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1. Introduction

Cell growth and division are fundamental phenomena that gen-
erate and maintain all life. The study of these phenomena is vital
to understanding the basic processes of life by which an organism
is built. In the eukaryotic cell cycle, mitosis is the phase that occurs
between DNA replication and the formation of two daughter cells.
There are four stages of mitosis: prophase, metaphase, anaphase, and
telophase. The first and longest stage of mitosis is prophase. During
prophase, two aster-covered centrosomes migrate to opposite sides
of the nucleus in preparation of mitotic spindle formation. During
metaphase, the kinetochore microtubules connect to the centromere.
Next, during anaphase, the kinetochore microtubules pull the chro-
mosomes apart into individual chromatids and pull them towards the
centrosomes located at opposite ends of the cell. This allows the cell
to divide properly to ensure that each daughter cell contains full repli-
cas of chromosomes [2].

The final stage of cell division is cytokinesis. During cytokinesis,
the cell divides into two daughter cells. In the case of animal cells, the
membrane of the parent cell pinches inward along the cell’s equator
until the two daughter cells are formed, i.e., one animal cell separates
into two by the contractile ring, which is formed by actin-myosin in-
teractions. The contractile ring forms a cleavage furrow, and as the
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contractile ring tightens, the cleavage furrow develops further. Even-
tually, the cell divides into two daughter cells.

Until recently, many studies have focused on cell motion and cell
cytokinesis [3-24]. Among these studies, determining the site of cell
division is an active problem in cell biology. To numerically simulate
cytokinesis, we consider the astral stimulation model [11,20], which
states that signals from the astral centers have larger values at the
overlapped equatorial positions. The division mechanism is formed
by direct response in the stimulated region (see Fig. 1).

To study cell growth and cytokinesis, we propose a mathemati-
cal model for the growth and division of a single cell and simulate
this governing model using an immersed boundary method in three-
dimensional space, which is an extension of the work of Li et al. [24].
Li et al. proposed a realistic contractile force on the axisymmetric
space. Note that the immersed boundary method, which is a math-
ematical formulation and numerical approach in computational biol-
ogy, has been widely used [13-15,18,25,26].

Unlike the previous work [24], we implement the numerical al-
gorithm on a fully three-dimensional space, which is a non-trivial
extension of two-dimensional space. To discretize the cell mem-
brane, we employ unstructured triangular meshes. The nodes of
the surface mesh constitute a set of Lagrangian control points that
are used to track the morphology of the cell. A surface remesh-
ing algorithm [27] is applied to prevent mesh distortion during
evolution. To maintain the mass of the cell in cytokinesis, we use
a volume-conserving algorithm [28]. The ability of the method
to simulate the cell growth and division processes is numerically
demonstrated.
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Fig. 1. Astral stimulation model. Since the equatorial cortex is influenced by astral microtubules from two poles, the strength of the stimulus should be maximal at the cell

equator [1].

The remainder of this paper is organized as follows. In Section 2,
we state the governing equations for animal cell growth and division.
In Section 3, a fully discrete numerical method is given. In Section 4,
we present numerical results such as the convergence of the scheme
and effects of the model parameters. Finally, conclusions are drawn
in Section 5.

2. Mathematical formulation

Let X(t) denote the immersed boundary point that describes the
cell boundary, and let Y;(t) and Y,(t) represent the cell nuclei at time
t. If the cell grows, two fluid sources Sq(t) and S,(t) are located at the
two cell nuclei. Once the cell doubles its volume, the sources are de-
activated and the cell decides its division site to make the cleavage
furrow. In animal cells, the structure that accomplishes cytokinesis is
the contractile ring, which assembles just beneath the plasma mem-
brane and contracts to constrict the cell into two. At the same time,
a new membrane is inserted into the plasma membrane adjacent to
the contractile ring by the fusion of intracellular vesicles. This mem-
brane addition is necessary to compensate for the increased surface
area that accompanies cytoplasmic division [29]. Therefore, for sim-
plicity, we model the cell surface by the fluid interface. The complete
system of equations describing cell growth and division in a viscous
incompressible fluid is given by
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Here, x = (X, ¥, z) is the fixed Cartesian coordinate, and X is the La-
grangian variable for the immersed boundary (see Fig. 2). Egs. (1)
and (2) are the Navier-Stokes equations, which are the basic govern-
ing equations of a viscous incompressible Newtonian fluid [25,30]. In
Egs. (1) and (2), the physical parameters o and u correspond to the
constant mass density and constant viscous coefficient of the fluid,
respectively, o and o, correspond to the stiffness coefficient for the
curvature force and division force, respectively. Moreover, p is the
pressure, and u = (u, v, w) is the fluid velocity.

In Eq. (3), S(x, t) represents the time-dependent source. S(X, t) is
positive around cell nuclei and zero on the other fluid domain when
the cell grows. The sources are deactivated when the cell volume is
doubled [13]. To model these states, we use the Heaviside function
H(t), where H(t) =1 when t > 0, and H(t) = 0, otherwise. §.(X) is
the three-dimensional smoothed Dirac delta function [26,31], which
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Fig. 2. Illustration of Eulerian points x and Lagrangian points X(t).

is defined by the product of one-dimensional smoothed Dirac delta
functions, i.e.,

0= v (yv(d)

where c is the mesh width, h, and

(3 =2|r| ++/1+4|r| —4r?)/8 if |r| <1,
V() =1G-2|r-/-7+12|r| -42)/8 if1<|r| <2,
0 if |r| > 2.

(15)

Here, to denotes the specific time when the mass of the cell
doubles the size of its mother cell. Furthermore, ¢ is a positive value,
SF = (SF;, SE, SF;) is the interfacial tension body force concentrated
on the interface, f;(X) is the interfacial force density, «(X) is the
mean curvature, n is the unit outward normal vector, and DF(X, t)
is the external force. The external force density f,(X) in Eq. (7) is
zero when t < ty to simulate the process of cell growth. When ¢
> tg, £5(X) is ngjy/s. s(X) is the proposed stimulus in the previous
paper [24], which is defined as the difference of distances from two
aster centers to the cell membrane and a control parameter €. To
ensure that the minimum of the stimulus function s(X(A,tp)) is
one, we set s(X(A, tp)) = ||X(A, to) = Y1 (to)| = IX(A, to) —Yz(f0)||
/(€Y1 (tg) — Y2(tg)]) + 1. In this case, s(X) is in [1,1+ 1/€] and

the maximum and minimum divisional forces are 1 at the cell
equator and 1/(1+ 1/€) at the cell poles, respectively. We briefly
discuss this phenomenon since a similar proof was proposed in [24].
Fig. 3 shows the schematic illustration of the external force. Fig. 3(a)
shows the distribution of the proposed stimulus model s(x), which is
computed using the difference of distances from aster centers to the
cell membrane and a control parameter €. Fig. 3(b) shows the quiver
of ng;,(X), which is related to the positions of aster centers, and
Fig. 3(c) shows our proposed external force ng;,(X)/s(X). Note that in
our proposed method, we assume that the resistive force from the
membrane other than that of the contractile ring is surface tension,
which means that these cells behave like water droplets, and the
lipid bilayers of the cell membrane are allowed to stretch. If the lipid
bilayers are inextensible, another external force that forces the cell
to its original cell or maintains the surface area conservation should
be added. A different value of € can be chosen to change the length
of the cell bridge as shown in Fig. 4. Note that as € — 0, our model
is the same as Rejniak’s model [13], in which the author proposed a
singular contractile ring located orthogonally to the axis of two cell
nuclei.
In order to make the variables dimensionless, we define

X u tu p
X == u=—, t=-—"5 / = ,
L. U, L' P=pu2
o = P r_ Ucg
pc’ pcle’

where L, Uc, and p¢, are the characteristic length, velocity, and
density, respectively. Substituting these variables into the governing
Eqgs. (1) and (2), and then omitting the primes yields

1

Se

1 1
VS _
S+ WeSF+ DeDF’ (16)

1
u+u-Vu=-Vp+ —Au+

Re
V.u=cS. (17)
The dimensionless parameters are the Reynolds number, Re, Weber
number, We, new parameter numbers, De and Se, which are given by

_ pCUCLC’ We — ,oCUCZLC’ De — ,oCUCZLC’ o 3,OCUC2.
" o 02 uleg

Re

3. Numerical method

To compute the fluid flow interacting with an immersed bound-
ary, two distinct discretized grids are needed that are regular lat-
tice points for the whole fluid domain and boundary points for the
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Fig. 3. Schematic for the external force from the cell membrane. (a) The proposed stimulus model s(x) when € = 0.05, (b) the quiver of ng;,(X), and (c) the proposed external force

Ngiy(X)/s(X).
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Fig. 4. Schematic for the external force from the cell membrane with various € values. (a) € = 0.005, (b) € = 0.05, and (c) € = 0.5.

Fig. 5. (a) Triangular surface mesh obtained using the distmesh algorithm. (b) Schematic illustration of a polyhedron and tetrahedron with reference point O.

immersed boundary. First, consider the fluid domain Q = [0, L] x
[0,Ly] x [0, Ly] and define the fluid variables on a fixed Ny x Ny x
N; Eulerian grid that is labeled as X;j, = (x;,¥},2,) = ((i—0.5)h, (j -
0.5)h, (k—0.5)h) for i=1,... Ny, j=1,....Ny, and k=1,... Ny,
where h is the uniform mesh spacing, and Ny, Ny and N; are the num-
bers of cells in the x, y, and z-directions, respectively. Denote the final
time by T and the time step by At.

We solve the governing equations by the finite difference method
on a staggered marker-and-cell mesh. The pressure and indicator
functions are located at the cell centers, while the velocity com-
ponents u, v, and w are placed at the centers of the x-, y-, and z-
directional cell faces at the face centers, respectively; that s, u; k=
UG 1Y 260 V1= (i Y12k, and Wijkel = %iYj 2 1)-
We assume a homogeneous Neumann boundary condition for the
velocity. Moreover, we consider a set of M Lagrangian points X; =
(X,Y;,Z)) for I=1,...,M that represents the immersed bound-
ary. Suppose that there are My triangles Tris = (X, X, Xq) for s =
1,..., Mr. To generate an oriented triangular mesh connecting with
immersed boundary points, we use the distmesh algorithm [32,33].
For more details, refer to [28,32,33]. The triangular surface mesh ob-
tained using the distmesh algorithm is shown in Fig. 5(a). Notice that
the immersed boundary is discretized using a set of uniform triangu-
lar grids and that the three vertices X, X, and Xq are ordered coun-
terclockwise (see Fig. 5(b)).

Note that the reference time t; is defined as mAt. Here, m is the
integer that satisfies V(X™) > 2V(X%) and V(X™1) < 2V (X9). V(X)
is the volume of the polyhedron. For all of the triangles on the sur-
face Tris = (X}, Xm. Xq) = ((X;, Y. Z), Xm, Ym, Zm), (Xq, Yq, Zg)) with
a reference point (0) (see Fig. 5(b)), the volume of the polyhedron is
given by

1
V0= 3 [Xa(ViZn— Y)Yy 2 — XnZ0)+ 24 XY= X )|
s=1
Our goal is to compute u™!, X™*1 and Y"1 from given u”, X", and
Y". This is done as follows:

Step 1. Using the positions of the cell boundary X", and the two
astral centers Y'} and Yg, we calculate two forces SF" and DF" using
discretizations of Eqs. (5), (7), and (9). Note that the normal mean
curvature, x/'nf', is calculated using the algorithm in [28,34,35].

Step 2. Spread the force into the nearby grid points of the fluid by
using a discretization of Eqs. (4) and (6):

M
SF = Y f18n (Xiji — XD AA,
=1

M
DFj; = > 5,8, (Xij — X[ A A,
I=1

fori=1,....Ny, j=1,...,Ny, k=1,...,N,.
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Step 3. Solve the Navier-Stokes equations (16) and (17) using a
projection method. First, we solve for an intermediate velocity field @
without the pressure gradient term;

7 n
UA:.I +u". leln = %Adu" =+ ﬁSFn —+ %DF’1 + %Vdsn.

Then, we solve the following equations for the advanced pressure

field at the (n + 1)st time step:

n+1 _ 1y
% = —Vgp", (18)

Vg -utt! = gsn (19)

By applying the divergence operator to Eq. (18), we are able to de-
termine the Poisson equation for the pressure at the advanced time
(n+1):

1 3
Agp™t! = g (Va-—gsh). (20)

The resulting linear system of Eq. (20) is solved using a multigrid
method; specifically, V-cycles with Gauss-Seidel relaxation. Then,
the divergence-free normal velocities u™1, v"*1 and w"*! are de-
fined by

ut! =i — Atvdpnﬂ.

Step 4. Once the updated fluid velocity u™! has been determined,
the velocity on the immersed boundary U1, immersed boundary
points X™+1 and center positions Y**! are determined. These are cal-
culated using the discretizations of Eqs. (10)-(13).

These steps complete the description of the process by which the
quantities u, X, and Y are updated.

3.1. Volume correction algorithm

Cytokinesis is usually the shortest part of the cell cycle. It is dur-
ing interphase (Gy, S, and G, phases) that the cell grows by producing
proteins and cytoplasmic organelles such as mitochondria and en-
doplasmic reticulum [36]. Therefore, during cytokinesis, the mass of
the cell changes very little. Thus, in order to conserve the mass of
the cell during the cytokinesis, we use a volume-preserving scheme
[28]. Note that there are other volume-conserving methods [37-39]
in conjunction with immersed boundary equations. The key idea of
the method is relocating surface points along the normal directions
to conserve the total volume. A brief description of the volume cor-
rection procedure is summarized below.

Step (1). Update the immersed boundary points X* according to
Eq. (11); that is, X* = X" + AtU™1,

Step (2). Check the relative error of the volume V(X*) defined
by Verror (X) = |2V(X?) — V(X)|/(2V(X?)). For a given tolerance, tol,
check whether Veor(X*) < tol or not. If so, then X"*1 = X*; oth-
erwise, relocate the surface points along the normal directions, i.e.,
X1 = X* + Bn, where 8 is a constant.

Step (3). Determine the parameter S, which is a root of the cubic
equation V(X"1) = V(X* + fn) = 2V (X%) and update X"*1 = X* +
Bn. For more details, please refer to [28].

3.2. Remeshing algorithm for the surface mesh

During the numerical simulations, some interfaces are stretched
or compressed. To preserve the high-quality surface mesh, we use
the remeshing algorithm in [27]. A brief description of the remeshing
algorithm is summarized below.

Step (1). Construct the signed distance function ¢ in the whole
domain using the surface mesh X" and set X?‘m = X], where m = 0.

Step (2). Calculate the net force F()N(;"m) and update the inter-
mediate position by X; = )?;“” + ArF()N(?*’”), where AT is a con-
stant. The net forces work in the following way: if the distance of

Table 1
Computational parameters used in real biophysical experiments.

Parameter Physical and biophysical quantity
Diameter of cell (D) 10-20 um
Fluid density (p) 1.35g/(cm?) [13,21]

[14,15]

Fluid viscosity (i) 100g/(cms) [13-15],
50-140g/(cms) [18]
490-850g/(cms?) [13],
0.42-1.4 x 10* g/(cms?) [22]
0-10° g/(cms?) [21]

5 x 107 g/(cms2) [14]

2 x 107 7g[s [14]

Surface tension (o)
Contractile stress (03)

Source strength (¢)

two nearby points is smaller than a given value, the forces should
be away from each other; otherwise, they should move toward each
other.

Step (3). Project X; to the interface, which is defined as the
zero level of ¢, and obtain the new point X?""” on the interface
by X}””*l =X — ¢(X5) Vo (X5). The reaction forces ¢(X*)V p(X*)
enter in the following way: all points that leave the interface dur-
ing processing in Step (2) move back to the closest interface position
along the normal vector V¢ (X}).

Step (2) and Step (3) are repeated until the discrete norm is smaller
than a given tolerance value. We then complete the remeshing pro-
cedure for the surface mesh. Note that in our algorithm, remeshing is
done at every 20 time-steps.

Fig. 6 (a) and (b) shows the triangular mesh before and after the
remeshing procedure, respectively. From left to right, they are vertical
and horizontal plane views. Before using the remeshing procedure,
the mesh distribution in the pole and equatorial regions is not uni-
form. On the other hand, if the remeshing procedure is applied, then
an almost uniform mesh is obtained. In Section 4, we will perform a
numerical test to emphasize the effects of the remeshing algorithm
on cell cytokinesis.

It is important to note that the shape of the cell surface should
agree with the shape of the original object after the remeshing pro-
cedure. To verify this fact, we consider a numerical test with a sphere
that is centered at (0.5, 0.5, 0.5) with a radius of 0.25 in a unit
domain. The initial mesh distribution is not uniform as shown in
Fig. 6(a). Here, M = 1024 is used. The remeshing procedure is per-
formed to obtain the new mesh. The theoretical value of the distance,
which is computed from the point X on the surface to the center, is
|X —(0.5,0.5,0.5)| = 0.25. We calculate the discrete l,-norm of the

error, which is \/Zf‘il (0.25 — |X; — (0.5,0.5,0.5)|)2/M = 4.71e — 4.

These results indicate that the remeshing procedure preserves the
shape of the cell surface.

4. Numerical experiments

Various papers have reported the real biophysical parameters
in cell processes, which are summarized in Table 1. Note that the
Reynolds number is much smaller than one. For different animal
cells, the real parameters vary. In this paper, we use Re = 0.5. To sim-
plify the presentation, we use We = 1 and De = 2e—3, which are in
the range of the real parameters. € is the parameter that relates to
the shape of the intercellular bridge [24]; here, we set € = 0.05. A
mesh grid of size 64 x 64 x 64 is used on the computational do-
main Q = (0,4) x (0,4) x (0, 4). Unless otherwise specified, the ini-
tial shape of the cell is a unit sphere and 10,436 nodes represent the
cell boundary. The time step chosen is At = 0.05h2. The astral centers
areY; = (2,1.8,2)and Y, = (2,2.2,2).
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4.1. Evolution of cell division

In this experiment, we show the evolution of cell division on
the unit computational domain in three dimensions. The simula-
tion is conducted up to time T = 1.607. The evolution is shown
in Fig. 7(a)-(e), and the computational times are listed below

each figure. Two point sources inside the cell make the cell grow
(Fig. 7(a) and (b)). Once the cell volume doubles, the sources are
deactivated, and the contracting force is activated. With the pro-
posed division force, the cell is divided into two cells as shown
in Fig. 7(c)-(e). When the sources are deactivated at time tg,
we assume that the mass of the cell is conservative. Exact mass



124 Y. Li, J. Kim / Mathematical Biosciences 271 (2016) 118-127

QNS SN

AN SENRS==AY)
SINOARE SRS/
D0 N OIS S
ggggimggmwu SR
PIOADIKS, SRt
KRIORISR S =
KA, TSRS
PRI 2
IO =Rt
Gl S s P

o
X
&

e

KRR
KXXK

5
R
AR

25

o5
20
2

o

"
o5
OO
AR
FARIIR
RIRTIE

e
AT

SRS
s
RS
5
%
KRR
ORI

EARRLIIHR
A

CORNRKEK

s

ERE
7

L 0
ALY
OO
ORRIREE
RS

t =0.039 t=0.117 t=0.176

Fig. 9. Evolution of cell division with the advection term (a) and without the advection term (b) in Eq. (1).

conservation is achieved using the correction scheme, as shown in
Fig. 7(f).

4.2. Effect of the remeshing procedure

Fig. 8 (a) and (b) shows the cell shapes at time T = 0.156 with and
without the remeshing procedure, respectively. Parts (c) and (d) of
Fig. 8 are the close-up views of (a) and (b), respectively. Here, we
only consider the cell division step. Thus, the initial shape of the
cell is a sphere with a diameter of 1.26. From the results shown in
Fig. 8, note the excellent mesh quality throughout the evolution of
the remeshing procedure in contrast to the elongated elements that
can be seen when the remeshing procedure is not applied. The CPU
times are 23.79 min and 19.36 min for the two cases, respectively.
Thus, the fraction of time spent performing the remeshing procedure
is not much higher compared to the whole computational process.

4.3. Convergence test

To calculate the convergence rate, we consider the same test prob-
lem set in Section 4.2. Here, the remeshing procedure is not con-
sidered. The numerical solutions are computed on uniform grids,
where h =4/2", for n =5, 6, 7, and 8. We run the computational
simulation up to time T = 0.0025 with corresponding time steps,

At = 0.01h%. We define the discrete l,-norm error ey h by ey h =
2 2

\/ﬁ M IXy — Xi,/2.11%. Here, Xy, is the point X, ; in the succes-

Table 2

Error and convergence rates with the remeshing procedure.
Grid size  323-64° 64°-128° 1283-256°
epn 7.009e—-6 2.050e—6 5.647e—7
Rate 1.77 1.86

sively finer grid. The rate of convergence is defined as the ratio of
successive errors, i.e., log, (eh/h /eh/h ). Using these definitions, the
2 23

errors and rates of convergence are calculated, as shown in Table 2.
Note that our discretization is second-order in space and first or-
der in time. By refining the spatial and temporal grids by a factor
of four and two, respectively, the ratio of successive errors increases
by a factor of two. Notice that the convergence rate is approximately
second-order in space, which is expected from discretization. How-
ever, since the division force is defined based on the positions of the
immersed points of the cell boundary and cell nuclei, nonlinear ef-
fects are added when the cell nuclei and immersed points move. The
convergence rate slightly decreases, as shown in Table 2.

4.4. Inertial effects in our proposed method

The vast majority of biological processes at the microscopic scale
(including cell division) occur in the creeping flow regime. To inves-
tigate the inertial effects in our proposed method, we compare the
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results obtained with and without the advection term in Eq. (1). Each
calculation is conducted up to time T = 0.176. The other parameters
and initial conditions are the same as those used in Section 4.2. Fig. 9
shows the evolutions of cell division with the advection term (a) and
without the advection term (b). The results fit a straight line. The sim-
ilar results obtained by the two cases imply that the inertial effects
are negligible during cell division.

4.5. Symmetric and nonsymmetric cell divisions

For most animal cells, cell division is symmetric during cytoki-
nesis and results in two equal daughter cells. During asymmetric
division, an axis of polarity is established and the mitotic spindle
reorients along the axis [5]. Several conserved proteins have been
identified that are required for asymmetric divisions. However, a
report [23] that analyzed the role of centrosomes and astral mi-
crotubules in Drosophila neuroblast divisions concluded that astral
microtubules are not required for signaling or positioning cytokine-
sis, which is consistent with the spindle midzone being required for
positioning the cleavage furrow [5,23]. Here, we consider symmetric
and nonsymmetric cell divisions by choosing the astral centers
to be Y1 =(2,18,24) and Y, = (2,2.2,24), Y; =(2,1.8,2) and
Y, =(2,22,2), and Y; = (2,14,2) and Y, = (2,1.8,2). The first
two cases are for the symmetric cell divisions and the last one is
for nonsymmetric case. The evolution of the three cases is shown in
Fig. 10. These results suggest that our proposed mathematical model
performs well in simulating cell division and agrees well with [23],
where asterless neuroblasts assemble cytokinetic rings around the
central spindle midzone and undergo unequal cytokinesis.

4.6. Simulation of the cell bridge

In the last stage of animal cell division called cytokinesis, the
intercellular bridge between the two daughter cells thins and sev-
ers, and the mechanical separation of a mother cell in two daugh-
ter cells occurs [40]. In general, the intercellular bridge is formed in
the middle of the cell due to the cleavage furrow constricting; thus,
a good mathematical model should properly define the cleavage fur-
row, which can lead to the formation of a cylindrical bridge. To in-
vestigate the formation of the intercellular bridge in the cell division
by process, we simulate cell division using two values of € = 0.005
and 0.1. Fig. 11(a) and (b) shows the evolution of cell division for
De = 2e—3 and De = 4e—4, respectively. Here € = 0.005 is used. No-
tice that when € is smaller, the contractile stress, De, increases to
make the mother cell split into two separate daughter cells. Further-
more, the division time decreases as De decreases. Compared with the
results in Fig. 11(c), which are obtained using € = 0.1 and De = 2e-3,
a larger € value makes the intercellular bridge longer.

5. Conclusion

We proposed an immersed boundary method to simulate eu-
karyotic cell growth and cytokinesis in three dimensions. Triangu-
lar meshes were employed to represent the cell membrane, and
nodes were used for the Lagrangian points to track the motion. To
prevent the mesh from being distorted, a surface remeshing algo-
rithm was applied, which allowed for sufficient evolution for cytoki-
nesis. To maintain the mass of the cell in cytokinesis, we used a
volume-conserving algorithm. Various numerical experiments were
performed to demonstrate the ability of the proposed method to
model the cell growth and division process. In our proposed method,
we assumed that the resistive force from the membrane other than
that of the contractile ring was surface tension, which means that
these cells behave like water droplets, and the lipid bilayers of the
cell membrane are allowed to stretch; however, the lipid bilayers can

also be inextensible for cells such as red blood cells. In this frame-
work, another external force, which forces the cell to its original cell
or conserves the surface area, should be added. In [41], the authors
developed an immersed boundary method to simulate the dynamics
of the inextensible vesicles with the new elastic force, which is de-
rived from the variational derivative of the proposed elastic energy to
resist bending the membrane, tension energy to enforce the surface
area constraint, and other energy functions for biology justifications.
As future research, it would be interesting to consider a membrane
that stretches and studies the effects of the external forces during
cell cytokinesis. In this paper, we adopt the mathematical model sug-
gested by Rejniak [13]. Effectively, two fluid sources push each other,
resulting in two new nuclei are placed along the cells’ longest axis.
We also plan to consider biological modelling and simulation of cell
growth. One part is that flows into the cell through the cell membrane
and another part would be that producing proteins and cytoplasmic
organelles such as mitochondria and endoplasmic reticulum.
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