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a b s t r a c t

The Kelvin–Helmholtz instability of multi-component (more than two) incompressible and immiscible
fluids is studied numerically using a phase-field model. The instability is governed by the modified
Navier–Stokes equations and the multi-component convective Cahn–Hilliard equations. A finite
difference method is used to discretize the governing system. To solve the equations efficiently and
accurately, we employ the Chorin’s projection method for the modified Navier–Stokes equations and
the recently developed practically unconditionally stablemethod for themulti-component Cahn–Hilliard
equations. Through our model and numerical solution, we investigate the effects of surface tension,
density ratio, magnitude of velocity difference, and forcing on the Kelvin–Helmholtz instability of multi-
component fluids. It is shown that increasing the surface tension or the density ratio reduces the growth
of the Kelvin–Helmholtz instability. And it is also observed that as the initial horizontal velocity difference
gets larger, the interface rolls up more. We also found that the billow height reaches its maximum more
slowly as the initial wave amplitude gets smaller. And, for the linear growth rate for the Kelvin–Helmholtz
instability of two-component fluids, the simulation results agree well with the analytical results. From
comparison between the numerical growth rate of two- and three-component fluids, we observe that
the inclusion of extra layers can alter the growth rate for the Kelvin–Helmholtz instability. Finally, we
simulate the billowing cloud formation which is a classic example of the Kelvin–Helmholtz instability
and cannot be seen in binary fluids. With our multi-component method, the details of the real flow (e.g.,
the asymmetry in the roll-up and the self-interaction of the shear layer) are well captured.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

When there is a sufficiently large velocity difference (e.g., shear
flow) across a small amplitude perturbed interface between two
fluids, the interface is unstable. This interfacial instability is
known as the Kelvin–Helmholtz (KH) instability. The instability
occurs when the destabilizing effect of shear across the interface
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overcomes the stabilizing effect of gravity and/or surface tension.
It can be observed in a wide variety of natural situations. A classic
example is the spectacular billowing cloud formation in the lower
atmosphere, an occurrence which is often associated with atmo-
spheric turbulence [1]. It was suggested that the KH instabilitymay
provide a trigger mechanism for pulsar glitches [2].

The classical version of the KH instability is outlined by
Kelvin [3] and Helmholtz [4], and the associated linear stability
has been investigated analytically by Taylor [5] and Miles [6] and
numerically by Hazel [7]. The nonlinear development of the KH
instability has been extensively investigated experimentally [8,9]
and numerically [10–32]. Numerical studies dealt mainly with the
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KH instability at the interface of a two-phase system. Rangel and
Sirignano [10] used the vortex-sheet discretization approach to in-
vestigate the effects of surface tension and density ratio on the
nonlinear evolution of initially small disturbances at an interface
between two fluids neglecting the gravitational force. They showed
that increasing the surface tension or the density ratio reduces
the growth of the disturbance. Numerical simulations of three-
dimensional temporally evolving plane mixing layers were per-
formed by Rogers and Moser [12]. They found that the spanwise
vorticity rolls up into a corrugated spanwise roller and the stream-
wise rib vortices develop in the braid region between the rollers.
Zhang et al. [18] studied the effects of surface tension on the
two-dimensional KH instability of density-matched fluids using a
lattice Boltzmann multi-phase model [33] in the nearly incom-
pressible limit and reported that their results are in good agree-
ment with those of Rogers and Moser [12]. Tauber et al. [20]
investigated the effects of density ratio, Reynolds number, and
Weber number on the nonlinear behavior of a sheared immisci-
ble fluid interface using the front-tracking method. They showed
that high enough Reynolds and relatively low Weber numbers
lead to the generation of fingers of interpenetrating fluids. Using
a fully adaptive nonstiff strategy based on the immersed boundary
method, Ceniceros and Roma [22] presented a numerical investi-
gation of the long-time dynamics of two immiscible density- and
viscosity-matched fluids shearing past one another. Sahu et al. [24]
studied the pressure-driven displacement of a highly viscous fluid
by a less viscous one and their results demonstrated that the
development of the KH instability becomes more pronounced
with increasing viscosity ratio, Reynolds and Schmidt numbers,
leading to more intense mixing and rapid removal of the more
viscous fluid. The authors [25] also studied the pressure-driven
miscible displacement flow in tilted channels with density con-
trasts at moderate to large Reynolds numbers. Their results indi-
cated that the rates of mixing and displacement are enhancedwith
increasing density ratio, Froude number, and inclination angle.
Computational investigations of the miscible displacement flow
are also presented in [34,35]. Sohn et al. [27] performed long-
time simulations of the KH instability using an adaptive vortex
method and their results showed that the KH instability evolves
a secondary instability at a late time, distorting the internal rollup,
and eventually develops to a disordered structure. Shadloo and
Yildiz [28] examined the effects of Richardson number and den-
sity ratio on the development of the KH instability of two incom-
pressible, immiscible, and inviscid fluids using a smoothed particle
hydrodynamics method [36] and observed that the growth rate of
the KH instability is mainly controlled by the value of the Richard-
son number, not by the nature of the stabilizing forces. Redapangu
et al. investigated the pressure-driven displacement flow of two
immiscible fluids of different densities and viscosities in two- [30]
and three- [31] dimensional channels. They found that the flow is
relatively more coherent in a three-dimensional channel than that
in a two-dimensional channel and screw-type instabilities were
seen in a three-dimensional channel those cannot be observed in a
two-dimensional channel. Fakhari and Lee [32] applied amultiple-
relaxation-time lattice Boltzmann method to simulate the KH in-
stability of immiscible two-phase fluids at high Reynolds numbers.
They found that increasing the Reynolds number results in a more
chaotic interface evolution and eventually shattering of the inter-
face, while surface tension is shown to have a stabilizing effect. For
more details on instabilities, we refer to a recent review by Govin-
darajan and Sahu [37].

Although the basic nonlinear behavior of the KH instability at
the interface of a two-phase system has been extensively studied,
the understanding of the KH instability of multi-component (more
than two) fluids is still quite limited due to the complexity of the
interfacial dynamics and the numerical implementation. This pa-
per presents, for the first time to the authors’ knowledge, numeri-
cal simulations of the KH instability ofmulti-component fluids.We
are particularly interested in simulating the billowing cloud for-
mation and evaluating the effects of surface tension, density ratio,
magnitude of velocity difference, and forcing on the KH instability
using a phase-field model [38]. The advantages of the phase-field
method are: (1) An explicit tracking of the interface is unneces-
sary. (2) Topological changes are automatically handled. (3) A time
step can be chosen larger than the time step used in the tradi-
tional lattice Boltzmannmethodswhich are explicit in nature. (4) A
potential disadvantage of the lattice Boltzmann method is that
because of its formulation it allows finite compressibility of the
fluid. However, we may treat quasi-incompressible systems [39].
Therefore, the phase-field method can also be applied to model
double emulsions [40,41], multi-film flow [42], and multi-layer
coating. In the phase-fieldmodel, the fluid dynamics is governedby
the modified Navier–Stokes equations and the multi-component
convective Cahn–Hilliard (CH) equations [43,44].We discretize the
governing system using a finite difference method. To solve the
equations efficiently and accurately, we employ Chorin’s projec-
tionmethod [45] for themodifiedNavier–Stokes equations and the
recently developed practically unconditionally stable method for
the multi-component CH equations [44].

The paper is organized as follows. In Section 2, we present the
governing equations that describe the flow of N incompressible
immiscible fluids, and state the underlying physics and all assump-
tions that have been made. In Section 3, the problem description
for the KH instability of multi-component fluids is provided. In
Section 4, a numerical solution is given. We perform some char-
acteristic numerical experiments for the KH instability of multi-
component fluids in Section 5. Finally, conclusions are drawn in
Section 6.

2. Phase-field model for the mixture of N incompressible
immiscible fluids

We consider the flow ofN incompressible immiscible fluids. Let
c = (c1, c2, . . . , cN) be a vector-valued phase-field, where each
order parameter ck is the concentration of each component in the
mixture. Thus, admissible stateswill belong to theGibbsN-simplex

G :=


c ∈ RN

 N
k=1

ck = 1, 0 ≤ ck ≤ 1


. (1)

The free energy of a multi-component system can be written as
follows [46]:

F (c) =


Ω


F(c) −

N
i<j

ϵ2
ij∇ci · ∇cj


dx,

where Ω is a bounded open subset of Rd (d = 1, 2, 3) occupied by
the system, F(c) is the Helmholtz free energy density, and ϵij > 0
is a parameter that takes into account the molecular interactions
between components i and j. By assuming that ϵij = ϵ for all i < j,
the total free energy F (c) becomes

F (c) =


Ω


F(c) +

ϵ2

2

N
k=1

|∇ck|2

dx.

Here, we take F(c) = 0.25
N

k=1 c
2
k (1 − ck)2. The surface ten-

sions σij between phases i and j will be considered in the modi-
fied Navier–Stokes equations (not in the total free energy F (c)).
This consideration gives that all interfaces have a uniform thick-
ness. The time evolution of c is governed by the gradient of the
energy with respect to the Ḣ−1 inner product under the additional
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constraint (1). This constraint has to hold everywhere at all times.
In order to ensure the last constraint, we use a Lagrange multiplier
βk [43,44,46–50]. The temporal evolution of ck is given by the fol-
lowing convective CH equation: for k = 1, 2, . . . ,N ,

∂ck
∂t

+ ∇ · (cku) = ∇ · (M(c)∇µk), (2)

µk = f (ck) − ϵ21ck + βk, (3)

where u = (u, v) is the fluid velocity, M(c) is a mobility, f (ck) =

ck(ck − 0.5)(ck − 1), and βk = −ck
N

j=1 f (cj) [49]. Cahn and
Hilliard [51] used the mobility rather than the molecular diffu-
sion coefficient [52]. The mobility is treated as a concentration
dependent mobility in [53–59] (e.g., M(c) =

N
i<j cicj for a multi-

component system), and the CH equation has been extensively em-
ployed with a constant mobility [60–66]. In this paper, we take the
mobility to be constant (M(c) ≡ M), as a concentration dependent
mobility is computationally more expensive. The mobility M con-
trols the relaxation time of the interface [67], and has to be chosen
judiciously. Jacqmin [68] summarized the physical considerations
that should go into choosing an interfacial relaxation time: ‘‘strain-
ing flows can thin or thicken the interface and thismust be resisted
by a high enough diffusion. On the other hand, too large a diffusion
will overly damp the flow’’.

The characteristics of multiphase fluid flow is investigated by
coupling the modified Navier–Stokes equations and Eqs. (2)–(3)
with the constant mobilityM:

ρ(c)


∂u
∂t

+ u · ∇u


= −∇p + ∇ ·

η(c)(∇u + ∇uT)


+ SF(c) + ρ(c)g, (4)

∇ · u = 0, (5)
∂ck
∂t

+ ∇ · (cku) = M1µk, (6)

µk = f (ck) − ϵ21ck + βk, (7)

whereρ(c) is the variable density, p is the pressure,η(c) is the vari-
able viscosity, SF(c) is the surface tension force, and g = (0, −g) is
the gravity term under gravitational acceleration g . ρ(c) and η(c)
are defined as ρ(c) =

N
k=1 ρkck and η(c) =

N
k=1 ηkck, where ρk

and ηk are the density and viscosity of the kth fluid, respectively.
For a large density ratio, the continuity equation cannot be reduced
to Eq. (5). In such cases, we should use ρt +∇·(ρu) = 0 as the con-
tinuity equation. The surface tension is not additive [69] and is de-
pendent on the potential energy related to the interaction of a pair
of different molecules [70]. This dependence can be ignored in the
heuristic models for the surface tension that are widely used. Here,
for SF(c) in Eq. (4), we use the generalized continuous surface ten-
sion force formulation [43]: SF(c) =

N−1
i=1

N
j=i+1 0.5σij[sf(ci)+

sf(cj)]δ(ci, cj)

, where σij is the physical surface tension coefficient

between fluids i and j, sf(ci) = −6
√
2ϵ∇ ·(∇ci/|∇ci|)|∇ci|∇ci, and

δ(ci, cj) = 5cicj.

3. Definition of the problem

TheKH instability can occur at the interface betweenN horizon-
tal parallel fluids with different velocities and densities. To sim-
ulate this natural flow phenomenon, we consider the flow of N
incompressible and immiscible fluids that are bounded by twohor-
izontal walls with the height of H (0 < y < H) (Fig. 1). For sim-
plicity, the length of the computational domain L (0 < x < L)
is chosen to equal H (L = H) unless otherwise stated. Initial si-
nusoidal perturbations are applied to the fluid–fluid interfaces. All
Fig. 1. Schematic illustration of the flow configuration.

quantities subscripted with a k are properties of the kth fluid for
k = 1, 2, . . . ,N . For the densities of N fluids, it is always the case
that ρ1 < ρ2 < · · · < ρN so that buoyancy effects do not domi-
nate. Each fluid has a base horizontal speed Uk.

To non-dimensionalize the governing equations (4)–(7), we
define characteristic quantities of length (Lc), velocity (Uc), density
(ρc), viscosity (ηc), and chemical potential (µc). In our simulations,
we choose Lc = H,Uc = maxk Uk, ρc = ρN , and ηc = ηN . We then
introduce the following dimensionless variables:

x′
=

x
Lc

, u′
=

u
Uc

, t ′ =
tUc

Lc
, ρ ′

=
ρ

ρc
,

p′
=

p
ρcU2

c
, η′

=
η

ηc
, g′

=
g
g
, µk

′
=

µk

µc
,

where the primed quantities are dimensionless. Substituting these
variables into Eqs. (4)–(7) and dropping the primes, we have for
k = 1, 2, . . . ,N ,

ρ(c)


∂u
∂t

+ u · ∇u


= −∇p +
1
Re

∇ ·

η(c)(∇u + ∇uT)


+ SF(c) +

ρ(c)
Fr2

g, (8)

∇ · u = 0, (9)
∂ck
∂t

+ ∇ · (cku) =
1
Pe

1µk, (10)

µk = f (ck) − ϵ21ck + βk, (11)

where SF(c) =
N−1

i=1

N
j=i+1 0.5[sf(ci) + sf(cj)]δ(ci, cj)/Weij


,

g = (0, −1), and ϵ is redefined according to the scaling. The di-
mensionless parameters are the Reynolds number, Re = ρcUcLc/
ηc , the Weber number of fluids i and j, Weij = ρcLcU2

c /σij, the
Froude number, Fr = Uc/

√
gLc , and the Péclet number, Pe = UcLc/

(Mµc). The governing equations (8)–(11) are considered with the
following boundary conditions: at the top and bottom of the do-
main Ω we apply ∂u

∂y = v =
∂p
∂y =

∂ck
∂y =

∂µk
∂y = 0, while at the

sides of Ω we impose the periodic boundary conditions.

4. Numerical solution

Let a two-dimensional computational domain be uniformly
partitioned with spacing h. The cell center is located at (xi, yj) =

((i− 0.5)h, (j− 0.5)h) for i = 1, . . . ,Nx and j = 1, . . . ,Ny. Nx and
Ny are the numbers of cells in the x- and y-directions, respectively.



80 H.G. Lee, J. Kim / European Journal of Mechanics B/Fluids 49 (2015) 77–88
Cell vertices are located at (xi+ 1
2
, yj+ 1

2
) = (ih, jh). Pressures and

vector-valued phase-fields are stored at cell centers, and velocities
are stored at cell faces [71]. Let 1t be the dimensionless time step
and n be the time step index. At the beginning of each time step,
given un and cn, we want to find un+1, cn+1, and pn+1 that solve the
following discrete equations: for k = 1, 2, . . . ,N − 1,

ρn u
n+1

− un

1t
= −∇dpn+1

+
1
Re

∇d ·

ηn(∇dun

+ (∇dun)T)


+ SFn +
ρn

Fr2
g − ρn(u · ∇du)n, (12)

∇d · un+1
= 0, (13)

ckn+1
− ckn

1t
=

1
Pe

∆dµk
n+1

+
1
Pe

∆d


βk

n
−

1
4
ckn


− ∇d · (cku)n, (14)

µk
n+1

= ϕ(ckn+1) − ϵ2∆dckn+1, (15)
where ρn

= ρ(cn), ηn
= η(cn), SFn = SF(cn), and ϕ(ck) =

f (ck)+0.25ck is a nonlinear function. Note that we need only solve
these equations with c1, c2, . . . , cN−1, because cN = 1 −

N−1
k=1 ck.

The main procedure for solving Eqs. (12)–(15) in each time step is
as follows.

Step 1. Initialize u0 to be the divergence-free velocity field and
ck0 for k = 1, 2, . . . ,N − 1.

Step 2. An intermediate velocity field, ũ, is calculated without
the pressure gradient term:
ũ − un

1t
=

1
ρnRe

∇d ·

ηn(∇dun

+ (∇dun)T)


+
SFn

ρn
+

g
Fr2

− (u · ∇du)n,

where the convective term, (u · ∇du)n, is computed using an up-
wind scheme [72]. The following pressure Poisson equation is then
solved by a linear multigrid method [73] to obtain the pressure
needed to enforce incompressibility:

∇d ·


1
ρn

∇dpn+1


=
1

1t
∇d · ũ.

Then we obtain the divergence-free velocity field: un+1
= ũ −

1t
ρn ∇dpn+1.

Step 3. Update the phase-field ckn to ckn+1 for k = 1, 2, . . . ,N −

1. In order to solve the N-component CH system (14) and (15) in a
decoupled way (this allows us to reduce the CPU time and mem-
ory requirements), we use the recently developed practically un-
conditionally stable scheme [44]. Note that, for mass conservation,
we use a conservative discretization of the convective part of the
phase-field equation (14):
(cku)x + (ckv)y

n
ij

=

un
i+ 1

2 ,j
(ck,ni+1,j + ck,nij) − un

i− 1
2 ,j

(ck,nij + ck,ni−1,j)

2h

+

vn
i,j+ 1

2
(ck,ni,j+1 + ck,nij) − vn

i,j− 1
2
(ck,nij + ck,ni,j−1)

2h
.

This completes the single time-step process.

5. Numerical experiments

In this section, we describe a number of numerical experiments
for two- and three-component fluids in two dimensions. In our
numerical experiments, the fluid viscosities are matched and we
define the function l(x, y; a, b) as l(x, y; a, b) := tanh


(y − b −

0.01 sin(aπx))/(2
√
2ϵ)

for simplicity of notation.
Fig. 2. Results of linear growth rate from analysis and simulation at different
density ratio r .

5.1. Linear growth rate for the Kelvin–Helmholtz instability of two-
component fluids

The two-fluid system can be perturbed by applying a sinusoidal
disturbance on the fluid–fluid interface in the form of

A = A0eikx+nt ,

where k is the wave number. When both gravitational and surface
tension forces are present, it is found that [74]

n = −ik
ρ1U1 + ρ2U2

ρ1 + ρ2

±


k2ρ1ρ2(U1 − U2)2

(ρ1 + ρ2)2
−

kg(ρ2 − ρ1)

ρ1 + ρ2
−

k3σ
ρ1 + ρ2

.

The real and imaginary parts of n are the linear growth rate γ =

Re(n) and frequency ω = −Im(n), respectively.
In order to calculate the numerical growth rate at different

density ratio r = ρ1/ρ2, we take the initial conditions as

c(x, y, 0) = 0.5 (1 + l(x, y; 2, 0.5)) ,

u(x, y, 0) = l(x, y; 2, 0.5), v(x, y, 0) = 0

on the domain Ω = [0, 1]× [0, 1]. Here, we use h = 1/256, 1t =

0.064h, ϵ = 0.02, Pe = 10/ϵ, and Re = 5000. In this test, we let
g = σ = 0. Therefore, the analytical non-dimensional growth rate
γe can be written as

γe =
4π

√
r

1 + r
.

For numerical investigation, the numerical growth rate γn is
calculated in the form of [28]

γn =
A(t)/A0 − 1

t
.

In Fig. 2, we compare the results from analysis and simulation at
different density ratio r . As shown in Fig. 2, the simulation results
agree well with the analytical results.

5.2. Kelvin–Helmholtz instability of two-component fluids

We here consider the KH instability of two-component fluids.
The initial conditions are

c(x, y, 0) = 0.5 (1 + l(x, y; 2, 0.5)) ,

u(x, y, 0) = l(x, y; 2, 0.5), v(x, y, 0) = 0
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Fig. 3. Evolution of the phase-field with a single-mode sinusoidal interface perturbation at dimensionless times (a) t = 0, (b) t = 0.6, (c) t = 0.7, (d) t = 1, (e) t = 1.2, and
(f) t = 1.4. In each figure, the levels of gray-scale-filled contours are from 0 to 0.25 (black), from 0.25 to 0.5 (dark gray), from 0.5 to 0.75 (gray), and from 0.75 to 1 (white).
Fig. 4. Evolution of the vorticity field (vx − uy) displayed as contours at dimensionless times (a) t = 0, (b) t = 0.6, (c) t = 0.7, (d) t = 1, (e) t = 1.2, and (f) t = 1.4. The
highest contour level is 0.1. Succeeding levels are decreased by 1.
on the domain Ω = [0, 1]× [0, 1]. Here, we use h = 1/256, 1t =

0.128h, ϵ = 0.01/
√
2, and Pe = 10/ϵ. The remaining parameter

values are ρ1 : ρ2 = 0.99 : 1, Re = 5000, and Fr = 1. In this test,
the surface tension is neglected. Fig. 3 shows the evolution of the
phase-field with a single-mode sinusoidal interface perturbation;
the levels of gray-scale-filled contours are from 0 to 0.25 (black),
from 0.25 to 0.5 (dark gray), from 0.5 to 0.75 (gray), and from 0.75
to 1 (white).

Early in the dynamics, the flow sweeps the initial interfacial
vorticity into the center (Fig. 4), and the heavier and lighter flu-
ids move in the positive and negative vertical directions, respec-
tively, as a result, both fluids penetrate each other. As vorticity
accumulates at the center, the interface begins to steepen and the
height of the instability gets larger. At late time, roll-up follows and
the interface evolves into a spiral with a ‘‘cat’s eye’’ shape. The dy-
namics of the rolling interface is consistent with those obtained
in two-dimensional simulations using immersed boundary type
methods [22,23] and a multiple-relaxation-time lattice Boltzmann
method [32].

Next, we take the same initial conditions and parameter values
used to create Fig. 3 except for ϵ to investigate the effect of ϵ on
the interface evolution. Fig. 5(a)–(c) show snapshots of the phase-
field at dimensionless time t = 1 for ϵ = 0.02/

√
2, 0.01/

√
2,

and 0.005/
√
2, respectively. ϵ = 0.02/

√
2 is relatively large (Pe

is small), and the diffusion term in the phase-field equation is
dominant (Fig. 5(a)). Ideally, we want to minimize the diffusion
effect of the phase-field, because we are primarily interested in
the hydrodynamics of themultiphase system. Next, let us consider
the other case. ϵ = 0.005/

√
2 is relatively small (Pe is large), and

the advection term in the phase-field equation is dominant. This
implies that the interface is locally out of equilibrium. In Fig. 5(c),
it can clearly be observed that the interfacial transition region is
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Fig. 5. Effect of ϵ on the interface evolution: snapshots of the phase-field at dimensionless time t = 1 for (a) ϵ = 0.02/
√
2, (b) ϵ = 0.01/

√
2, and (c) ϵ = 0.005/

√
2. In

each figure, the levels of gray-scale-filled contours are from 0 to 0.25 (black), from 0.25 to 0.5 (dark gray), from 0.5 to 0.75 (gray), and from 0.75 to 1 (white).
Fig. 6. Grid convergence study: interfaces obtained using 64 × 64 (dotted line),
128 × 128 (dashdot line), 256 × 256 (dashed line), and 512 × 512 (solid line) grid
points at dimensionless time t = 1.

not smooth. The interface evolution is sensitive to the value of ϵ.
Decreasing the value of ϵ results in a non-smooth concentration
profile, whereas increasing the value of ϵ results in too much
diffusion. On the other hand, if an appropriate ϵ value (ϵ =

0.01/
√
2) is taken, as in Fig. 5(b), we have both a smooth interfacial

transition and rolling interface profile according to the flow field.
We finally perform a number of simulations for a sample

initial problem on a set of increasingly finer grids. The numerical
solutions are computed on the uniform grids h = 1/2n for n = 6, 7,
8, and 9. For each grid, 1t = 2.5 ·10−4, ϵ = 0.01, ρ1 : ρ2 = 0.99 :

1, Pe = 1/ϵ, Re = 50 000, and Fr = 1 are used. Fig. 6 shows the
interfaces obtained using 64×64 (dotted line), 128×128 (dashdot
line), 256×256 (dashed line), and 512×512 (solid line) grid points
at dimensionless time t = 1. The convergence of the results under
grid refinement is evident.

5.3. Comparison between the Kelvin–Helmholtz instability of two-
and three-component fluids

In order to investigate the effect of inclusion of extra layers
on the growth rate for the KH instability, we consider the three-
component fluids with the following initial conditions:

c1(x, y, 0) = 0.5 (1 + l(x, y; 2, 2/3)) ,

c2(x, y, 0) = 0.5 (1 + l(x, y; −2, 1/3)) − c1(x, y, 0),
u(x, y, 0) = 1 + l(x, y; 2, 2/3) − l(x, y; −2, 1/3),
v(x, y, 0) = 0

on the domain Ω = [0, 1]× [0, 1]. Here, we use h = 1/256, 1t =

0.064h, ϵ = 0.02, Pe = 10/ϵ, Re = 5000, and ρ1 : ρ2 : ρ3 = 1 :

1 : 1. In this test, the gravity and surface tension are neglected.
Fig. 7. Interfaces of two- (dashed line) and three- (solid lines) component fluids
for density ratio = 1. For two-component fluids, the numerical growth rate is
6.2019. For three-component fluids, the numerical growth rates of upper and lower
interfaces are 5.0610 and 4.8932, respectively.

Fig. 7 shows the interfaces of two- and three-component fluids.
Dashed line represents the interface (shifted up to overlap) in
Section 5.1 when the density ratio is equal to 1. Solid lines
represent the interfaces of three-component fluids. In Section 5.1,
we observed that the numerical growth rate is 6.2019 when the
density ratio is equal to 1. However, in the case of three-component
fluids, the upper and lower interfaces are influenced by each other.
Thus, the numerical growth rates of upper and lower interfaces
are 5.0610 and 4.8932, respectively. From this result, we see that
the inclusion of extra layers can alter the growth rate for the KH
instability.

5.4. Kelvin–Helmholtz instability of three-component fluids

In the rest of this paper, we will deal mainly with three-
component fluids (in Section 5.11, we will also deal with four- and
five-component fluids). For two-component fluids, we plot gray-
scale-filled contours with several levels to show some mixing be-
tween the fluids (see Figs. 3 and 5). However, for three-component
fluids, we plot filled contours at only one level for each fluid to
clearly recognize the interface evolution of three-component flu-
ids. In Figs. 8 and 10–15, the fluids 1, 2, and 3 are represented
by gray, white, and black colors, respectively. The color contrast
of each fluid is obtained by shifting the value of the phase-field
variable by adding a constant and by taking the contour of each
different level. The following MATLAB code was used to create
the figure: colormap gray;contourf(C1+1,[1.5 1.5]);
hold on;contourf(C2+2,[2.5 2.5]);contourf(C3,
[0.5 0.5]);.
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Fig. 8. Evolution of the phase-field with two-mode sinusoidal interface perturbations at dimensionless times (a) t = 0, (b) t = 0.2, (c) t = 0.4, (d) t = 0.6, (e) t = 0.8, and
(f) t = 1.
In order to model the KH instability of three-component fluids,
we take the initial conditions as

c1(x, y, 0) = 0.5 (1 + l(x, y; 4, 2/3)) , (16)

c2(x, y, 0) = 0.5 (1 + l(x, y; 4, 1/3)) − c1(x, y, 0), (17)

u(x, y, 0) = 1 + l(x, y; 4, 2/3) − l(x, y; 4, 1/3), (18)

v(x, y, 0) = 0 (19)

on the domain Ω = [0, 1]× [0, 1]. Here, we use h = 1/256, 1t =

0.128h, ϵ = 0.006/
√
2, and Pe = 10/ϵ. The remaining parame-

ter values are ρ1 : ρ2 : ρ3 = 0.98 : 0.99 : 1, Re = 5000, and
Fr = 1. In this test, the surface tension is neglected. Fig. 8 shows
the evolution of the phase-field with two-mode sinusoidal inter-
face perturbations.

At each interface (fluid 1–fluid 2 and fluid 2–fluid 3), vorticity
accumulates in the billow cores by advecting away from the braid
centers (the braid refers to a thin tilted interface formed in the re-
gion between billow cores, see Fig. 9). This accumulation of vortic-
ity results in the formation of thin braids and cores of vorticity. At
t = 0.8, the billows are close to their saturation state, where the
braids are thinnest and the cores have maximum strength. After
passing the saturation state, the billow height and core vorticity
concentration relax back. Note that, due to the difference in the di-
rection of the horizontal velocity of the upper (or lower) layer of
each interface, the cores of vorticity at the interface between flu-
ids 2 and 3 are more moved to the left than those at the interface
between fluids 1 and 2.

5.5. Effect of Weber number

In order to examine the effect of surface tension on the interface
evolution, we take the same initial conditions (Eqs. (16)–(19)) and
parameter values used to create Fig. 8 except for the Weber num-
ber. Fig. 10(a)–(c) show snapshots of the phase-field at dimension-
less time t = 0.8 for Weij = 1000, 100, and 10, respectively. At a
sufficiently largeWeber numberWeij = 1000, the elongated inter-
face rolls up by following the evolution of the flow. At Weij = 100,
surface tension retards roll-up of the elongated interface and the
interfacial ends are blunt due to the smoothing effect of surface
tension. When surface tension becomes much stronger Weij = 10,
the interface roll-up is completely suppressed.
Fig. 9. Evolution of the vorticity field (vx − uy) displayed as contours at
dimensionless times (a) t = 0, (b) t = 0.2, (c) t = 0.4, (d) t = 0.6, (e) t = 0.8, and
(f) t = 1. Solid lines represent positive vorticity. The lowest contour level is 1 and
succeeding levels are increased by 2. Dashed lines represent negative vorticity. The
highest contour level is −1 and succeeding levels are decreased by 2.
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Fig. 10. Effect ofWeber number on the interface evolution: snapshots of the phase-field at dimensionless time t = 0.8 for (a)Weij = 1000, (b)Weij = 100, and (c)Weij = 10.
Fig. 11. Effect of density ratio on the interface evolution: snapshots of the phase-field at dimensionless time t = 0.8 for (a) ρ1 : ρ2 : ρ3 = 0.98 : 0.99 : 1,
(b) ρ1 : ρ2 : ρ3 = 0.4 : 0.7 : 1, and (c) ρ1 : ρ2 : ρ3 = 0.1 : 0.55 : 1.
Fig. 12. Effect of magnitude of velocity difference on the interface evolution: snapshots of the phase-field at dimensionless time t = 0.7 for the initial horizontal velocities
in (a) Eq. (20), (b) Eq. (18), and (c) Eq. (21).
5.6. Effect of density ratio

In order to investigate the effect of density ratio on the interface
evolution, we take the same initial conditions (Eqs. (16)–(19)) and
parameter values used to create Fig. 8 except for the density ratio.
Fig. 11(a)–(c) show snapshots of the phase-field at dimensionless
time t = 0.8 for ρ1 : ρ2 : ρ3 = 0.98 : 0.99 : 1, 0.4 : 0.7 : 1,
and 0.1 : 0.55 : 1, respectively. As the density ratio increases,
the stabilizing effect of stratification due to gravity becomes more
pronounced, i.e., the KH instability becomes more suppressed.
Note that with increasing density ratio, the transition from linear
to non-linear stage is delayed to later simulation times.

5.7. Effect of magnitude of velocity difference

In order to study the effect of magnitude of velocity difference
on the interface evolution, we take the initial condition same as in
Eqs. (16) and (17) for the phase-field and in Eq. (19) for the vertical
velocity component. For the horizontal velocity component, we
take the initial condition in Eq. (18) and the following two initial
conditions:

u(x, y, 0) = 1 + 0.505[l(x, y; 4, 2/3) − l(x, y; 4, 1/3)], (20)
and
u(x, y, 0) = 1 + 1.5[l(x, y; 4, 2/3) − l(x, y; 4, 1/3)], (21)

on the domain Ω = [0, 1] × [0, 1]. The differences in initial
horizontal velocities of fluids 1 and 2 (or fluids 2 and 3) are 1.01, 2,
and 3 for Eqs. (20), (18), and (21), respectively. In this test, we take
the same parameter values used to create Fig. 8. Fig. 12(a)–(c) show
snapshots of the phase-field at dimensionless time t = 0.7 for the
initial horizontal velocities in Eqs. (20), (18), and (21), respectively.
As we can see in Fig. 12, the interface rolls up more as the initial
horizontal velocity difference gets larger.

5.8. Effect of forcing

In order to examine the effect of forcing on the interface
evolution, for the phase-field we take the initial condition in Eqs.
(16) and (17) and the following two initial conditions:

c1(x, y, 0) = 0.5

1 + tanh


y − 2/3 − 0.02 sin(4πx)

2
√
2ϵ


(22)

c2(x, y, 0) = 0.5

1 + tanh


y − 1/3 − 0.02 sin(4πx)

2
√
2ϵ


− c1(x, y, 0) (23)

and

c1(x, y, 0) = 0.5

1 + tanh


y − 2/3 − 0.05 sin(4πx)

2
√
2ϵ


(24)

c2(x, y, 0) = 0.5

1 + tanh


y − 1/3 − 0.05 sin(4πx)

2
√
2ϵ


− c1(x, y, 0) (25)
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Fig. 13. Effect of forcing on the interface evolution. (a) Schematic representation of the billow height Hb . (b)–(d) Snapshots of the phase-field at dimensionless time t = 0.8
for A0 = 0.01, 0.02, and 0.05. (e) Time evolution of the billow height for each A0 .
on the domain Ω = [0, 1] × [0, 1]. The initial wave amplitudes,
A0, are 0.01, 0.02, and 0.05 for Eqs. (16) and (17), (22) and (23), and
(24) and (25), respectively. In this test, we take the same parameter
values used to create Fig. 8. Note that the height of the billow, Hb,
is defined as the vertical distance between the highest and lowest
points of the braid (see Fig. 13(a)). Fig. 13(b)–(d) show snapshots
of the phase-field at dimensionless time t = 0.8 for A0 = 0.01,
0.02, and 0.05, respectively. For each A0, the time evolution of the
billow height is shown in Fig. 13(e). As we can see in Fig. 13, the
billow height reaches itsmaximummore slowly as the initial wave
amplitude gets smaller.

5.9. Effect of non-monotonic density variation

We here investigate a case where the density variation is non-
monotonic. The initial condition for the phase-field is same as in
Eqs. (16) and (17), and the same parameter values used to create
Fig. 8 except for the density ratio are chosen. We take the density
ratio as ρ1 : ρ2 : ρ3 = 1/2 : 1/6 : 1 and the initial velocity
as u(x, y, 0) = 0.7 + 0.25l(x, y; 4, 2/3) − 0.55l(x, y; 4, 1/3), v(x,
y, 0) = 0 to see the effect of non-monotonic density variationmore
clearly. Fig. 14 shows the evolution of the phase-field with non-
monotonic density variation. Due to the given density variation,
both Rayleigh–Taylor and KH instabilities are developed at the in-
terface between fluids 1 and 2, whereas at the interface between
fluids 2 and 3, the KH instability is suppressed. As a result, one in-
terface becomes stabilized and the other one becomes destabilized
as time goes by.

5.10. Simulation of the billowing cloud formation

The KH instability of multi-component fluids can be observed
in a wide variety of natural situations. A classic example is the
spectacular billowing cloud formation in the lower atmosphere
(see Fig. 15(a)). In order to simulate this natural phenomenon, we
take the initial conditions as

c1(x, y, 0) = 0.5 (1 + l(x, y; 2, 4/7)) ,

c2(x, y, 0) = 0.5 (1 + l(x, y; 2, 2.5/7)) − c1(x, y, 0),

u(x, y, 0) = −0.5 tanh

(y − 4/7 − δ(x))/(2

√
2ϵ)


− 0.25 tanh

(y − 3/7 − δ(x))/(2

√
2ϵ)

,

v(x, y, 0) = 0

on the domain Ω = [0, 7] × [0, 1]. The function δ(x) is defined as
δ(x) =

6
i=1[H(x−pi)−H(x−pi+1)]qi sin[2π(x−pi)/(pi+1−pi)],

where H(x) is the heaviside function and p1 = 0, p2 = 1.16, p3 =

2.43, p4 = 3.55, p5 = 4.71, p6 = 5.78, p7 = 7, q1 = 0.011, q2 =

0.012, q3 = 0.009, q4 = 0.011, q5 = 0.01, q6 = 0.008. These val-
ues are chosen by trial and error to achieve a resemblance to the
photograph in Fig. 15(a). Here, we use h = 1/64, 1t = 0.128h,
ϵ = 0.006

√
2, and Pe = 1/ϵ. The remaining parameter values are

ρ1 : ρ2 : ρ3 = 0.98 : 0.99 : 1, Re = 50 000, Fr = 0.1, and
We12 = We13 = We23 = 1000. Fig. 15(b)–(e) show the evolution
of the phase-field.

When two-component fluids are considered to simulate the
billowing cloud formation, i.e., we consider, in Fig. 15(b), that the
top and bottom layers consist of one fluid and the middle layer
is another fluid, then gravity effect becomes dominant since the
heavier fluid is superposed over the lighter fluid. However, with
three-component fluids of different densities which are gradually
increased toward the gravitational direction, we can simulate the
billowing cloud formation as we can see in Fig. 15(b)–(e). In this
simulation, the details of the real flow (e.g., the asymmetry in
the roll-up and the self-interaction of the shear layer) are well
captured.
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Fig. 14. Evolution of the phase-field with non-monotonic density variation at dimensionless times (a) t = 0, (b) t = 1, (c) t = 1.5, and (d) t = 2.
Fig. 15. Simulation of the billowing cloud formation: (a) photograph of KH billows
in the atmosphere (this is available at: http://www.pinterest.com/timbrice/kelvin\

T1\ndashhelmholtz-clouds/) and (b)–(e) numerical results of the KH instability of
three-component fluids with density contrast at dimensionless times (b) t = 0,
(c) t = 2.1, (d) t = 3.3, and (e) t = 3.6.

5.11. Efficiency of the numerical algorithm

With the numerical algorithm, we can solve the N-component
CH system in a decoupled way, i.e., we only solve the binary
CH equation N − 1 times to solve the system. In order to show
the efficiency of the numerical algorithm, we consider the KH
instability in N-layer flow. For N = 2, 3, 4, 5, the initial conditions
Table 1
CPU time (s) for N-layer flow during 1600 time steps.

N 2 3 4 5

CPU time 1206.749 2611.610 3895.531 5134.110

are

c1(x, y, 0) = 0.5 (1 + l(x, y; 2, (N − 1)/N)) ,

ck(x, y, 0) = 0.5(l(x, y; 2, (N − k)/N)

− l(x, y; 2, (N − k + 1)/N)) for k = 1, 2, . . . ,N − 1,

u(x, y, 0) = mod(N, 2) +

N−1
k=1

(−1)k+1l(x, y; 2, (N − k)/N),

v(x, y, 0) = 0

on the domain Ω = [0, 1]× [0, 1]. Here, we use h = 1/256, 1t =

0.128h, ϵ = 0.006/
√
2, and Pe = 10/ϵ. The remaining parameter

values are ρ1 : ρ2 : · · · : ρN = (1 − 0.01(N − 1)) : (1−
0.01(N − 2)) : · · · : 1, Re = 5000, and Fr = 1. In this test,
the surface tension is neglected. Simulations are performed on a
3.2 GHz Intel Core i5 CPU with 4 GB of RAM. Table 1 provides the
CPU time (in seconds) during 1600 time steps for each number of
layers. It can be seen that the CPU time increases almost linearly
with the number of layers. Fig. 16 shows snapshots of the phase-
field at dimensionless time t = 0.8 for N-layer flow.

6. Conclusions

The KH instability of multi-component (more than two) in-
compressible and immiscible fluids was studied numerically us-
ing a phase-field model. The instability was governed by the
modified Navier–Stokes equations and the multi-component con-
vective CH equations. A finite difference method was used to
discretize the governing system. To solve the equations effi-
ciently and accurately, we employed the Chorin’s projection
method for the modified Navier–Stokes equations and the re-
cently developed practically unconditionally stablemethod for the
multi-component CH equations. The algorithm was validated by
simulating the KH instability of two-component fluids. The results
Fig. 16. Snapshots of the phase-field at dimensionless time t = 0.8 for (a) 2-, (b) 3-, (c) 4-, and (d) 5-layer flows.
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of the present study for two-component fluids were consistent
withprevious results. Using the validated code,we investigated the
effects of surface tension, density ratio, magnitude of velocity dif-
ference, and forcing on the KH instability of three-component flu-
ids. It was shown that increasing the surface tension or the density
ratio reduces the growth of the KH instability. Note that the surface
tension may destabilize the short-waves. But, in our view, investi-
gating that numerically is a nontrivialwork. Therefore,wewill con-
sider this issue in future work. And it was also observed that as the
initial horizontal velocity difference gets larger, the interface rolls
up more. We also found that the billow height reaches its maxi-
mummore slowly as the initial wave amplitude gets smaller. And,
for the linear growth rate for the KH instability of two-component
fluids, the simulation results agreed well with the analytical re-
sults. Fromcomparison between the numerical growth rate of two-
and three-component fluids, we observed that the inclusion of
extra layers can alter the growth rate for the KH instability. Finally,
we simulated the billowing cloud formation for one set of param-
eters. With our multi-component method, the asymmetry in the
roll-up and the self-interaction of the shear layer were well cap-
tured.
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