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a b s t r a c t 

In this study, we present a novel phase-field model without artificial curvature effect for the crystal 

growth simulation. Most phase-field models for dendritic growth are based on the anisotropic Allen–

Cahn (AC) equation which models anti-phase domain coarsening in a binary alloy. However, the AC equa- 

tion intrinsically contains the motion by mean curvature term, i.e., curvature flow, which may have effect 

on the phases transition. In this work, we remove the artificial curvature effect and propose a novel 

phase-field model without artificial curvature effect for the dendritic growth simulation. Both two- and 

three-dimensional numerical tests show that, in the case of the new phase-field model, dendritic growth 

develops faster than the conventional phase-field model because of the absence of artificial motion by 

mean curvature effect. In addition, we show that the proposed model has applicability to polycrystal 

growth. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Dendritic growth describes a phenomenon where the liquid is 

ransformed into the solid through heat conduction. The simula- 

ion of crystal growth is important because of wide applications 

n material [1–3] , climate environment [4] and industry processes 

5,6] . The simulation methods of crystal growth include front- 

racking, boundary integral, level-set, phase-field [7,8] and cellular 

utomata [9,10] , to name a few. Recently, the phase-field method 

as become popular because of its simplicity in capturing the com- 

lex interface by an order parameter without requirement of re- 

nitialization operation [11,12] . Many phase-field models for den- 

ritic growth are based on the anisotropic Allen–Cahn (AC) equa- 

ion [13–15] . For example, anti-phase domain coarsening in a bi- 

ary alloy can be modeled by the AC equation: 

∂φ

∂t 
= ∇ 

2 φ + 

φ(1 − φ2 ) 

ε2 
, (1) 

here φ is the order parameter with φ = 1 in one phase and φ = 

1 in the other phase. The parameter ε is related to the interfacial 

ransition thickness between two phases. The AC equation consists 

f two terms: Laplace diffusion term which is related to the cur- 

ature effects and the other nonlinear term which is derived from 
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he double well potential. However, the Laplace diffusion term in- 

rinsically includes the motion by mean curvature term, i.e., cur- 

ature flow [16–18] , which may have effect on the evolution dy- 

amics of the model. For example, Takaki and Kato [19] developed 

 phase-field topology optimization model that removed the mean 

urvature effects to minimize only the elastic strain energy func- 

ion rather than the interface energy. This model results in struc- 

ures with more excellent mechanical property. Subtracting the 

urvature contribution from a phase-field equation was also used 

n multiphase fluid flows [20–23] to make the system recover to 

he equilibrium state. Therefore, the primary motivation of this re- 

earch is to study the effect on the crystal growth simulation when 

he mean curvature which we call as the artificial curvature is sub- 

racted. To the authors’ knowledge, this is the first study of remov- 

ng artificial curvature effect from the phase-field model for the 

rystal growth simulation in two- and three-dimensional spaces. 

Many efficient and accurate computational methods for the 

rystal growth simulations have been developed. Li et al. [24] used 

 coupled phase field and lattice Boltzmann scheme to numeri- 

ally simulate the growth of polymer crystal in the flow field. They 

onfirmed that the flow velocities had a significant effect on the 

rystallization formation and the crystals grew faster in the up- 

tream direction. Wang et al. [25] developed a novel phase-field- 

attice Boltzmann equation for dendritic growth with melt fluid 

ow and thermosolutal convection–diffusion. Shah et al. [26] de- 

eloped an efficient temporal adaptive method for the dendritic 

rystal growth. Wu et al. [27] proposed a parallel adaptive multi- 

https://doi.org/10.1016/j.ijheatmasstransfer.2023.123847
http://www.ScienceDirect.com
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Fig. 1. Schematic illustration of 	, r(x , t) , and n . 
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rid method to solve the coupled thermal-solute phase-field prob- 

ems. Chen et al. [28] considered the sequential nature of the 

rid correction in multigrid solver for the numerical solution of 

he rapid solidification of an undercooled binary mixture. Li et al. 

29] developed an accurate and efficient numerical scheme for the 

hase-field based dendritic growth. The difficulty is not only lim- 

ted in dealing with the traditional phase-field based dendritic 

rystal growth, but also the artificial curvature term being sub- 

racted which increase the complexity of numerical computation. 

aiser et al. [30] developed a conservative interface-interaction 

cheme for a sharp-interface framework of liquid-solid phase tran- 

ition. Zhang et al. [31] performed the 3D phase-field computa- 

ions of crystal growth using a multilevel thermosolutal phase-field 

attice-Boltzmann scheme. Using parallel program and adaptivity 

rid, they performed the 3D thermosolutal computations to inves- 

igate the effect of thermal evolution on the growth of dendrites. 

andi and Sanyasiraju [32] solved the two-phase problems of so- 

idification in complex domains using alternating direction implicit 

ethod, which is unconditionally stable. 

The main purpose of this study is to present a novel phase-field 

odel without artificial curvature effect for the dendritic growth 

imulation. Focusing on the effect of artificial curvature term on 

endritic growth, we use the simplest numerical method, a fully 

uler’s scheme to discretize the time and the cell-centered dif- 

erence method to discretize the space. Many accurate and sta- 

le numerical scheme will be further explored in the future. The 

umerical tests of four-fold and six-fold symmetric crystal growth 

nd polycrystal growth under certain initial conditions will be per- 

ormed to study the effect of artificial curvature term on dendritic 

rowth. 

The paper is organized as follows. In Section 2 , the proposed 

ovel phase-field based crystal growth model without the artificial 

urvature is presented. The numerical solution algorithm is given 

n Section 3 . Various computational tests are done in Section 4 . In

ection 5 , conclusions are derived. 

. Proposed phase-field model 

In this section, we present the novel phase-field model without 

rtificial curvature effect for the dendritic growth simulation. First, 

he conventional phase-field model for the crystal growth can be 

erived as follows [33,34] : 

2 ( n ) 
∂φ

∂t 
= ∇ · (ε2 (n ) ∇φ) + [ φ − λU(1 − φ2 )](1 − φ2 ) 

+ 

(
|∇φ| 2 ε(n ) 

∂ε(n ) 

∂φx 

)
x 

+ 

(
|∇φ| 2 ε(n ) 

∂ε(n ) 

∂φy 

)
y 

, 

(2) 

∂U 

∂t 
= D ∇ 

2 U + 

1 

2 

∂φ

∂t 
. (3) 

ere φ represents the order parameter. We define φ = 1 and φ = 

1 in the solid and liquid phases, respectively. ε(n ) represents 

he anisotropic function, n represents the inward normal unit vec- 

or, and U = c p (T − T M 

) /L represents the dimensionless tempera- 

ure field in which c p is defined as the specific heat at constant 

ressure, T M 

is defined as the melting temperature and L is de- 

ned as the latent heat of fusion. D = ατ0 /ε
2 
0 

where α is defined 

s the thermal diffusivity, τ0 is defined as the characteristic time, 

nd ε0 is defined as the characteristic length. λ represents the 

imensionless coupling parameter, is defined as λ = D/a 2 . A nor- 

al vector of the interface is defined as (φx , φy ) and θ that sat- 

sfies tan θ = (−φy ) / (−φx ) . Then, by replacing ε(n ) with ε(θ ) =
2 
0 (1 + εk cos (kθ )) , Eq. (2) becomes 

|∇φ| 2 ε(θ ) 
∂ε(θ ) 

∂φx 

)
x 

= 

(
(φ2 

x + φ2 
y ) ε(θ ) ε′ (θ ) 

(
− φy 

φ2 
x + φ2 

y 

))
x 

= −
(
ε′ (θ ) ε(θ ) φy 

)
x 
, 

|∇φ| 2 ε(θ ) 
∂ε(θ ) 

∂φy 

)
y 

= 

(
(φ2 

x + φ2 
y ) ε(θ ) ε′ (θ ) 

(
φx 

φ2 
x + φ2 

y 

))
x 

= 

(
ε′ (θ ) ε(θ ) φx 

)
y 
. 

ence, we can rewrite Eq. (2) as follows: 

2 (θ ) 
∂φ

∂t 
= ∇ · (ε2 (θ ) ∇φ) + [ φ − λU(1 − φ2 )](1 − φ2 ) 

−
(
ε′ (θ ) ε(θ ) φy 

)
x 
+ 

(
ε′ (θ ) ε(θ ) φx 

)
y 

(4) 

 ∇ · (ε2 (θ ) ∇φ) + φ(1 − φ2 ) ︸ ︷︷ ︸ 
I 

−λU(1 − φ2 ) 2 −
(
ε′ (θ ) ε(θ ) φy 

)
x 
+ 

(
ε′ (θ ) ε(θ ) φx 

)
y ︸ ︷︷ ︸ 

G 

, (5) 

here I and G are phase-preserving and growth terms, respec- 

ively. In the phase-field model for the crystal growth, the I

erm enforces the phase-field shape to have approximately lo- 

al equilibrium state, which implies we have a hyperbolic tan- 

ent profile across interface transition layer. The term G makes 

he crystal anisotropically grow according to ε(θ ) . However, the 

term includes an artificial curvature term which reduces the 

rowth of crystal. Now, we identify the artificial curvature term, 
2 (θ ) |∇ φ|∇ · ( ∇ φ/ |∇ φ| ) and remove it from the original gov- 

rning equation to derive the proposed model. For simplicity, we 

onsider the derivation of the curvature term in two-dimensional 

pace, x = (x, y ) . Let r(x , t) = dist (x , 	) sgn (φ(x , t)) be a local co-

rdinate, where 	 and sgn (·) are a zero-level set of φ and a sign 

unction, respectively. Let n = ∇φ/ |∇φ| be the inward unit nor- 

al vector on interface transition layer [35] . Figure 1 shows the 

chematic illustration of r(x , t) and n . 

Then, we have the following derivation for the Laplacian opera- 

or. 

 

2 φ = ∇ · ∇φ = ∇ · (|∇φ| n ) = ∇ · ((∇φ · n ) n ) = ∇ · (φr n ) 

= ∇φr · n + φr ∇ · n = (∇φ) r · n + φr ∇ · n 

= (φr n ) r · n + φr ∇ · n = (φrr n + φr n r ) · n + φr ∇ · n 

= φrr + |∇φ|∇ · ( ∇φ/ |∇φ| ) . (6) 

n the conventional phase-field model (2) , it contains the follow- 

ng AC type equation [17] , a governing equation for the motion by 

ean curvature: 

2 (n ) 
∂φ = ε2 (n ) ∇ 

2 φ + φ(1 − φ2 ) . (7) 

∂t 
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ere, ∇ 

2 φ in Eq. (7) can be replaced by Eq. (6) . Then we have 

2 (n ) 
∂φ

∂t 
= ε2 (n ) φrr + ε2 (n ) |∇ φ|∇ ·

( ∇ φ

|∇ φ| 
)

+ φ(1 − φ2 ) . (8) 

ccording to the dynamics of the AC equation, ε2 (n ) φrr + φ(1 −
2 ) ≈ 0 when ε(n ) is close to a constant. Therefore, if we want to

se the phase-field model to preserve the interface shapes while 

pplying other factors such as growth and anisotropic evolution, 

hen ε2 (θ ) |∇ φ|∇ · ( ∇ φ/ |∇ φ| ) in Eq. (8) becomes an unnecessary 

erm. Hence, it is natural to remove the artificial curvature effect 
2 (θ ) |∇ φ|∇ · ( ∇ φ/ |∇ φ| ) from the phase-field model for dendritic 

rowth. 

Finally, we can propose the following phase-field model with- 

ut artificial curvature effect for the crystal growth simulation by 

ubtracting the artificial curvature term ε2 (θ ) |∇ φ|∇ · ( ∇ φ/ |∇ φ| ) 
rom Eq. (4) : 

2 (θ ) 
∂φ

∂t 
= ∇ · (ε2 (θ ) ∇φ) − ε2 (θ ) |∇ φ|∇ ·

( ∇ φ

|∇ φ| 
)

+[ φ − λU(1 − φ2 )](1 − φ2 ) 

−
(
ε′ (θ ) ε(θ ) φy 

)
x 
+ 

(
ε′ (θ ) ε(θ ) φx 

)
y 
, (9) 

∂U 

∂t 
= D ∇ 

2 U + 

1 

2 

∂φ

∂t 
. (10) 

. Numerical solution 

Focusing on the novel proposed model and facilitating new 

omers to this novel model, we use a fully explicit Euler’s method 

o discretize the governing Eqs. (9) and (10) . Considering a com- 

utational domain 
 = (L x , R x ) × (L y , R y ) , let N x and N y be integers,

 = (R x − L x ) /N x be a grid size, and 
h = { (x i , y j ) : x i = L x + (i −
 . 5) h, y j = L y + ( j − 0 . 5) h, 1 ≤ i ≤ N x , 1 ≤ j ≤ N y } be the discrete

omain. Let φn 
i j 

and U 

n 
i j 

be numerical solutions of φ( x i , y j , n �t) and

( x i , y j , n �t) , respectively, where �t is the time step. The cell-

entered difference scheme of the spatial discretization is used. 

hen, we can obtain the fully discrete equations as follows: 

2 (θn 
i j ) 

φn +1 
i j 

− φn 
i j 

�t 
= 

[∇ d · (ε2 (θ ) ∇ d φ) 
]n 

i j 

−
[
ε2 (θ ) |∇ d φ|∇ d ·

( ∇ d φ

|∇ d φ| 
)]n 

i j 

(11) 

[ φn 
i j − λU 

n 
i j (1 − (φn 

i j ) 
2 )][1 − (φn 

i j ) 
2 ] 

−
[
D x 

(
ε′ (θ ) ε(θ ) D y φ

)]n 

i j 
+ 

[
D y 

(
ε′ (θ ) ε(θ ) D x φ

)]n 

i j 
, 

U 

n +1 
i j 

− U 

n 
i j 

�t 
= D ∇ 

2 
d U 

n 
i j + 

φn +1 
i j 

− φn 
i j 

2�t 
. (12) 

o compute ε2 (θn 
i j 
) , we firstly calculate the angle between 

he normal vector of interface and a reference x -axis by θn 
i j 

= 

an 

−1 
[ 
(φn 

i, j−1 
− φn 

i, j+1 
) / (φn 

i −1 , j 
− φn 

i +1 , j 
) 
] 
. The other terms in the 

ight hand side of Eq. (11) are discretized as follows: 

∇ d · (ε2 (θ ) ∇ d φ) 
]n 

i j 

= 

ε2 (θn 
i, j+ 1 2 

) 
(
φn 

i, j+1 
− φn 

i j 

)
− ε2 (θn 

i, j− 1 
2 

) 
(
φn 

i j 
− φn 

i, j−1 

)
h 

2 

+ 

ε2 (θn 
i + 1 2 , j 

) 
(
φn 

i +1 , j 
− φn 

i j 

)
− ε2 (θn 

i − 1 
2 , j 

) 
(
φn 

i j 
− φn 

i −1 , j 

)
h 

2 
, 

D x 

(
ε′ (θ ) ε(θ ) D y φ

)]n 

i j 
3 
= 

ε′ (θi + 1 2 , j ) ε(θi + 1 2 , j ) 
(
φn 

i +1 , j+1 
− φn 

i +1 , j−1 
+ φn 

i, j+1 
− φn 

i, j−1 

)
4 h 

2 

−
ε′ (θi − 1 

2 , j ) ε(θi − 1 
2 , j ) 

(
φn 

i, j+1 
− φn 

i, j−1 
+ φn 

i −1 , j+1 
− φn 

i −1 , j−1 

)
4 h 

2 
, 

D y 

(
ε′ (θ ) ε(θ ) D x φ

)]n 

i j 

= 

ε′ (θi, j+ 1 2 
) ε(θi, j+ 1 2 

) 
(
φn 

i +1 , j+1 
− φn 

i −1 , j+1 
+ φn 

i +1 , j 
− φn 

i −1 , j 

)
4 h 

2 

−
ε′ (θi, j− 1 

2 
) ε(θi, j− 1 

2 
) 
(
φn 

i +1 , j 
− φn 

i −1 , j 
+ φn 

i +1 , j−1 
− φn 

i −1 , j−1 

)
4 h 

2 
, 

here ε′ (θ ) = −kε0 εk sin (kθ ) and 

n 
i + 1 2 , j 

= tan 

−1 

(
φn 

i +1 , j−1 
− φn 

i +1 , j+1 
+ φn 

i, j−1 
− φn 

i, j+1 

4(φn 
i j 

− φn 
i +1 , j 

) 

)
, 

n 
i − 1 

2 , j 
= tan 

−1 

(
φn 

i, j−1 
− φn 

i, j+1 
+ φn 

i −1 , j−1 
− φn 

i −1 , j+1 

4(φn 
i −1 , j 

− φn 
i j 
) 

)
, 

n 
i, j+ 1 2 

= tan 

−1 

(
4(φn 

i j 
− φn 

i, j+1 
) 

φn 
i −1 , j+1 

− φn 
i +1 , j+1 

+ φn 
i −1 , j 

− φn 
i +1 , j 

)
, 

n 
i, j− 1 

2 

= tan 

−1 

(
4(φn 

i, j−1 
− φn 

i j 
) 

φn 
i −1 , j 

− φn 
i +1 , j 

+ φn 
i −1 , j−1 

− φn 
i +1 , j−1 

)
. 

he term 

[
ε2 (θ ) |∇ d φ|∇ d · ( ∇ d φ/ |∇ d φ| ) ]n 

i j 
is defined as fol- 

ows: |∇ d φ
n 
i j 
| = | ∇ d φ

n 
i + 1 

2 
, j+ 1 

2 
+ ∇ d φ

n 
i + 1 

2 
, j− 1 

2 
+ ∇ d φ

n 
i − 1 

2 
, j+ 1 

2 
+ 

 d φ
n 

i − 1 
2 

, j− 1 
2 
| / 4 , where ∇ d φi + 1 

2 
, j+ 1 

2 
= (φx 

i + 1 
2 

, j+ 1 
2 

, φy 

i + 1 
2 

, j+ 1 
2 

) = 

(φi +1 , j + φi +1 , j+1 − φi j − φi, j+1 ) / (2 h ) , (φi, j+1 + φi +1 , j+1 − φi j 

φi +1 , j ) / (2 h )) . Then, we define the discrete curvature term as 

ollows: 

 d ·
( ∇ d φ

|∇ d φ| 
)

i j 

= 

1 

2 h 

( 

φx 
i + 1 2 , j+ 1 2 

+ φy 

i + 1 2 , j+ 1 2 

| ∇ d φi + 1 2 , j+ 1 2 
| + 

φx 
i + 1 2 , j− 1 

2 

−φy 

i + 1 2 , j− 1 
2 

| ∇ d φi + 1 2 , j− 1 
2 
| 

−
φx 

i − 1 
2 , j+ 1 2 

− φy 

i − 1 
2 , j+ 1 2 

| ∇ d φi − 1 
2 , j+ 1 2 

| −
φx 

i − 1 
2 , j− 1 

2 

+ φy 

i − 1 
2 , j− 1 

2 

| ∇ d φi − 1 
2 , j− 1 

2 
| 

) 

.

ccording to Eqs. (11) and (12) , combining the discretization of 

he Laplacian operator for temperature ∇ 

2 
d 

U 

n 
i j 

= (U 

n 
i +1 , j 

+ U 

n 
i −1 , j 

+ 

 

n 
i, j+1 

+ U 

n 
i, j−1 

− 4 U 

n 
i j 
) /h 2 and all above discrete terms, we can up-

ate the numerical solutions in explicit forms as follows: 

n +1 
i j 

= φn 
i j + 

{[∇ d · (ε2 (θ ) ∇ d φ) 
]n 

i j 

−
[
ε2 (θ ) |∇ d φ|∇ d ·

( ∇ d φ

|∇ d φ| 
)]n 

i j 

+[ φn 
i j − λU 

n 
i j (1 − (φn 

i j ) 
2 )][1 − (φn 

i j ) 
2 ] 

−
[
D x 

(
ε′ (θ ) ε(θ ) D y φ

)]n 

i j 
+ 

[
D y 

(
ε′ (θ ) ε(θ ) D x φ

)]n 

i j 

}/
(

ε2 (θn 
i j 
) 

�t 

)
, (13) 

 

n +1 
i j 

= U 

n 
i j + �tD ∇ 

2 
d U 

n 
i j + 

φn +1 
i j 

− φn 
i j 

2 

. (14) 

t should be noted that Eqs. (13) and (14) are solved with the ho- 

ogeneous Neumann boundary conditions. 

.1. Three-dimensional method 

We consider the solution algorithm in the three-dimensional 

pace. The governing equation for the three-dimensional phase- 
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eld model without artificial curvature effect for crystal growth 

imulation is given as: 

2 (φ) 
∂φ

∂t 
= ∇ · (ε2 (φ) ∇φ) − ε2 (φ) |∇φ|∇ ·

( ∇φ

|∇φ| 
)

+[ φ − λU(1 − φ2 )](1 − φ2 ) 

+ 

(
|∇φ| 2 ε(φ) 

∂ε(φ) 

∂φx 

)
x 

+ 

(
|∇φ| 2 ε(φ) 

∂ε(φ) 

∂φy 

)
y 

+ 

(
|∇φ| 2 ε(φ) 

∂ε(φ) 

∂φz 

)
z 

, (15) 

∂U 

∂t 
= D ∇ 

2 U + 

1 

2 

∂φ

∂t 
. (16) 

ere, ε(φ) is the anisotropic function [36] for cubic symmetry 

hich is defined as: 

(φ) = (1 − 3 δ4 ) 

(
1 + 

4 δ4 

1 − 3 δ4 

φ4 
x + φ4 

y + φ4 
z 

|∇φ| 4 
)

. 

ow, using the fully explicit Euler’s method, we discretize 

qs. (15) and (16) on a three-dimensional domain 
 = (L x , R x ) ×
L y , R y ) × (L z , R z ) . Let N x , N y , and N z be positive integers, h =
R x − L x ) /N x be the uniform mesh size, and 
h = { (x i , y j , z k ) :

 i = L x + (i − 0 . 5) h, y j = L y + ( j − 0 . 5) h, z k = L z + (k − 0 . 5) h, 1 ≤
 ≤ N x , 1 ≤ j ≤ N y , 1 ≤ j ≤ N z } be the discrete space. Let φn 

i jk 
=

( x i , y j , z k , n �t) and U 

n 
i jk 

= U( x i , y j , z k , n �t) . Here, we also use the

ell-centered difference scheme for the spatial discretization. Fi- 

ally the fully discrete governing equations are obtained as fol- 

ows: 

2 (φn 
i jk ) 

φn +1 
i jk 

− φn 
i jk 

�t 
= 

[∇ d · (ε2 (φ) ∇ d φ) 
]n 

i jk 

−
[
ε2 (φ) |∇ d φ|∇ d ·

( ∇ d φ

|∇ d φ| 
)]n 

i jk 

(17) 

[ φn 
i jk − λU 

n 
i jk (1 − (φn 

i jk ) 
2 )][1 − (φn 

i jk ) 
2 ] 

+ 

[(
|∇φ| 2 ε(φ) 

∂ε(φ) 

∂φx 

)
x 

]n 

i jk 

+ 

[ (
|∇φ| 2 ε(φ) 

∂ε(φ) 

∂φy 

)
y 

] n 

i jk 

+ 

[(
|∇φ| 2 ε(φ) 

∂ε(φ) 

∂φz 

)
z 

]n 

i jk 

, 
U 

n +1 
i jk 

− U 

n 
i jk 

�t 

= D ∇ 

2 
d U 

n 
i jk + 

φn +1 
i jk 

− φn 
i jk 

2�t 
, (18) 

here �d U 

n 
i jk 

= (U 

n 
i +1 , jk 

+ U 

n 
i −1 , jk 

+ U 

n 
i, j+1 ,k 

+ U 

n 
i, j−1 ,k 

+ U 

n 
i j,k +1 

+ 

 

n 
i j,k −1 

− 6 U 

n 
i jk 

) /h 2 . The curvature term 

[∇ d · (ε2 (φ) ∇ d φ) 
]n 

i jk 
in 

q. (17) is defined as follows: 

∇ d · (ε2 (φ) ∇ d φ) 
]n 

i jk 
= 

[
ε2 (φn 

i +1 , jk 
) + ε2 (φn 

i jk 
) 
](

φn 
i +1 , jk 

− φn 
i jk 

)
−

[
2 h 

2

+ 

[
ε2 (φn 

i, j+1 ,k 
) + ε2 (φn 

i jk 
) 
](

φn 
i, j+1 ,k 

− φn 
i jk 

)
−

2 h

+ 

[
ε2 (φn 

i j,k +1 
) + ε2 (φn 

i jk 
) 
](

φn 
i j,k +1 

− φn 
i jk 

)
−

[
2 h 

2

here the anisotropic function for cubic symmetry is discretized 

s follows: 

(φn 
i jk ) = (1 − 3 δ4 ) 

(
1 + 

4 δ4 

1 − 3 δ4 

(φn 
i +1 , jk 

− φn 
i −1 , jk 

) 4 + (φn 
i, j+1 ,k 

−
[(φn 

i +1 , jk 
− φn 

i −1 , jk 
) 2 + (φn 

i, j+1 ,k 
−

4 
n 
i jk 

) + ε2 (φn 
i −1 , jk 

) 
](

φn 
i jk 

− φn 
i −1 , jk 

)
φn 

i jk 
) + ε2 (φn 

i, j−1 ,k 
) 
](

φn 
i jk 

− φn 
i, j−1 ,k 

)
n 
i jk 

) + ε2 (φn 
i j,k −1 

) 
](

φn 
i jk 

− φn 
i j,k −1 

)
, 

1 ,k 
) 4 + (φn 

i j,k +1 
− φn 

i j,k −1 
) 4 

 ,k 
) 2 + (φn 

i j,k +1 
− φn 

i j,k −1 
) 2 ] 2 

)
. 

et m 

i + 1 
2 

, j+ 1 
2 

,k + 1 
2 

= 

(
m 

x 

i + 1 
2 

, j+ 1 
2 

,k + 1 
2 

, m 

y 

i + 1 
2 

, j+ 1 
2 

,k + 1 
2 

, m 

z 

i + 1 
2 

, j+ 1 
2 

,k + 1 
2 

)
e the gradient of φ at (x 

i + 1 
2 
, y 

j+ 1 
2 
, z 

k + 1 
2 
) . The discretization of the

urvature term 

[
ε2 (φ) |∇ d φ|∇ d · ( ∇ d φ/ |∇ d φ| ) ]n 

i jk 
in Eq. (17) can 

e found in [37] . Finally the term 

[(|∇φ| 2 ε(φ) ∂ε(φ) /∂φx 

)
x 

]n 

i jk 

an be discretized as follows: (
|∇φ| 2 ε(φ) 

∂ε(φ) 

∂φx 

)
x 

]n 

i jk 

= 

[(
16 δ4 ε(φ) φx (φ2 

x φ
2 
y + φ2 

x φ
2 
z − φ4 

y − φ4 
z ) 

|∇φ| 4 
)

x 

]n 

i jk 

= 

1 

2 h 

[(
16 δ4 ε(φ) φx (φ2 

x φ
2 
y + φ2 

x φ
2 
z − φ4 

y − φ4 
z ) 

|∇φ| 4 
)n 

i +1 , jk 

−
(

16 δ4 ε(φ) φx (φ2 
x φ

2 
y + φ2 

x φ
2 
z − φ4 

y − φ4 
z ) 

|∇φ| 4 
)n 

i −1 , jk 

]
, (19) 

here the partial derivatives are defined using the cell- 

entered finite difference method; 

[ (|∇φ| 2 ε(φ) ∂ε(φ) /∂φy 

)
y 

] n 
i jk 

nd 

[(|∇φ| 2 ε(φ) ∂ε(φ) /∂φz 

)
z 

]n 

i jk 
are similarly defined. 

. Numerical experiments 

Now, we compare the computational results of dendritic growth 

n 2D and 3D spaces between the conventional and proposed 

hase-field models. Firstly, we simply test the curvature effect on 

rystal growth taking no consideration of temperature. Then k -fold 

ymmetric crystal structure are used to specify the effect of artifi- 

ial curvature on dendritic growth. And the polycrystal growth in 

ndercooling liquid simulated by our proposed model is verified. 

inally we perform the comparison test in three-dimensional space 

nd give the sensitivity analysis of parameters which are used in 

he proposed model. 

.1. Curvature effect on growth 

First, let us consider the artificial curvature effect on crystal 

rowth. To highlight this effect, let us assume λ = 0 in the con- 

entional phase-field Eq. (4) , then it becomes 

2 (θ ) 
∂φ

∂t 
= ∇ · (ε2 (θ ) ∇φ) + φ(1 − φ2 ) −

(
ε′ (θ ) ε(θ ) φy 

)
x 

+ 

(
ε′ (θ ) ε(θ ) φx 

)
y 

(20) 

nd the proposed phase-field Eq. (9) becomes 



Y. Li, Q. Yu, S. Ham et al. International Journal of Heat and Mass Transfer 203 (2023) 123847 

Fig. 2. Numerical results: (a) with artificial curvature effect and (b) without artificial curvature effect. Here, λ = 0 is used. 
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Fig. 3. Numerical comparison of the conventional and proposed models for the cur- 

vature effect. 
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2 (θ ) 
∂φ

∂t 
= ∇ · (ε2 (θ ) ∇φ) − ε2 (θ ) |∇ φ|∇ ·

( ∇ φ

|∇ φ| 
)

+ φ(1 − φ2 ) −
(
ε′ (θ ) ε(θ ) φy 

)
x 
+ 

(
ε′ (θ ) ε(θ ) φx 

)
y 
. 

(21) 

ssumed that the initial conditions on the computational domain 

= (−20 , 20) × (−20 , 20) are given as 

(x, y, 0) = tanh 

( 

15 −
√ 

x 2 + y 2 √ 

2 

) 

and U(x, y, 0) = �

(
1 − φ(x, y, 0) 

2 

)
. (22) 

ere, h = 1 , �t = 0 . 1 h 2 , ε0 = 1 , k = 6 , � = −0 . 45 , and ε6 = 1 / (k 2 −
) = 1 / 35 are used. 

Figure 2 (a) and (b) display the temporal evolution of the inter- 

ace with and without artificial curvature effect, respectively. The 

nterface is plotted at every 115 temporal iterations. When λ = 0 , 

here is no growth factor and the growth of the crystal should stop. 

owever, in the case of the conventional phase-field model, the 

rystal shrinks and finally disappears due to the artificial curvature 

ffect as shown in Fig. 2 (a). On the contrary, Fig. 2 (b) shows the

teady shape of the interfaces in the case of the proposed phase- 

eld model without the artificial curvature effect. The crystal does 

ot shrink and keeps the initial area and forms a six-fold symmet- 

ic interface as time evolves. Thus when the growth factor is not 

onsidered, if we want to keep the crystal shapes as the original, 

e should remove the artificial curvature term. 

To validate the accuracy of the proposed model which has no 

urvature effect, we present a comparison test using the conven- 

ional and proposed models. For simplicity, we suppose isotropic 

rystal, i.e., ε = 1 and constant temperature U = �. Then, a refer- 

nce governing equation becomes 

∂φ

∂t 
= −λ�(1 − φ2 ) 2 . (23) 

e solve the ordinary differential equation (ODE) (23) using 

he four-order Runge–Kutta method. The following Eqs. (24) and 

25) represent the governing models with and without curvature 

ffect, respectively. 

∂φ

∂t 
= ∇ 

2 φ − |∇φ|∇ ·
( ∇φ

|∇φ| 
)

+ [ φ − λ�(1 − φ2 )](1 − φ2 ) , 

(24) 

∂φ = ∇ 

2 φ + [ φ − λ�(1 − φ2 )](1 − φ2 ) . (25) 

∂t 

5 
or the comparison test, we set the parameters as h = 2 / 15 ,

t = 0 . 1 h 2 , λ = 1 , and � = −0 . 55 . Given initial condition on 
 =
−10 , 10) × (−10 , 10) is as follow: 

(x, y, 0) = 

tanh (3 −
√ 

x 2 + y 2 ) √ 

2 

. (26) 

igure 3 illustrates the zero-level contours of the numerical solu- 

ions of the conventional and proposed models with the initial and 

eference solution at time t = 10 0 0�t . We can find that the solu-

ion of the proposed model, which is without the curvature effect, 

ollows the reference solution profile well. 

.2. k -fold symmetric dendritic growth 

Let us consider the anisotropic function ε(φ) = ε0 (1 + 

k cos (kφ)) and perform comparison tests based on the 

 -fold crystal growth for k = 4 and 6. In this simula- 

ion, we use N x = N y = 200 on the computational domain 

= (−70 , 70) × (−70 , 70) , λ = 3 . 1913 , D = 0 . 6267 λ, � = −0 . 55 ,

t = 0 . 1 h 2 /D , ε = 1 / (k 2 − 1) , and ε = 1 . The initial condition
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Fig. 4. (a)–(d) are snapshots of the temporal evolutions of the contours of φ at level zero up to times t = 10 , 0 0 0�t , 30 0 0�t , 160 0 0�t , and 60 0 0�t , respectively: (a) and (b) 

are the results with k = 4 ; (c) and (d) are the results with k = 6 ; (a) and (c) are the results with the conventional model; and (b) and (d) are the results with the proposed 

model without artificial curvature effect. 
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ith a circle with radius R = 3 is taken as: 

(x, y, 0) = tanh 

( 

R −
√ 

x 2 + y 2 √ 

2 

) 

and U(x, y, 0) = �

(
1 − φ(x, y, 0) 

2 

)
. (27) 

Figure 4 (a)–(d) are snapshots of the temporal evolutions of the 

ontours of φ at level zero up to the times t = 10 , 0 0 0�t , 30 0 0�t ,

60 0 0�t and 60 0 0�t , respectively. (a) and (b) are the results with

 = 4 ; (c) and (d) are the results with k = 6 ; (a) and (c) are the

esults with the conventional model; and (b) and (d) are the re- 

ults with the proposed model without artificial curvature effect. 

e should note that the final times are different in the four cases. 

rom Fig. 4 we can see that in the case of the proposed phase-

eld model, the dendritic structure grows faster compared with 

he conventional model. 

Figure 5 (a) and (b) display the overlapped contours for the 

esults at the same time obtained from the conventional model 

dashed line) and the proposed model without artificial curvature 

ffect (solid line) for k = 4 and k = 6 , respectively. It can be seen

hat the dendritic structure obtained from the proposed model 

evelops much faster than that obtained from the conventional 

hase-field model. This phenomenon is more noticeable in earlier 

imes because the curvature of structural interface is larger when 

he size of initial circle is smaller. Figure 6 displays the snapshots 

f temporal evolutions of the profile φ at level zero with different 

alues of � = −0 . 45 , −0 . 55 , −0 . 65 . We can see that the dendritic

tructure grows faster under large initial undercooling sizes. 
6 
.3. Polycrystal growth in the undercooling liquid 

In this section, the dendritic growth of polycrystal in under- 

ooling liquid is considered [3,38] . This test aims to show our 

odel is applicable to a physical problem. We use N x = N y = 400

n the computational domain 
 = (−140 , 140) × (−140 , 140) , � = 

0 . 55 , R = 5 , and the other parameters are the same as those in

ection 4.2 unless specified. The initial conditions are taken as: 

(x, y, 0) = tanh 

( 

R −
√ 

(x + x 0 ) 2 + (y + y 0 ) 2 √ 

2 

) 

and U(x, y, 0) = �

(
1 − φ(x, y, 0) 

2 

)
. (28) 

irstly, we consider two crystals, whose distance between two cir- 

le centers is l. Here, k = 4 and t = 50 0 0�t are taken. Figure 7 (a),

b), and (c) show the polycrystal contours of φ at level zero ob- 

ained by our proposed model with l = 20 , 40 , and 100, respec-

ively. It can be seen that if two crystals are nearby, the adjacent 

art of these two dendritic crystals stop growing, which results in 

he other part of dendritic crystals growing faster. 

Next, different number of dendritic crystals growing in 

he undercooling liquid are performed. For two crystals, 

x 0 , y 0 ) = (10 . 5 , 0) and (−10 . 5 , 0) . For three dendritic crys-

als, (x 0 , y 0 ) = (0 , −12) , (10.5,6) and (−10 . 5 , 6) . For four den-

ritic crystals, (x 0 , y 0 ) = (10 . 5 , −10 . 5) , (10.5,10.5), (−10 . 5 , 10 . 5)

nd (−10 . 5 , −10 . 5) . For five number of dendritic crys-

als, (x 0 , y 0 ) = (21 , 2) , (10 . 5 , −15 . 5) , (0 , 13 . 5) , (−21 , 2) and

−10 . 5 , −15 . 5) . Here, k = 4 and t = 50 0 0�t are used. Figure 8

hows the polycrystal contours of φ at level zero with different 
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Fig. 5. Overlapped contours for the results from the conventional model (dashed line) and the proposed model without artificial curvature effect (solid line) for (a) k = 4 

and (b) k = 6 . 

Fig. 6. The contours of φ at level zero for the proposed model with different initial undercooling sizes. The top row corresponds k = 4 at time t = 50 0 0�t and the bottom 

row corresponds k = 6 at time t = 60 0 0�t . (a) and (d) are the results with � = −0 . 45 . (b) and (e) are the results with � = −0 . 55 . (c) and (f) are the results with � = −0 . 65 . 
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umbers of dendritic growth obtained by our model. We can 

nd that the adjacent part of two or more dendritic crystals stop 

rowing. The conclusion that some parts of too close crystals 

eing stopped growing is irrelevant to the number of crystals can 

e obtained. 

Finally, let us consider the effect of the angle rotation on the 

olycrystal growth. Assumed that the four circle centers in ini- 

ial conditions are: (x 0 , y 0 ) = (25 , −25) , (−25 , −25) , (−25 , 25) and

25,25) on four different quadrants respectively. The clockwise ro- 

ated angles are 0 , π/ 4 , π/ 2 , 3 π/ 4 for these four crystals respec-

ively. Here, k = 6 and t = 60 0 0�t are taken. Figure 9 (a) and

2

7 
b) show the polycrystal contours of the results from our pro- 

osed model before and after angle rotation. It can be seen that 

he growth orientation of polycrystal can change as θ rotates 

 , π/ 4 , π/ 2 , 3 π/ 4 clockwise. 

.4. Three-dimensional crystal growth 

Next, to highlight the difference of growth dynamics between 

he conventional and proposed phase-field models in 3D space, 

e perform some computational tests for dendritic growth in 3D 

pace. In this three-dimensional simulation, we use N x = N y = N z = 

00 in the computational domain 
 = (−80 , 80) × (−80 , 80) ×
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Fig. 7. Polycrystal contours for the results from the proposed model without artificial curvature effect. l represents the distance between two circle centers. Here, k = 4 , 

� = −0 . 55 and t = 50 0 0�t are used. 

Fig. 8. Polycrystal contours of φ at level zero obtained from our proposed model with different number of crystals. Here k = 4 , � = −0 . 55 and t = 50 0 0�t are used. 

Fig. 9. Polycrystal contours for the results from the proposed model without artificial curvature effect. (a) is the results before rotation and (b) is the result after θ of the 

four crystals rotating 0 , π/ 4 , π/ 2 , 3 π/ 4 clockwise. Here, k = 6 , � = −0 . 55 and t = 60 0 0�t . 

8 
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Fig. 10. Temporal evolution of the isosurface of φ at level zero for the conventional model (top row) and the proposed model (bottom row). Here, (a), (b) and (c) are the 

results at times t = 0 , 10 0 0�t , 20 0 0�t , respectively. 

Fig. 11. Temporal evolution of the isosurface of φ at level zero for the proposed model with � = −0 . 45 (top row) and � = −0 . 65 (bottom row). Here, (a), (b), and (c) are 

the results at times t = 0 , 10 0 0�t , 20 0 0�t , respectively. 
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−80 , 80) and we take δ4 = 0 . 05 , D = 2 , λ = 1 . 5957 D , � = −0 . 55 ,

nd �t = 0 . 1 h 2 /D . The initial conditions are taken as φ(x, y, z, 0) =
anh 

[ 
(R −

√ 

x 2 + y 2 + z 2 ) / 
√ 

2 

] 
where R = 3 is the initial radius of 

all; U(x, y, z, 0) = 0 if φ(x, y, z, 0) > 0 and U(x, y, z, 0) = � other-

ise. 

Figure 10 (a), (b), and (c) display the temporal evolution of the 

sosurface of φ at level zero for the conventional model (top row) 

nd the proposed model (bottom row) at times t = 0 , 10 0 0�t ,
 d

9 
0 0 0�t , respectively. It can be seen that the three-dimensional 

endritic structure obtained from the proposed model develops 

uch faster than that obtained from the conventional phase-field 

odel. This phenomenon is more noticeable in earlier times be- 

ause the curvature of interface is larger when the size of ini- 

ial ball is smaller. Because dendritic structure forms faster than 

he conventional phase-field model does, the proposed phase-field 

odel has the advantage of less CPU computing time and re- 

uced more memory. Therefore, if we use the proposed phase-field 
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Fig. 12. The isosurface of φ at level zero for the proposed model with different initial radius at time t = 20 0 0�t . From left to right, R = 1 , 5 , 10 respectively. Here, � = −0 . 55 . 
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odel, we can obtain a much detailed dendritic structure under 

he equivalent computational resources used by the conventional 

hase-field model. 

.5. Effect of initial undercooling sizes and radius in 3D dendritic 

rowth 

Next, we study the effects of the initial undercooling sizes �

nd the initial radius of ball R on the growth of dendritic structure 

n our proposed model. Figure 11 shows sequences of isosurfaces φ
t level zero with different undercooling sizes � = −0 . 45 (top row) 

nd � = −0 . 65 (bottom row) at times t = 0 , 10 0 0�t , 20 0 0�t . It

an be observed that the dendritic structure grows faster under the 

arge initial undercooling size. Figure 12 (a), (b) and (c) show the 

sosurfaces of φ at level zero at time t = 20 0 0�t for the proposed

odel with the initial radius of ball R = 1 , 10 , 20 respectively. We

an see that the dendritic structure become fatter with the large 

adius of initial ball. Therefore, we can utilize the initial undercool- 

ng size � and the radius R in the proposed model to control the 

endritic crystal growth speed. 

. Conclusions 

In this article, we presented a novel phase-field model without 

rtificial curvature effect for the crystal growth simulation. The nu- 

erical experiments highlighted the difference between the com- 

utational results from the proposed and conventional phase-field 

odels for dendritic growth simulation. In the case of the new 

hase-field model without the artificial curvature effect in both the 

wo-dimensional and three-dimensional spaces, dendritic growth 

eveloped faster than that in the case of the conventional phase- 

eld model because the new model reduces the artificial curva- 

ure effect. Our proposed model was also applicable to polycrystal 

rowth in undercooling liquid. In this study, to focus on the novel 

hase-field model, we used the simple explicit numerical scheme 

or the proposed model. In the future work, we will further in- 

estigate high-order accurate and more stable numerical schemes 

uch as that proposed by Zhang and Yang [39] for the phase-field 

odel without the artificial curvature effect. Furthermore, the pro- 

osed crystal growth model can be coupled with a momentum 

quation of fluid flow for simulating dendritic growth with con- 

ection [40–42] . 
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