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Abstract: In this paper, we propose a novel, simple, efficient, and explicit numerical method for the
Allen–Cahn (AC) equation on effective symmetric triangular meshes. First, we compute the net vector
of all vectors starting from each node point to its one-ring neighbor vertices and virtually adjust the
neighbor vertices so that the net vector is zero. Then, we define the values at the virtually adjusted
nodes using linear and quadratic interpolations. Finally, we define a discrete Laplace operator on
triangular meshes. We perform several computational experiments to demonstrate the performance of
the proposed numerical method for the Laplace operator, the diffusion equation, and the AC equation
on triangular meshes.
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1. Introduction

In this study, we present a novel explicit numerical method for solving the Allen–Cahn equation
on triangular meshes. The method is characterized by its simplicity and efficiency. The AC equation,
a partial differential equation (PDE), is employed in mathematical physics and materials science to
represent the dynamics of phase transitions and pattern formation in binary systems [1]. The equation
incorporates a free energy density function that characterizes the potential energy of the system and a
linear diffusion term that drives the system toward a state of minimum energy [2]. In two-dimensional
(2D) space, the AC equation with Dirichlet boundary condition on the domain Ω as follows

∂u(x, y, t)
∂t

= −
F′(u(x, y, t))
ϵ2

+ ∆u(x, y, t), (x, y) ∈ Ω, t > 0, (1.1)

u(x, y, t) = f (x, y) on ∂Ω,

where u(x, y, t) is the phase-field function, ϵ is an interface transition layer related parameter, F(u) =
0.25(u2 − 1)2 is a double-well potential energy functional, and ∆ is a Laplace operator.
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Choi et al. [1] developed an unconditionally gradient-stable numerical system for the AC equation
on uniformly square grid and showed the same property for the corresponding discrete problem by us-
ing the eigenvalues of the Hessian matrix of the energy functional. In [3], the authors developed a sim-
ple and practical adaptive finite difference scheme for AC equations in 2D. The developed method uses
a temporally adaptive narrow band domain in a uniform discrete rectangular domain. Xiao et al. [4]
introduced the lumped mass surface finite element method on a triangular mesh to solve the surface AC
equation. To maintain mass conservation, Rubinstein and Sternberg [5] introduced a conservative AC
equation by incorporating a Lagrange multiplier into the AC equation. Construction of the conservative
AC equation addresses the issue of the AC equation inability to conserve total mass. Sun and Zhang [6]
developed a meshless radial basis function approach to solve the conservative AC equation on smooth
compact surfaces embedded in R3. The developed method ensures mass conservation while employing
an operator splitting scheme. The Laplace–Beltrami operator (LBO) is approximated iteratively by
using radial basis functions. In addition, the time discretization of the diffusion equation is achieved
using the Euler method. Xia et al. [7] developed a second-order accurate method in time and space
for the AC and conservative AC equation using triangular discretization. The AC and conservative AC
equation can also be solved using the explicit hybrid numerical method, as studied by Choi et al. [8].
Joshi and Jaiman [9] proposed an adaptive variational procedure for the AC equation with a two-phase
field. This scheme is stable, robust, and general for the AC equation on a triangular mesh. Kwak
et al. [10] proposed the conservative AC equation with a curvature-dependent Lagrange multiplier.
Hong et al. [11] developed numerical algorithms with fully discrete structure-preserving of arbitrarily
high order for the AC model with a nonlocal constraint subject to the Neumann boundary condition.
Chai et al. [12] proposed a simple multiple-relaxation-time lattice-Boltzmann method for the local and
nonlocal AC equation, presenting the property of mass conservation through numerical experiments.
Inc et al. [13] performed Lie symmetry analysis, explicit solutions, and convergence analysis for the
time-fractional Cahn–Allen equation. Kim et al. [14] proposed a temporally second-order uncondition-
ally energy-stable computational method for the AC equation with high-order polynomial free energy
potential. Bhatt et al. [15] devised an attractive and easy-to-implement alternative for integrating the
multi-dimensional AC equation with no-flux boundary conditions by combining the Fourier spectral
method with the strongly stable exponential time difference method. The method they developed has
several key advantages, including the use of discrete fast Fourier transform for efficiency, the ability
to extend to two and three spatial dimensions in a manner similar to 1D problems, and the capability
to handle various boundary conditions. Sun and Gao [16] proposed a high order multiquadric trigono-
metric quasi-interpolation method for function approximation and derivative approximation based on
periodic sampling data. Furthermore, the method was applied to solve different types of PDEs in-
cluding the AC equation. Sun and Ling [17] developed a meshless conservative Galerkin method for
solving Hamiltonian wave equations, which is a classical example of Hamiltionian PDEs. The equa-
tion was first discretized in space using radial basis functions in a Galerkin-type formulation. Their
method used appropriate projection operators for the construction of the Galerkin equation and was
shown to conserve global energies.

The AC equation without a nonlinear term is a diffusion equation that is a linear differential equa-
tion:

∂u(x, y, t)
∂t

= D∆u(x, y, t), (1.2)
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where D is the diffusion coefficient parameter and we set D = 1 in this paper for simplicity of exposi-
tion.

There exist meshes that do not satisfy the properties of the continuous Laplace operator for continu-
ous functions using the discrete Laplace operator, and it is more difficult to satisfy the properties of the
continuous Laplace operator for triangular meshes [18]. The method we propose requires defining a
discrete Laplace operator to solve the diffusion term. Thus, a simple and efficient algorithm is included
that numerically satisfies the simple properties of the Laplace operator.

Triangular meshes are widely used for representing complex domains or curved surfaces. Until
recently, the discrete Laplace operator for triangular meshes has been a subject of numerous stud-
ies. Xu [19] proposed discretization schemes of the Laplace-Beltrami operator on triangulated sur-
faces with curvatures. Meanwhile, Caissard et al. [20] presented a new discretization of the Laplace-
Beltrami operator over digital surfaces. Thampi et al. [21] demonstrated schemes for isotropic discrete
Laplacian operators based on lattice hydrodynamics. McCartin [22] studied the discrete Laplacian
on an equilateral triangle with both Dirichlet and Neumann boundary conditions using eigenvalues
and eigenfunctions of the continuous Laplacian. A finite difference algorithm for solving the gener-
alized Laplace equation on unstructured triangular meshes was developed by Ganzha et al. [23] using
a support operator method combining discrete divergence and gradient operators. Yoon et al. [24]
conducted numerical experiments on triangular meshes to investigate dendritic pattern formation in
an isotropic crystal growth model on surfaces, and subsequently presented their findings. Paquet and
Korikache [25] established an a priori error estimate for the fully discretized problem of the dual
mixed method for the non-stationary heat equation in 2D polygonal domains. The Cahn–Hilliard (CH)
equation is one of the famous phase-field models along with the AC equation [26]. Tian et al. [27]
developed an adaptive finite element method based on superconvergent cluster recovery to solve the
Laplace operator of the CH equation on a triangular mesh. Therefore, the construction of simple and
efficient algorithms for solving Laplace operators on triangular meshes is important. We propose a nu-
merical method involving the novel discrete Laplace operator and verify the proposed discrete Laplace
operator through numerical experiments, including comparisons to general discrete Laplace operators
on rectangular meshes or the LBO on triangular meshes.

The contents of this paper are as follows. In Section 2, the proposed numerical scheme is described.
In Section 3, we present the numerical experiments. In Section 4, the conclusion is drawn.

2. Numerical solution algorithm

In this section, we present a numerical solution algorithm. The proposed algorithm solves the AC
equation by using an explicit Euler method. The numerical algorithm requires computing a linear term
with the Laplace operator. We propose a novel Laplace operator in triangular meshes to numerically
compute the AC equation. Firstly, we introduce the discrete LBO on triangular mesh and propose
a novel discrete Laplace operator. Because the plane is a special case of the curved surfaces, let us
consider the discretization of LBO [19] on curved surfaces. Let N be the number of node points on the
triangular mesh, xk = (xk, yk), k = 1, 2, . . . ,N be node points on the triangular mesh, ∆t be temporal
step size, and un

k be an approximation of phase-field function u(xk, n∆t). In Figure 1, xk denotes k-th
node point of a triangular mesh and {xk1 , xk2 , xk3 , xk4 , xk5} are one-ring node points neighboring xk. For
simplicity, we assume that there are five node points neighboring xk. The discrete LBO at node point
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xk is given as

∆uk ≈
3

A(xk)

Nk∑
m=1

cotαkm + cot βkm

2
(ukm − uk),

where A(xk) is the sum of areas of triangles Tm sharing the node point xk, Nk is number of node
points neighboring xk, xk0 = xkNk

and xkNk+1 = xk1 . We also define angles αkm = ∠xkxkm−1xkm and
βkm = ∠xkxkm+1xkm for m = 1, · · · ,Nk. For example, when m = 5, αk5 = ∠xkxk4xk5 and βk5 = ∠xkxk6xk5 in
triangles T5 and T6, respectively, as shown in Figure 1.

Figure 1. Schematic illustration of the proposed method.

Now, we propose the novel discrete Laplace operator. Let N be the total number of node points in
the triangular mesh and Nk be the number of one-ring neighboring node points of each node xk, for
k = 1, 2, . . . ,N in the triangular mesh. The neighboring node points of each node point xk are denoted
as xkm , m = 1, 2, . . . ,Nk. We define the net force Fk for each node point xk, k = 1, 2, . . . ,N, which plays
a crucial role in achieving symmetry within the proposed discrete Laplace operator.

Fk =

Nk∑
m=1

(xkm − xk).

The net force at each points in a symmetric object or system is zero because the forces acting on the
object are symmetrically distributed. Additionally, the net force of the general five and nine stencil
Laplace operators is 0. Therefore, we propose the following sub-algorithm using virtual nodes such
that the net force Fk of each node xk, k = 1, 2, . . . ,Nk becomes 0. We solve the AC equation on the
irregular domain by using a sub-algorithm using virtual nodes to make each node point symmetric for
the asymmetric triangular mesh generated on the irregular domain in 2D space.

The sub-algorithm of the proposed method is illustrated in Figure 2. As presented in Figure 2, for
each node xk, one-ring neighboring node points are denoted by xk1 , xk2 , . . . , xk6 . First, find all the one-
ring neighboring node points for a given point xk. Figure 2(a) presents a given point xk and one-ring
neighboring node points. Second, find the net force Fk and the triangular domain containing Fk. Here,
we use the following method to find the triangle. In the case of Figure 2(b), let the vectors from xk of
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(a) (b) (c)

(d) (e) (f)

Figure 2. Adjusting the net force F to be 0: (a)–(e) represent each step.

Electronic Research Archive Volume 31, Issue 8, 4557–4578.



4562

the found triangle to the other two node points xk3 and xk2 be u and v, respectively. Therefore, net force
Fk is the linear combination of u and v with constants a and b as follows:

au + bv = F, a, b ∈ R,

where u and v are 2D vectors. Let u = (u1, u2)T and v = (v1, v2)T . For the third step, we consider the
following the matrix form to find values of a and b.(

u1 v1

u2 v2

) (
a
b

)
= F ⇒

(
a
b

)
=

(
u1 v1

u2 v2

)−1

F.

Then, subtract au and bv from u and v to reduce the net force Fk to 0 at xk. Let x∗k3 and x∗k2 be
virtual node points corresponding to u − au and v − bv, respectively. In the context of the triangular
mesh, it is important to note that the physical positions of the node points remain unchanged. Instead, a
theoretical construct of imaginary node points is utilized to ensure that the net force acting on the mesh
is balanced to zero. By introducing these virtual node points, it is possible to accurately calculate the
net force and achieve a state of equilibrium, without the need to manipulate the physical node points.
Fourth, we use interpolation for the points where the extension of the modified and original meshes
meet on the opposite side of u and v, respectively. In Figure 2(e), the value of x∗∗k2

is obtained by the
linear interpolation of the values of xk5 and xk6 as follows:

u(x∗∗k2
) =

u(xk6) − u(xk5)√
(xk6 − xk5)2 + (yk6 − yk5)2

√
(x∗∗k2
− xk5)2 + (y∗∗k2

− yk5)
2 + u(xk5).

Here, the virtual node point x∗∗k2
is the intersection point of the line passing through xk and xk2 , and

the line passing through xk5 and xk6 . In addition, x∗∗k3
is obtained analogously. The net force at a point is

zero in a symmetric object or system, as the forces acting on it are distributed symmetrically, ensuring
that they cancel out each other. Therefore, when virtual node points are used, each node point of the
triangular mesh becomes symmetrical with respect to one-ring neighboring points. Finally, the values
of modified mesh points are obtained by quadratic interpolation. In Figure 2(f), the value of virtual
node x∗k3

is obtained by the quadratic interpolation using the values of x∗∗k3
, x3, and xk3 . The value of

virtual node x∗k2
is similarly obtained. Next, we define the discrete Laplace operator with the values

of the neighboring node points set such that the net force Fk at a given point is zero. Let xkm for
m = 1, . . . ,Nk be the one-ring neighboring node points at a point xk with net force Fk = 0, then we
propose the discrete Laplace operator as follows:

∆̃uk =

∑Nk
m=1

(
u(xkm) − u(xk)

)
S k

,

where S k is a constant given for each xk. The general Laplace operator satisfies ∆ f (x, y) = 1 if
f (x, y) = 0.25(x2 + y2). Because the proposed Laplace operator should satisfy the characteristics of the
general Laplace operator, we define S k as

S k =

Nk∑
m=1

f (dkm).
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Here, f (x, y) = 0.25(x2 + y2) and dkm = xkm − xk. The reason for using this function is that it is a
symmetric function with respect to the x- and y-axes, and unlike a linear function, a non-zero solution
exists, and unlike a cubic function, the solution is uniquely determined. Therefore, the proposed dis-
crete Laplace operator satisfies the characteristic of general Laplace operator, u(x, y) = 0.25(x2 + y2).
Then we discretize Eq (1.1) in temporal and spatial as follows

un+1
k − un

k

∆t
= −

F′(un
k)
ϵ2
+ ∆̃un

k

= −
F′(un

k)
ϵ2
+

∑Nk
m=1

(
un

km
− un

k

)
S k

, (2.1)

where S k =
∑Nk

m=1 f (dkm). Therefore, we obtain the following equation by rearranging Eq (2.1) for un+1
k .

un+1
k = un

k + ∆t

−F′(un
k)
ϵ2
+

∑Nk
m=1

(
un

km
− un

k

)
S k

 . (2.2)

3. Numerical experiments

3.1. Discrete Laplace operator

We consider the general five stencil, nine stencil and exact Laplace operators to compare the pro-
posed Laplace operator with the conventional Laplace operators.

∆1ui j =
ui−1, j + ui+1, j + ui, j−1 + ui, j+1 − 4ui j

h2 , (3.1)

∆2ui j =
ui−1, j+1 + ui+1, j+1 + ui+1, j−1 + ui−1, j−1 − 4ui j

2h2 , (3.2)

∆3ui j =
2
3
∆1ui j +

1
3
∆2ui j =

4(ui−1, j + ui+1, j + ui, j−1 + ui, j+1)
6h2 (3.3)

+
ui−1, j+1 + ui+1, j+1 + ui+1, j−1 + ui−1, j−1 − 20ui j

6h2 ,

which are the well-known standard discrete Laplace operators. Figures 3(a),(b),(c) represent the nu-
merical stencils for Eqs (3.1), (3.2) and (3.3), respectively.

3.1.1. Convergence test on rectangular mesh

In this section, each discrete Laplace operator is compared with the C2 function to verify the per-
formance of the proposed discrete Laplace operator. The proposed discrete Laplace operator ∆̃ at each
node is made by neighboring nodes as given in Figure 3(c). This is one of the benefits of our proposed
discrete Laplace operator on a triangular mesh. Therefore, we obtain the discrete Laplace equation as
follows using the proposed method.

∆̃ui j =
(
ui+1, j + ui−1, j + ui, j+1 + ui, j−1 + ui+1, j+1 + ui+1, j−1

+ui−1, j+1 + ui−1, j−1 − 8ui j
)
/3h2.
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(a) (b) (c)

Figure 3. Stencils for (a) ∆1ui j using five points, (b) ∆2ui j using rotated five points, and (c)
∆3ui j using nine points.

We consider the following function on the domain Ω = (0, 1) × (0, 1):

u(x, y) = sin(πx) sin(πy), (x, y) ∈ Ω (3.4)

with zero Dirichlet boundary condition. Then, the exact solution of ∆u is

∆u(x, y) = −2π2 sin(πx) sin(πy).

We use different parameter values Nx = 9, 17, 33, 65 to consider the convergence rates for different
spatial mesh hx = hy = 1/(Nx − 1) and discrete domain xi = (i − 1)hx for i = 1, 2, . . . ,Nx and
y j = ( j − 1)hy for j = 1, 2, . . . ,Ny. Next, to calculate the convergence rate for ∆ui j, we define the
discrete l2-error and discrete maximum-error in 2D space, respectively:

∥eNxNy∥l2 =

√√√
1

Nx

1
Ny

Nx∑
i=1

Ny∑
j=1

(ei j)2,

∥eNxNy∥max = max
1≤i≤Nx, 1≤ j≤Ny

|ei j|,

where ei j = ∆̂ui j − ∆ui j for i = 1, 2, . . . ,Nx and j = 1, 2, . . . ,Ny. Figures 4(a),4(b) present the l2-error
and the maximum-error for different Laplace operators, respectively. We make a list of the convergence
rates for the maximum-error and l2-error of the Laplace operator in Tables 1 and 2, respectively. We
observed that the proposed discrete Laplace operator achieved second-order accuracy in spatial direc-
tions on a rectangular mesh. The proposed discrete Laplace operator can consider triangular meshes
on irregular domains rather than rectangular meshes, while other discrete Laplace operators can only
be used on rectangular meshes.

3.1.2. Laplace operator for functions on triangular mesh

The proposed method is for 2D triangular mesh, therefore we need to define some conditions. Let
N be the number of nodes in the triangular mesh and xk = (xk, yk) be k-th node in the triangular mesh
for k = 1, . . . ,N. Set I be the set of indices of the interior nodes and Nk is the number of node points
neighboring xk. The average of spatial mesh is

have =

∑
k∈I

∑Nk
m=1 |xkm − xk|∑

k∈I Nk
, (3.5)
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(b) Maximum-error

Figure 4. The value of error for each Laplace operator.

Table 1. Maximum-error of different Laplace operators with respect to different spatial steps.

spatial step h(= 1/8) rate h/2 rate h/4 rate h/8
∆1u 2.5237 × 10−1 1.99 6.3336 × 10−2 2.00 1.5849 × 10−2 2.00 3.9633 × 10−3

∆2u 9.9404 × 10−1 1.98 2.5237 × 10−1 1.99 6.3336 × 10−2 2.00 1.5849 × 10−2

∆3u 4.9959 × 10−1 1.98 1.2635 × 10−1 2.00 3.1678 × 10−2 2.00 7.9253 × 10−3

∆̃u 7.4682 × 10−1 1.98 1.8936 × 10−1 1.99 4.7507 × 10−2 2.00 1.1887 × 10−2

Table 2. l2-error of different Laplace operators with respect to different spatial steps.

spatial step h(= 1/8) rate h/2 rate h/4 rate h/8
∆1u 1.1216 × 10−1 1.91 2.9805 × 10−2 1.96 7.6845 × 10−3 1.98 1.9511 × 10−3

∆2u 4.4180 × 10−1 1.90 1.1876 × 10−1 1.95 3.0708 × 10−2 1.98 7.8027 × 10−3

∆3u 2.2204 × 10−1 1.90 5.9457 × 10−2 1.95 1.5359 × 10−2 1.98 3.9017 × 10−3

∆̃u 3.3192 × 10−1 1.90 8.9110 × 10−2 1.95 2.3034 × 10−2 1.98 5.8522 × 10−3
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where xkm is neighboring node points of xk for m = 1, . . . , Nk.
Let the initial function u(x, y) = ax + by + c for a, b, c ∈ R be a plane, then ∆u = 0. Therefore, we

consider the initial condition on the domain Ω = (0, 1) × (0, 1):

u(x, y) = x + 2y + 3, (x, y) ∈ Ω. (3.6)

Here, we apply Dirichlet boundary conditions. To compute the discrete Laplace operator of u, we use a
triangular mesh with have = 0.1013. Figures 5(a),(b),(c) present the triangular mesh, u(x, y) = x+2y+3,
and proposed discrete Laplace operator for u, respectively.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

Figure 5. Discrete Laplace operator for plane equation: (a) triangular mesh, (b) u(x, y) =
x + 2y + 3, and (c) ∆̃u(x, y).

Next, we consider the initial function on the domain Ω = (0, 1) × (0, 1):

u(x, y) = sin(πx) sin(πy). (3.7)

Then we have

∆u(x, y) = −2π2 sin(πx) sin(πy). (3.8)

We apply the zero Dirichlet boundary condition. To compute the discrete Laplace operator of u, we use
the parameter have = 0.1013. Figures 6(a),(b),(c) show the triangular mesh, u(x, y) = sin(πx) sin(πy),
and the proposed discrete Laplace operator for u, i.e., ∆̃u(x, y), respectively.

3.2. Diffusion equations on triangular mesh

3.2.1. Convergence test on square domain

In this section, we compare the numerical and analytical solutions to verify the proposed method.
We consider a diffusion equation (1.2) with the following initial condition on the domain Ω = (0, 1) ×
(0, 1):

u(x, y, 0) = sin(πx) sin(πy) (3.9)

with zero Dirichlet boundary condition. Then, the exact solution is

uexact(x, y, t) = sin(πx) sin(πy)e−2π2t.
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(a) (b) (c)

Figure 6. (a) Triangular mesh, (b) u(x, y) = sin(πx) sin(πy), and (c) ∆̃u(x, y).

Let un
k be an approximation of u(xk, yk, n∆t), where ∆t is a time step. Let N be the number of nodes of

the triangular mesh, xk = (xk, yk) be k-th node in triangular mesh for k = 1, . . . ,N. For this test, we use
different triangular meshes with have = 0.1254, 0.1013, 0.0762. Using the explicit Euler method and
the proposed discrete Laplace operator, Eq (1.2) is as follows:

un+1
k − un

k

∆t
= ∆̃un

k . (3.10)

Let us define the l2-error and maximum-error as follows:

∥eNt
N ∥l2 =

√√
1
N

N∑
k=1

(eNt
k )2,

∥eNt
N ∥max = max

1≤k≤N
|eNt

k |,

where eNt
k = uNt

k − uexact(xk, yk,T ), k = 1, 2, . . . ,N. Figure 7 presents the triangular mesh and numerical
solution using the proposed method for each have. We list the maximum-error and l2-error of the
diffusion equation with T = 0.02, Nt = 2048, ∆t = T/Nt in Table 3.

Table 3. Maximum-error and l2-error for proposed discrete Laplace operator with respect to
different spatial steps.

Spatial step have = 0.1254 rate have = 0.1013 rate have = 0.0762
Maximum-error 1.8338 × 10−2 1.19 1.4246 × 10−2 1.92 8.2534 × 10−3

l2-error 4.2098 × 10−3 1.64 2.9665 × 10−3 1.77 1.7904 × 10−3

Next, we perform numerical experiments for a larger time evolution with a final time T = 0.1 using
the same triangular meshes as in the previous test. Figure 8 shows the numerical solutions for different
spatial steps at the final time T = 0.1. Table 4 lists the maximum-error and l2-error for the proposed
discrete Laplace operator. We observed that the l2-error and maximum-error of the proposed discrete
Laplace operator decreased as the spatial step decreased for a larger final time T = 0.1.

We perform a convergence test on the discrete LBO to compare the discrete LBO and the proposed
discrete Laplace operator. The initial conditions given are the same as in the previous convergence test
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Triangular mesh Numerical solution

Figure 7. Triangular mesh and numerical solution using the proposed method for each dif-
ferent spatial mesh with have. (a) have = 0.1254, (b) have = 0.1013, (c) have = 0.0762.

Table 4. Maximum-error and l2-error for proposed discrete Laplace operator with respect to
different spatial steps.

Spatial step have = 0.1254 rate have = 0.1013 rate have = 0.0762
Maximum-error 4.6855 × 10−3 2.07 3.0121 × 10−3 1.98 1.7142 × 10−3

l2-error 2.0184 × 10−3 2.89 1.0894 × 10−3 1.09 7.9989 × 10−4
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(a) have = 0.1254 (b) have = 0.1013 (c) have = 0.0762

Figure 8. Triangular mesh and numerical solution for a larger final time T = 0.1.

with the final time T = 0.1. Figure 9 shows the numerical solutions obtained using the discrete LBO
for different spatial steps. Table 5 lists the maximum-error and l2-error for the discrete LBO.

(a) have = 0.1254 (b) have = 0.1013 (c) have = 0.0762

Figure 9. Triangular mesh and numerical solution using the discrete LBO.

Table 5. Maximum-error and l2-error for the discrete LBO with respect to different spatial
steps.

Spatial step have = 0.1254 rate have = 0.1013 rate have = 0.0762
Maximum-error 5.3441 × 10−3 2.11 3.4101 × 10−3 –7.49 2.8734 × 10−2

l2-error 2.3112 × 10−3 2.01 1.5061 × 10−3 –7.16 1.1569 × 10−2

We observed that the error of the discrete LBO is larger than that of the proposed discrete Laplace
operator and does not converge as the spatial step becomes smaller.

3.2.2. Diffusion equation on circular domain

In this section, we consider a diffusion equation on a circular domain using the proposed discrete
Laplace operator. We use the circular domain of radius 1 and with center at the origin, i.e., Ω =
{(x, y)|x2 + y2 < 1}. We use the zero Dirichlet boundary condition and u(x, y, 0) = 1 − x2 − y2 as the
initial condition.

∂u(x, y, t)
∂t

= ∆u(x, y, t), (x, y) ∈ Ω, t > 0, (3.11)
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u(x, y, t) = 0, (x, y) ∈ ∂Ω,
u(x, y, 0) = 1 − x2 − y2, (x, y) ∈ Ω.

Let us consider a benchmark problem using a manufactured solution [28], i.e., we assume that the
solution of the benchmark problem is

u(x, y, t) = (1 − x2 − y2)e−t. (3.12)

Then, we consider the following benchmark problem:

∂u(x, y, t)
∂t

= ∆u(x, y, t) + g(x, y, t), (x, y) ∈ Ω, t > 0, (3.13)

u(x, y, t) = 0, (x, y) ∈ ∂Ω,
u(x, y, 0) = 1 − x2 − y2, (x, y) ∈ Ω,

where g(x, y, t) = ∂u(x, y, t)/∂t − ∆u(x, y, t) = (3 + x2 + y2)e−t is the source term. To construct the
numerical solution, we use explicit Euler method as follows:

un+1
k = un

k + ∆t
(
∆̃uk + gn+ 1

2
k

)
, (3.14)

where gn+ 1
2

k = (3 + x2
k + y2

k)e−(n+ 1
2 )∆t.

Let us consider three different spatial meshes with have = 0.5315, 0.2133 and 0.1020. The total
time is T = 0.1 and time step ∆t = 0.001h2

ave with total iteration Nt = T/∆t. Using the proposed
discrete Laplace operator, we present the numerical solution at final time T and compare it with the
exact solution, Eq (3.12). Figure 10 presents the triangular mesh, exact solution and numerical results,
and the absolute error between the results.

3.3. Two-dimensional Allen-Cahn equation on triangular mesh

In this section, we consider the AC Eq (1.1) on plane with triangular mesh. Let Ω be the domain in
2D space and N be the number of nodes in domain. For k = 1, . . . ,N, let xk = (xk, yk) be the k-th node
in domain. On the computational triangular mesh, let un

k be an approximation of u(xk, yk, n∆t), where
∆t is a time step.

3.3.1. Motion by mean curvature on square domain

In Figure 12, we verify the mean curvature flow of the AC equation using following initial condition
on Ω = (−1, 1) × (−1, 1):

u(x, y, 0) = tanh

R0 −
√

x2 + y2

√
2ϵ

 , (x, y) ∈ Ω, (3.15)

where R0 = 0.4 is the initial radius with Dirichlet boundary condition u(x, y, t) = −1 on ∂Ω. The
analytic radius is given as R(t) =

√
R0

2 − 2t for time t [29]. The numerical radius is computed using
the average of distances between zero level points of the numerical solution and the center point (0, 0).
As shown in Figure 12, the numerical radii shrink along with the analytic radius.
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Figure 10. Triangular mesh, numerical and exact solutions, and absolute error, here top to
bottom have = 0.5315, 0.3138, 0.2133, respectively.
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Next, we consider three triangular meshes generated by different spatial steps, have = 0.1524,
0.0997, 0.0499. The initial condition is Eq (3.15) and interface parameter is ϵ = 1.3have. Figures
11(a),(b),(c) show the effect of motion by mean curvature for the AC equation with the different spatial
steps. Figure 12 shows temporal evolutions of analytic and numerical radii for different spatial steps.
The time steps are used as ∆t = 0.2h2

ave for each have. We can observe that the numerical results agree
with the analytic exact solution as the spatial step decreases to zero.

(a)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

(b)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

(c)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Triangular mesh
-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Zero level contour

Figure 11. Triangular mesh and zero contour for each different parameter have. (a) have =

0.1524, (b) have = 0.0997, (c) have = 0.0499.
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Figure 12. Motion by mean curvature for different spatial step have =

0.1524, 0.0997, 0.0499.

3.3.2. Dynamics of the AC equation on various domains

In this section, we observe the dynamics of the AC equation on various domains. We consider
rectangular domain with circular hole Ωrectangle =

(
(−1.3, 1.3) × (−1.3, 1.3)

)
∩ B2(0.5)c and circular

domain with circular holeΩcircle = B1(1.3)∩B2(0.5)c to verify the performance of the proposed method
according to the shape of the domain, where B1(r) = {(x, y) | x2 + y2 < r} and B2(r) = {(x, y) | x2 + y2 ≤

r}. The initial condition is that all internal node points in the domain are 1 with Dirichlet boundary
condition u(x, y, t) = 1 in ∂Ωinner and u(x, y, t) = −1 in ∂Ωouter. Here, ∂Ωinner and ∂Ωouter are the
inner and outer boundaries of the domain, respectively. We use the parameters have ≈ 0.2, 0.15, 0.1,
ϵ = 0.15, ∆t = 0.001, and Nt = T/∆t to compute Eq (2.2). Here, we use T = 5.6, which is a sufficient
time to reach an numerical equilibrium state for all parameters. The value of have is below each figure.
Figures 13 and 14 show the dynamics of the AC equation on Ωrectangle and Ωcircle, respectively, for the
given initial conditions.

4. Conclusions

In this study, we proposed a novel, effective, simple, and explicit numerical method for solving the
diffusion and AC equations on a triangular mesh. In the proposed algorithm, we defined a novel discrete
Laplace operator. The proposed discrete Laplace operator has a property that the adjusted net vector of
each point using virtual nodes is zero vector on the triangular mesh. This means that the forces acting
at each point of the triangular mesh are symmetrically distributed, thus demonstrating the symmetry of
the proposed method. To investigate the efficiency and stability of the proposed numerical method, we
presented the numerical experiments for solving the diffusion and AC equations in various domains on
triangular mesh. We verified the proposed Laplace operator through numerical experiments on general
discrete Laplace operators and discrete LBOs. Additionally, we verified the proposed operator division
method through numerical experiments involving motion by mean curvature using the AC equation
and solving the AC equation in irregular domains. Results indicated that the proposed method can be
served in various applications in 2D domain with triangular mesh. In future work, we will solve the
AC equation on complex surfaces in 3D space and conduct theoretical analysis on the convergence of
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(a)

(b)

(c)

(d)

have = 0.1999 have = 0.1498 have = 0.0995

Figure 13. Dynamics of the AC equation on the rectangle domain with circular hole. (a)
Triangular mesh, (b) Initial condition, (c) t = 0.4, (d) t = 5.6.
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(a)

(b)

(c)

(d)

have = 0.2102 have = 0.1537 have = 0.1014

Figure 14. Dynamics of the AC equation on the circular domain with circular hole. (a)
Triangular mesh, (b) Initial condition, (c) t = 0.4, (d) t = 5.6.
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the proposed method.

Use of AI tools declaration

The authors have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The corresponding author (J. S. Kim) expresses thanks for the support from the BK21 FOUR pro-
gram. The authors express their sincere gratitude to the reviewers for providing valuable feedback on
this revised version. Their constructive comments have significantly contributed to the improvement
of the manuscript.

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. J. W. Choi, H. G. Lee, D. Jeong, J. Kim, An unconditionally gradient stable nu-
merical method for solving the Allen–Cahn equation, Phys. A, 388 (2009), 1791–1803.
https://doi.org/10.1016/j.physa.2009.01.026

2. S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to
antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-
6160(79)90196-2

3. D. Jeong, Y. Li, Y. Choi, C. Lee, J. Yang, J. Kim, A practical adaptive grid method for the Allen–
Cahn equation, Phys. A, 573 (2021), 125975. https://doi.org/10.1016/j.physa.2021.125975

4. X. Xiao, R. He, X. Feng, Unconditionally maximum principle preserving finite element schemes
for the surface Allen–Cahn type equations, Numer. Meth. Part Differ. Equations, 36 (2020), 418–
438. https://doi.org/10.1002/num.22435

5. J. Rubinstein, P. Sternberg, Nonlocal reaction—diffusion equations and nucleation, IMA J. Appl.
Math., 48 (1992), 249–264. https://doi.org/10.1093/imamat/48.3.249

6. Z. Sun, S. Zhang, A radial basis function approximation method for conserva-
tive Allen–Cahn equations on surfaces, Appl. Math. Lett., 143 (2023), 108634.
https://doi.org/10.1016/j.aml.2023.108634

7. B. Xia, Y. Li, Z. Li, Second-order unconditionally stable direct methods for Allen–
Cahn and conservative Allen–Cahn equations on Surfaces, Mathematics, 8 (2020), 1486.
https://doi.org/10.3390/math8091486

8. Y. Choi, Y. Li, C. Lee, H. Kim, J. Kim, Explicit hybrid numerical method for the Allen–Cahn
type equations on curved surfaces, Numer. Math. Theory Methods Appl., 14 (2021), 797–810.
https://doi.org/10.4208/nmtma.OA-2020-0155

Electronic Research Archive Volume 31, Issue 8, 4557–4578.

http://dx.doi.org/https://doi.org/10.1016/j.physa.2009.01.026
http://dx.doi.org/https://doi.org/10.1016/0001-6160(79)90196-2
http://dx.doi.org/https://doi.org/10.1016/0001-6160(79)90196-2
http://dx.doi.org/https://doi.org/10.1016/j.physa.2021.125975
http://dx.doi.org/https://doi.org/10.1002/num.22435
http://dx.doi.org/https://doi.org/10.1093/imamat/48.3.249
http://dx.doi.org/https://doi.org/10.1016/j.aml.2023.108634
http://dx.doi.org/https://doi.org/10.3390/math8091486
http://dx.doi.org/https://doi.org/10.4208/nmtma.OA-2020-0155


4577

9. V. Joshi, R. K. Jaiman, An adaptive variational procedure for the conservative and pos-
itivity preserving Allen–Cahn phase-field model, J. Comput. Phys., 366 (2018), 478–504.
https://doi.org/10.1016/j.jcp.2018.04.022

10. S. Kwak, J. Yang, J. Kim, A conservatice Allen–Cahn equation with a
curvature-dependent Lagrange multiplier, Appl. Math. Lett., 126 (2022), 107838.
https://doi.org/10.1016/j.aml.2021.107838

11. Q. Hong, Y. Gong, J. Zhao, Q. Wang, Arbitrarily high order structure-preserving algorithms for
the Allen–Cahn model with a nonlocal constraint, Appl. Numer. Math., 170 (2021), 321–339.
https://doi.org/10.1016/j.apnum.2021.08.002

12. Z. Chai, D. Sun, H. Wang, B. Shi, A comparative study of local and nonlocal Allen–
Cahn equations with mass conservation, Int. J. Heat Mass Transf., 122 (2018), 631–642.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.013

13. M. Inc, A. Yusuf, A. I. Aliyu, D. Baleanu, Time-fractional Cahn–Allen and time-fractional
Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis,
Phys. A, 493 (2018), 94–106. https://doi.org/10.1016/j.physa.2017.10.010

14. J. Kim, H. Lee, Unconditionally energy stable second-order numerical scheme for the Allen–Cahn
equation with a high-order polynomial free energy, Adv. Differ. Equations, 2021 (2021), 1–13.
https://doi.org/10.1186/s13662-021-03571-x

15. H. Bhatt, J. Joshi, I. Argyros, Fourier spectral high-order time-stepping method for numer-
ical simulation of the multi-dimensional Allen–Cahn equations, Symmetry, 13 (2021), 245.
https://doi.org/10.3390/sym13020245

16. Z. Sun, Y. Gao, High order multiquadric trigonometric quasi-interpolation method for
solving time-dependent partial differential equations, Numer. Algorithms, (2022), 1–21.
https://doi.org/10.1007/s11075-022-01486-6

17. Z. Sun, L. Ling, A kernel-based meshless conservative Galerkin method for solv-
ing Hamiltonian wave equations, SIAM J. Sci. Comput., 44 (2022), A2789–A2807.
https://doi.org/10.1137/21M1436981

18. M. Wardetzky, S. Mathur, F. Kälberer, E. Grinspun, Discrete Laplace operators: No free lunch,
Eurographics Symp. Geom. Process., (2007), 33–37.

19. G. Xu, Discrete Laplace–Beltrami operators and their convergence, Comput. Aided Geom. Des.,
21 (2004), 767–784. https://doi.org/10.1016/j.cagd.2004.07.007

20. T. Caissard, D. Coeurjolly, J. O. Lachaud, T. Roussillon, Laplace-beltrami operator on digital
surfaces, J. Math. Imaging Vis., 61 (2019), 359–379. https://doi.org/10.1007/s10851-018-0839-4

21. S. P. Thampi, S. Ansumali, R. Adhikari, S. Succi, Isotropic discrete Laplacian operators from lat-
tice hydrodynamics, J. Comput. Phys., 234 (2013), 1–7. https://doi.org/10.1016/j.jcp.2012.07.037

22. B. J. McCartin, Eigenstructure of the discrete Laplacian on the equilateral triangle: the Dirichlet
& Neumann problems, Appl. Math. Sci., 4 (2010), 2633–2646.

23. V. Ganzha, R. Liska, M. Shashkov, C. Zenger, Support operator method for Laplace equation on
unstructured triangular grid, Selcuk J. Appl. Math., 3 (2002), 21–48.

Electronic Research Archive Volume 31, Issue 8, 4557–4578.

http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.04.022
http://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107838
http://dx.doi.org/https://doi.org/10.1016/j.apnum.2021.08.002
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.013
http://dx.doi.org/https://doi.org/10.1016/j.physa.2017.10.010
http://dx.doi.org/https://doi.org/10.1186/s13662-021-03571-x
http://dx.doi.org/https://doi.org/10.3390/sym13020245
http://dx.doi.org/https://doi.org/10.1007/s11075-022-01486-6
http://dx.doi.org/https://doi.org/10.1137/21M1436981
http://dx.doi.org/https://doi.org/10.1016/j.cagd.2004.07.007
http://dx.doi.org/https://doi.org/10.1007/s10851-018-0839-4
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2012.07.037


4578

24. S. Yoon, J. Park, J. Wang, C. Lee, J. Kim, Numerical simulation of dendritic pattern for-
mation in an isotropic crystal growth model on curved surfaces, Symmetry, 12 (2020), 1155.
https://doi.org/10.3390/sym12071155

25. L. Paquet, R. Korikache, The complete discretization of the dual mixed method for the
heat diffusion equation in a polygonal domain, Math. Comput. Simul., 186 (2021), 145–160.
https://doi.org/10.1016/j.matcom.2020.09.023

26. J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem.
Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102

27. W. Tian, Y. Chen, Z. Meng, H. Jia, An adaptive finite element method based on superconver-
gent cluster recovery for the Cahn–Hilliard equation, Electron. Res. Arch., 31 (2023), 1323–1343.
https://doi.org/10.3934/era.2023068

28. Y. Hwang, C. Lee, S. Kwak, Y. Choi, S. Ham, S. Kang, et al., Benchmark problems for the
numerical schemes of the phase-field equations, Discrete Dyn. Nat. Soc., 2022 (2022), 1–10.
https://doi.org/10.1155/2022/2751592

29. D. Jeong, J. Kim, An explicit hybrid finite difference scheme for the Allen–Cahn equation, J.
Comput. Appl. Math., 340 (2018), 247–255. https://doi.org/10.1016/j.cam.2018.02.026

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 31, Issue 8, 4557–4578.

http://dx.doi.org/https://doi.org/10.3390/sym12071155
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2020.09.023
http://dx.doi.org/https://doi.org/10.1063/1.1744102
http://dx.doi.org/https://doi.org/10.3934/era.2023068
http://dx.doi.org/https://doi.org/10.1155/2022/2751592
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.02.026
http://creativecommons.org/licenses/by/4.0

	Introduction
	Numerical solution algorithm
	Numerical experiments
	Discrete Laplace operator
	Convergence test on rectangular mesh
	Laplace operator for functions on triangular mesh

	Diffusion equations on triangular mesh
	Convergence test on square domain
	Diffusion equation on circular domain

	Two-dimensional Allen-Cahn equation on triangular mesh
	Motion by mean curvature on square domain
	Dynamics of the AC equation on various domains


	Conclusions

