validity of our

model in this section. We implement a system that applies the Stefan condition into

the phase-field model [4], which is

∂U

∂t
= ∆U − 1

2

∂φ

∂t
, (4.4)
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(

ᾱ+
5

12
ε̄

)

∂φ

∂t
= ∆φ+

1

ε2
(

2φ+ ε̄U
)(

1− φ2
)

, (4.5)

where ᾱ represents the strength of kinetic undercooling, ε̄, ε are dimensionless con-

stants which represent the thickness of interfacial region ǫ in [4]. We solve Eqs. (4.4)

and (4.5) numerically using our second-order finite difference discretization scheme.

Though Eqs. (4.4) and (4.5) are the solidification model that is physically different

from the melting process we have presented in this paper, however the temporal be-

havior of phase-field that appears when applying the Stefan condition is topologically

the same of ours since the interface moves towards the area of low temperature. Fig. 6

shows the phase-field and the temperature field with analytic solution given by [4].

A three-dimensional sphere is adopted as a computational domain using spherically

symmetric scheme on |x| ∈ (0, L) with an initial radius R0 = 0.2. Parameters are

appropriately scaled based on the reference [4]; h = 2
1024 , d = 0.001, ∆t = 100h2,

ᾱ = 20, ε = 0.01, ε̄ = 10. We employ L = 2 and calculate the solution from time

t0 = 4. The homogeneous Neumann boundary condition is employed to the phase-field

φ(x, t) while mixed boundary conditions are employed to the temperature field U(x, t)
as follows:

∂U

∂x
(0, t) = 0,

∂U

∂x
(L, t) = − γ

L
(U − U∞),

where γ = 0.05 in this test. Here, a positive constant γ plays a role in motion of

interface and corresponds to the far field condition U∞ ≈ −0.0046. Note that analytic

solutions are provided in [4] as follows:

Γ(t) =
{

x||x| = R(t) = 2γ
√
t
}

, (4.6)

U(x, t) = −2d(1 + ᾱγ2)erf(|x|/
√
4t)

erf(γ)|x| −
∫ max(γ,|x|/

√
4t)

γ

2γ3eγ
2−y2

y2
dy, (4.7)

where Γ is an interface, erf(·) is an error function. We omit the details and refer inter-

ested readers to the elaborate physical interpretation of [4] and the references therein.

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

a) φ(x, t)

0 0.5 1 1.5 2

-0.014

-0.012

-0.01

-0.008

-0.006
Analytic
Numerical

b) U(x, t)

Figure 6: a) Temporal evolutions of phase-field of the solidification model with Stefan condition. b) Cor-
responding temperature field and its analytic solution. Note that the final time is T ≈ 12.5.
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According to Fig. 6, the corresponding model with our proposed scheme interprets the

motion of interface well and the temperature field as well as the analytic solution of

this model. Therefore, a kind of systems of phase-field model related equations (4.4)

and (4.5) via our proposed second-order method can be applied to the melting physics

indeed.

4.3. Numerical simulation for ice melting

From now on, we consider the full governing equations (2.6) and (2.7). We con-

sider an ice cube with the length of 1.2 is in the center of the domain Ω = (−50, 50)3.

We set φ(x, y, z, 0) = 1 and φ(x, y, z, 0) = −1 for the ice cube and water, respectively.

The initial condition of temperature is given as

U(x, y, z) =

{

0, if φ(x, y, z, 0) = 1,

1, otherwise.

We use N = 128, h = 100/N,∆t = 0.05h2, ǫ = ǫ6, λ = 5,D = 1, and M = 10ǫ for

the numerical experiment. Fig. 7 shows the temporal evolution of the ice melting. The

ice cube melts due to heat from the surrounding water.

Then, we verify the energy dissipation of the proposed model. We define the dis-

crete energy functional as

Wd(φ
n) =

hM

2

Nx−1
∑

i=1

Ny−1
∑

j=1

Nz−1
∑

k=1

(

(φn
i+1,jk − φn

ijk)
2 + (φn

i,j+1,k − φn
ijk)

2 + (φn
ij,k+1 − φn

ijk)
2
)

+ h3
Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

(

M
F (φn

ijk)

ǫ2
+

λUn
ijk√
2ǫ

(

φn
ijk −

1

3
(φn

ijk)
3

)

)

.

As shown in Fig. 8, we see that the energy decreases with the increasing number of

iterations until it stabilizes.

Next, we consider another ice melting phenomenon. In this test, we verify whether

the numerical results of the melting model are consistent with physical phenomenon.

a) t = 0 b) t = 50∆t c) t = 100∆t d) t = 150∆t

Figure 7: Melting process of an ice cube.
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Figure 8: Energy dissipation of ice cube model.

We study the effect of the contact area between ice and water on the water temper-

ature. We consider two ice cubes with different surface areas. A schematic diagram

of an ice cube with a hole is shown in Fig. 9. At the center of the ice cube, there is

a hollow cylinder. We denote the lengths of the cube’s x-, y-, z-axis edges by Lx, Ly, Lz,

respectively, and the initial radius of the hollow cylinder by R0.

We consider two cubes with different initial radius: a cube with radius R0 = 15
(cube 1) and the other one with radius R0 = 20 (cube 2) as shown in Fig. 10(a) and

Fig. 11(a), respectively. We set the same parameters: Lx = Ly = Lz = 60, N = 128, h =
100
N ,∆t = 0.05h2, ǫ = ǫ6, λ = 5,D = 1, and M = 10ǫ.

We define the volumes of ice and water as

V n
ice =

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

h3

2

(

1 + φn
ijk

)

, V n
water =

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

h3

2

(

1− φn
ijk

)

. (4.8)

Lz

Ly

Lx

R0

Figure 9: Schematic diagram of ice cube.
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a) t = 0 b) t = 15∆t c) t = 30∆t d) t = 50∆t

Figure 10: Melting process of ice cube with R0 = 15.

a) t = 0 b) t = 15∆t c) t = 30∆t d) t = 50∆t

Figure 11: Melting process of ice cube with R0 = 20.

We set a formula

Un
ave =

1

V n
water

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

Un
ijk

h3

2

(

1− φn
ijk

)

(4.9)

to check the changing trend of water temperature as shown in Fig. 12(a).

From the numerical solutions, we see that the water temperature of both cube 1
and cube 2 drop at first, then temperature of the water increase to the initial values

of water. We see that the water with cube 2 first returned to the initial value of water

0 1 2 3
0.975

0.98

0.985

0.99

0.995

1

a) Temperature change of water

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

b) Volume change of ice cube

Figure 12: Changing process of water temperature and ice volume.
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a) V1 b) V2 c) V3 d) V4

Figure 13: Initial cube shape.

temperature than the water with cube 1. Besides, as shown in Fig. 12(b), cube 2 melts

faster than cube 1, which indicates that a cube with a larger surface melts faster. Here,

we define the complete melting if V n
ice/V

0
ice < η for some small η. We set η = 0.005.

Now, we select four ice cubes with the same volume and different shapes: V1, V2, V3,
and V4 as shown in Fig. 13. Let the length of the cube Lx = Ly = Lz = l and the volume

of the cube be V0. We define

V0 = LxLyLz − LzπR
2
0, (4.10)

and

φ(x, y, z, 0) =

{

1, if
√

x2 + y2 −R0 < 0,

−1, otherwise.

We denote the surface area of the cube by S. The parameters used are listed in

Table 3.

Table 3: Parameter values of ice cubes.

Shape V1 V2 V3 V4

l 60.000 60.435 61.745 63.920

R0 0 5 10 15

V0 216000 216000 216000 216000

S 21600 23656 26126 29125

The changing trend of water temperature is shown in Fig. 14(a) and the volume

changing process of ice cube is shown in Fig. 14(b). Times for four ice cubes, V1, V2, V3,
and V4, to melt completely are 280∆t, 270∆t, 170∆t, and 140∆t, respectively. From this

test, we can conclude that the water temperature of all the four cubes drop at first, then

temperature of the water increase to the initial values of water. Besides, the water with

cube which has a larger surface first returned to the initial value of water temperature,

and under the same volume, the ice cube melts faster if it has a larger surface area.

Next, we perform the melting of many cubes in a cup which is full of water, and we

set the parameters such as Ω = (−50, 50)3, N = 128, h = 100
N ,∆t = 0.05h2, ǫ = ǫ6, λ =

5,D = 1, and M = 10ǫ. The temporal evolution of the ice cubes is shown in Fig. 15.
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a) Temperature change of water
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Figure 14: Changing process of water temperature and ice volume.

a) t = 0 b) t = 5∆t

c) t = 10∆t d) t = 15∆t

Figure 15: Melting process of many ice cubes.

4.4. Complex ice melting

In this section, we consider ice melting of complex shapes such as Armadillo and

Dragon models in three-dimensional space Ω = (−50, 50)3. We set the parameters of

two models as N = 128, h = 100
N ,∆t = 0.05h2, ǫ = ǫ6, λ = 5,D = 1, and M = 10ǫ.

Figs. 16(a) and 16(e) show the initial state of two models. Fig. 16 shows the melting

states of Armadillo and Dragon models at t = 5∆t, 10∆t, and 15∆t.
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a) t = 0 b) t = 5∆t c) t = 10∆t d) t = 15∆t

Figure 16: Melting process of complex models.

5. Conclusion

In this paper, we proposed the mathematical model based on the phase-field model-

ing for the crystal growth and presented numerical simulations for ice melting phenom-

ena. To model ice melting, we ignore anisotropy in the crystal growth model and add

a melting term. The proposed numerical solution algorithm is a hybrid method which

uses both the analytical and numerical solutions. By performing various computational

experiments, we confirmed the accuracy and efficiency of the proposed method for ice

melting. We also verified a cube which has a larger contact area with the surrounding

water makes the water temperature drop faster, and under the same volume, a cube

melts faster if it has a larger surface area. The numerical results of the melting model

were consistent with the physical phenomena.

In addition, as an interesting topic, visual simulation of ice has been widely re-

searched in the field of computer graphics. A benchmark such as the dragon was taken

for simulating ice melting in computer graphics [15, 26]. While comparing via visual,

ice melting phenomenon is achieved similarly with our proposed method. Because we

focused on the mathematical modeling and numerical simulations for ice melting in

this paper, we leave the analysis of the proposed model in future work.
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