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a b s t r a c t

In this paper, we present a three-dimensional immersed boundary method to simulate the eukaryotic cell

growth and cytokinesis. The proposed model and numerical method are a non-trivial three-dimensional ex-

tension of the previous work (Li et al., 2012). Unstructured triangular meshes are employed to discretize the

cell membrane. The nodes of the surface mesh constitute a set of Lagrangian control points used to track the

motion of the cell. A surface remeshing algorithm is applied to prevent mesh distortion during evolution.

We also use a volume-conserving algorithm to maintain the mass of cells in cytokinesis. The ability of the

proposed method to simulate cell growth and division processes is numerically demonstrated.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Cell growth and division are fundamental phenomena that gen-

erate and maintain all life. The study of these phenomena is vital

to understanding the basic processes of life by which an organism

is built. In the eukaryotic cell cycle, mitosis is the phase that occurs

between DNA replication and the formation of two daughter cells.

There are four stages of mitosis: prophase, metaphase, anaphase, and

telophase. The first and longest stage of mitosis is prophase. During

prophase, two aster-covered centrosomes migrate to opposite sides

of the nucleus in preparation of mitotic spindle formation. During

metaphase, the kinetochore microtubules connect to the centromere.

Next, during anaphase, the kinetochore microtubules pull the chro-

mosomes apart into individual chromatids and pull them towards the

centrosomes located at opposite ends of the cell. This allows the cell

to divide properly to ensure that each daughter cell contains full repli-

cas of chromosomes [2].

The final stage of cell division is cytokinesis. During cytokinesis,

the cell divides into two daughter cells. In the case of animal cells, the

membrane of the parent cell pinches inward along the cell’s equator

until the two daughter cells are formed, i.e., one animal cell separates

into two by the contractile ring, which is formed by actin–myosin in-

teractions. The contractile ring forms a cleavage furrow, and as the
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ontractile ring tightens, the cleavage furrow develops further. Even-

ually, the cell divides into two daughter cells.

Until recently, many studies have focused on cell motion and cell

ytokinesis [3–24]. Among these studies, determining the site of cell

ivision is an active problem in cell biology. To numerically simulate

ytokinesis, we consider the astral stimulation model [11,20], which

tates that signals from the astral centers have larger values at the

verlapped equatorial positions. The division mechanism is formed

y direct response in the stimulated region (see Fig. 1).

To study cell growth and cytokinesis, we propose a mathemati-

al model for the growth and division of a single cell and simulate

his governing model using an immersed boundary method in three-

imensional space, which is an extension of the work of Li et al. [24].

i et al. proposed a realistic contractile force on the axisymmetric

pace. Note that the immersed boundary method, which is a math-

matical formulation and numerical approach in computational biol-

gy, has been widely used [13–15,18,25,26].

Unlike the previous work [24], we implement the numerical al-

orithm on a fully three-dimensional space, which is a non-trivial

xtension of two-dimensional space. To discretize the cell mem-

rane, we employ unstructured triangular meshes. The nodes of

he surface mesh constitute a set of Lagrangian control points that

re used to track the morphology of the cell. A surface remesh-

ng algorithm [27] is applied to prevent mesh distortion during

volution. To maintain the mass of the cell in cytokinesis, we use

volume-conserving algorithm [28]. The ability of the method

o simulate the cell growth and division processes is numerically
emonstrated.
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Fig. 1. Astral stimulation model. Since the equatorial cortex is influenced by astral microtubules from two poles, the strength of the stimulus should be maximal at the cell

equator [1].
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The remainder of this paper is organized as follows. In Section 2,

e state the governing equations for animal cell growth and division.

n Section 3, a fully discrete numerical method is given. In Section 4,

e present numerical results such as the convergence of the scheme

nd effects of the model parameters. Finally, conclusions are drawn

n Section 5.

. Mathematical formulation

Let X(t) denote the immersed boundary point that describes the

ell boundary, and let Y1(t) and Y2(t) represent the cell nuclei at time

. If the cell grows, two fluid sources S1(t) and S2(t) are located at the

wo cell nuclei. Once the cell doubles its volume, the sources are de-

ctivated and the cell decides its division site to make the cleavage

urrow. In animal cells, the structure that accomplishes cytokinesis is

he contractile ring, which assembles just beneath the plasma mem-

rane and contracts to constrict the cell into two. At the same time,

new membrane is inserted into the plasma membrane adjacent to

he contractile ring by the fusion of intracellular vesicles. This mem-

rane addition is necessary to compensate for the increased surface

rea that accompanies cytoplasmic division [29]. Therefore, for sim-

licity, we model the cell surface by the fluid interface. The complete

ystem of equations describing cell growth and division in a viscous

ncompressible fluid is given by(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + μ�u(x, t)

+μς

3ρ
∇S(x, t) + σ1SF(x, t) + σ2DF(x, t), (1)

∇ · u(x, t) = ςS(x, t), (2)

here

(x, t) =
2∑

m=1

(1 − H(t − t0))δc(x − Ym(t)), (3)

F(x, t) =
∫
�

f1(X)δc(x − X(A, t))dA, (4)

1(X) = κ(X)n(X), (5)
F(x, t) =
�

f2(X(A, t0))δc(x − X(A, t))dA, (6)

2(X(A, t0)) = H(t − t0)ndiv(X(A, t))

s(X(A, t0))
, (7)

(X(A, t0)) =
∣∣|X(A, t0) − Y1(t0)| − |X(A, t0) − Y2(t0)|

∣∣
ε|Y1(t0) − Y2(t0)| + 1, (8)

div(X(A, t)) = (Y1(t0) − X(A, t)) + (Y2(t0) − X(A, t))

|(Y1(t0) − X(A, t)) + (Y2(t0) − X(A, t))| . (9)

agrangian marker points move according to the following:

∂X

∂t
= U(X), (10)

(X) =
∫
�

u(x)δc(x − X)dx, (11)

∂Ym

∂t
= U(Ym), for m = 1, 2, (12)

(Ym) =
∫
�

u(x, t)δcx − Ym(t))dx. (13)

ere, x = (x, y, z) is the fixed Cartesian coordinate, and X is the La-

rangian variable for the immersed boundary (see Fig. 2). Eqs. (1)

nd (2) are the Navier–Stokes equations, which are the basic govern-

ng equations of a viscous incompressible Newtonian fluid [25,30]. In

qs. (1) and (2), the physical parameters ρ and μ correspond to the

onstant mass density and constant viscous coefficient of the fluid,

espectively, σ 1 and σ 2 correspond to the stiffness coefficient for the

urvature force and division force, respectively. Moreover, p is the

ressure, and u = (u, v, w) is the fluid velocity.

In Eq. (3), S(x, t) represents the time-dependent source. S(x, t) is

ositive around cell nuclei and zero on the other fluid domain when

he cell grows. The sources are deactivated when the cell volume is

oubled [13]. To model these states, we use the Heaviside function

(t), where H(t) = 1 when t ≥ 0, and H(t) = 0, otherwise. δc(x) is

he three-dimensional smoothed Dirac delta function [26,31], which
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= (x, y, z)x

y

= (X(t), Y (t), Z(t))(t)Xz

x

Fig. 2. Illustration of Eulerian points x and Lagrangian points X(t).
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is defined by the product of one-dimensional smoothed Dirac delta

functions, i.e.,

δc(x) = 1

c3
ψ

(
x

c

)
ψ

(
y

c

)
ψ

(
z

c

)
, (14)

where c is the mesh width, h, and

ψ(r) =

⎧⎨
⎩

(3 − 2|r| +
√

1 + 4|r| − 4r2)/8 if |r| ≤ 1,

(5 − 2|r| −
√

−7 + 12|r| − 4r2)/8 if 1 < |r| ≤ 2,

0 if |r| > 2.

(15)

Here, t0 denotes the specific time when the mass of the cell

doubles the size of its mother cell. Furthermore, ς is a positive value,

SF = (SF1, SF2, SF3) is the interfacial tension body force concentrated

on the interface, f1(X) is the interfacial force density, κ(X) is the

mean curvature, n is the unit outward normal vector, and DF(x, t)

is the external force. The external force density f2(X) in Eq. (7) is

zero when t < t0 to simulate the process of cell growth. When t

≥ t0, f2(X) is ndiv/s. s(X) is the proposed stimulus in the previous

paper [24], which is defined as the difference of distances from two

aster centers to the cell membrane and a control parameter ε. To

ensure that the minimum of the stimulus function s(X(A, t0)) is

one, we set s(X(A, t0)) =
∣∣|X(A, t0) − Y1(t0)| − |X(A, t0) − Y2(t0)|∣∣

/(ε|Y1(t0) − Y2(t0)|) + 1. In this case, s(X) is in [1, 1 + 1/ε] and
Fig. 3. Schematic for the external force from the cell membrane. (a) The proposed stimulus m

ndiv(X)/s(X).
he maximum and minimum divisional forces are 1 at the cell

quator and 1/(1 + 1/ε) at the cell poles, respectively. We briefly

iscuss this phenomenon since a similar proof was proposed in [24].

ig. 3 shows the schematic illustration of the external force. Fig. 3(a)

hows the distribution of the proposed stimulus model s(x), which is

omputed using the difference of distances from aster centers to the

ell membrane and a control parameter ε. Fig. 3(b) shows the quiver

f ndiv(X), which is related to the positions of aster centers, and

ig. 3(c) shows our proposed external force ndiv(X)/s(X). Note that in

ur proposed method, we assume that the resistive force from the

embrane other than that of the contractile ring is surface tension,

hich means that these cells behave like water droplets, and the

ipid bilayers of the cell membrane are allowed to stretch. If the lipid

ilayers are inextensible, another external force that forces the cell

o its original cell or maintains the surface area conservation should

e added. A different value of ε can be chosen to change the length

f the cell bridge as shown in Fig. 4. Note that as ε → 0, our model

s the same as Rejniak’s model [13], in which the author proposed a

ingular contractile ring located orthogonally to the axis of two cell

uclei.

In order to make the variables dimensionless, we define

x′ = x

Lc
, u′ = u

Uc
, t ′ = tUc

Lc
, p′ = p

ρcUc
2
,

′ = ρ

ρc
, ς ′ = Ucς

ρcLc
,

here Lc, Uc, and ρc, are the characteristic length, velocity, and

ensity, respectively. Substituting these variables into the governing

qs. (1) and (2), and then omitting the primes yields

t + u · ∇u = −∇p + 1

Re
�u + 1

Se
∇S + 1

We
SF + 1

De
DF, (16)

· u = ςS. (17)

he dimensionless parameters are the Reynolds number, Re, Weber

umber, We, new parameter numbers, De and Se, which are given by

e = ρcUcLc

μ
, We = ρcU

2
c Lc

σ1

, De = ρcU
2
c Lc

σ2

, Se = 3ρcU
2
c

μLcς
.

. Numerical method

To compute the fluid flow interacting with an immersed bound-

ry, two distinct discretized grids are needed that are regular lat-

ice points for the whole fluid domain and boundary points for the
odel s(x) when ε = 0.05, (b) the quiver of ndiv(X), and (c) the proposed external force
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Fig. 4. Schematic for the external force from the cell membrane with various ε values. (a) ε = 0.005, (b) ε = 0.05, and (c) ε = 0.5.

Fig. 5. (a) Triangular surface mesh obtained using the distmesh algorithm. (b) Schematic illustration of a polyhedron and tetrahedron with reference point O.
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mmersed boundary. First, consider the fluid domain � = [0, Lx] ×
0, Ly] × [0, Ly] and define the fluid variables on a fixed Nx × Ny ×
z Eulerian grid that is labeled as xi jk = (xi, y j, zk) = ((i − 0.5)h, ( j −
.5)h, (k − 0.5)h) for i = 1, . . ., Nx, j = 1, . . ., Ny, and k = 1, . . ., Nz,

here h is the uniform mesh spacing, and Nx, Ny and Nz are the num-

ers of cells in the x, y, and z-directions, respectively. Denote the final

ime by T and the time step by �t.

We solve the governing equations by the finite difference method

n a staggered marker-and-cell mesh. The pressure and indicator

unctions are located at the cell centers, while the velocity com-

onents u, v, and w are placed at the centers of the x-, y-, and z-

irectional cell faces at the face centers, respectively; that is, u
i+ 1

2
, jk

=
(x

i+ 1
2
, y j, zk), v

i, j+ 1
2

,k
= (xi, y

j+ 1
2
, zk), and w

i j,k+ 1
2

= (xi, y j, z
k+ 1

2
).

e assume a homogeneous Neumann boundary condition for the

elocity. Moreover, we consider a set of M Lagrangian points Xl =
(Xl ,Yl , Zl ) for l = 1, . . . , M that represents the immersed bound-

ry. Suppose that there are MT triangles Tris = (Xl , Xm, Xq) for s =
, . . . , MT . To generate an oriented triangular mesh connecting with

mmersed boundary points, we use the distmesh algorithm [32,33].

or more details, refer to [28,32,33]. The triangular surface mesh ob-

ained using the distmesh algorithm is shown in Fig. 5(a). Notice that

he immersed boundary is discretized using a set of uniform triangu-

ar grids and that the three vertices Xl, Xm, and Xq are ordered coun-

erclockwise (see Fig. 5(b)).
Note that the reference time t0 is defined as m�t. Here, m is the

nteger that satisfies V(Xm) ≥ 2V(X0) and V (Xm−1) < 2V (X0). V(X)

s the volume of the polyhedron. For all of the triangles on the sur-

ace Tris = (Xl , Xm, Xq) = ((Xl ,Yl , Zl ), (Xm,Ym, Zm), (Xq,Yq, Zq)) with

reference point (O) (see Fig. 5(b)), the volume of the polyhedron is

iven by

(X)=1

6

MT∑
s=1

[
Xq(YlZm−YmZl )−Yq(XlZm − XmZl )+Zq(XlYm−XmYl )

]
.

ur goal is to compute un+1, Xn+1, and Yn+1 from given un, Xn, and
n. This is done as follows:

Step 1. Using the positions of the cell boundary Xn, and the two

stral centers Yn
1

and Yn
2
, we calculate two forces SFn and DFn using

iscretizations of Eqs. (5), (7), and (9). Note that the normal mean

urvature, κn
l

nn
l
, is calculated using the algorithm in [28,34,35].

Step 2. Spread the force into the nearby grid points of the fluid by

sing a discretization of Eqs. (4) and (6):

Fn
i jk =

M∑
l=1

fn
1lδh(xi jk − Xn

l )�Al,

Fn
i jk =

M∑
l=1

fn
2lδh(xi jk − Xn

l )�Al,

for i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz.
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Table 1

Computational parameters used in real biophysical experiments.

Parameter Physical and biophysical quantity

Diameter of cell (D) 10–20 μm

Fluid density (ρ) 1.35 g/(cm3) [13,21]

[14,15]

Fluid viscosity (μ) 100 g/(cm s) [13–15],

50–140 g/(cm s) [18]

Surface tension (σ 1) 490–850 g/(cm s2) [13],

0.42–1.4 × 104 g/(cm s2) [22]

Contractile stress (σ 2) 0–106 g/(cm s2) [21]

5 × 107 g/(cm s2) [14]

Source strength (ς ) 2 × 10−7g/s [14]
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Step 3. Solve the Navier–Stokes equations (16) and (17) using a

projection method. First, we solve for an intermediate velocity field ũ

without the pressure gradient term;

ũ − un

�t
+ un · ∇dun = 1

Re
�dun + 1

We
SFn + 1

De
DFn + 1

Se
∇dSn.

Then, we solve the following equations for the advanced pressure

field at the (n + 1)st time step:

un+1 − ũ

�t
= −∇d pn+1, (18)

∇d · un+1 = ςSn. (19)

By applying the divergence operator to Eq. (18), we are able to de-

termine the Poisson equation for the pressure at the advanced time

(n + 1):

�d pn+1 = 1

�t
(∇d · ũ − ςSn). (20)

The resulting linear system of Eq. (20) is solved using a multigrid

method; specifically, V-cycles with Gauss–Seidel relaxation. Then,

the divergence-free normal velocities un+1, vn+1, and wn+1 are de-

fined by

un+1 = ũ − �t∇d pn+1.

Step 4. Once the updated fluid velocity un+1 has been determined,

the velocity on the immersed boundary Un+1, immersed boundary

points Xn+1, and center positions Yn+1 are determined. These are cal-

culated using the discretizations of Eqs. (10)–(13).

These steps complete the description of the process by which the

quantities u, X, and Y are updated.

3.1. Volume correction algorithm

Cytokinesis is usually the shortest part of the cell cycle. It is dur-

ing interphase (G1, S, and G2 phases) that the cell grows by producing

proteins and cytoplasmic organelles such as mitochondria and en-

doplasmic reticulum [36]. Therefore, during cytokinesis, the mass of

the cell changes very little. Thus, in order to conserve the mass of

the cell during the cytokinesis, we use a volume-preserving scheme

[28]. Note that there are other volume-conserving methods [37–39]

in conjunction with immersed boundary equations. The key idea of

the method is relocating surface points along the normal directions

to conserve the total volume. A brief description of the volume cor-

rection procedure is summarized below.

Step (1). Update the immersed boundary points X∗ according to

Eq. (11); that is, X∗ = Xn + �tUn+1.

Step (2). Check the relative error of the volume V(X∗) defined

by Verror(X) = |2V (X0) − V (X)|/(2V (X0)). For a given tolerance, tol,

check whether Verror(X∗) < tol or not. If so, then Xn+1 = X∗; oth-

erwise, relocate the surface points along the normal directions, i.e.,

Xn+1 = X∗ + βn, where β is a constant.

Step (3). Determine the parameter β , which is a root of the cubic

equation V (Xn+1) = V (X∗ + βn) = 2V (X0) and update Xn+1 = X∗ +
βn. For more details, please refer to [28].

3.2. Remeshing algorithm for the surface mesh

During the numerical simulations, some interfaces are stretched

or compressed. To preserve the high-quality surface mesh, we use

the remeshing algorithm in [27]. A brief description of the remeshing

algorithm is summarized below.

Step (1). Construct the signed distance function φ in the whole

domain using the surface mesh Xn and set X̃n,m
l

= Xn
l
, where m = 0.

Step (2). Calculate the net force F(X̃n,m
l

) and update the inter-

mediate position by X∗
l

= X̃n,m
l

+ �τF(X̃n,m
l

), where �τ is a con-

stant. The net forces work in the following way: if the distance of
wo nearby points is smaller than a given value, the forces should

e away from each other; otherwise, they should move toward each

ther.

Step (3). Project X∗
l

to the interface, which is defined as the

ero level of φ, and obtain the new point Xn,m+1
l

on the interface

y Xn,m+1
l

= X∗
l

− φ(X∗
l
)∇dφ(X∗

l
). The reaction forces φ(X∗)∇dφ(X∗)

nter in the following way: all points that leave the interface dur-

ng processing in Step (2) move back to the closest interface position

long the normal vector ∇dφ(X∗
l
).

Step (2) and Step (3) are repeated until the discrete norm is smaller

han a given tolerance value. We then complete the remeshing pro-

edure for the surface mesh. Note that in our algorithm, remeshing is

one at every 20 time-steps.

Fig. 6 (a) and (b) shows the triangular mesh before and after the

emeshing procedure, respectively. From left to right, they are vertical

nd horizontal plane views. Before using the remeshing procedure,

he mesh distribution in the pole and equatorial regions is not uni-

orm. On the other hand, if the remeshing procedure is applied, then

n almost uniform mesh is obtained. In Section 4, we will perform a

umerical test to emphasize the effects of the remeshing algorithm

n cell cytokinesis.

It is important to note that the shape of the cell surface should

gree with the shape of the original object after the remeshing pro-

edure. To verify this fact, we consider a numerical test with a sphere

hat is centered at (0.5, 0.5, 0.5) with a radius of 0.25 in a unit

omain. The initial mesh distribution is not uniform as shown in

ig. 6(a). Here, M = 1024 is used. The remeshing procedure is per-

ormed to obtain the new mesh. The theoretical value of the distance,

hich is computed from the point X on the surface to the center, is

X − (0.5, 0.5, 0.5)| = 0.25. We calculate the discrete l2-norm of the

rror, which is

√∑M
l=1(0.25 − |Xl − (0.5, 0.5, 0.5)|)2/M = 4.71e − 4.

hese results indicate that the remeshing procedure preserves the

hape of the cell surface.

. Numerical experiments

Various papers have reported the real biophysical parameters

n cell processes, which are summarized in Table 1. Note that the

eynolds number is much smaller than one. For different animal

ells, the real parameters vary. In this paper, we use Re = 0.5. To sim-

lify the presentation, we use We = 1 and De = 2e−3, which are in

he range of the real parameters. ε is the parameter that relates to

he shape of the intercellular bridge [24]; here, we set ε = 0.05. A

esh grid of size 64 × 64 × 64 is used on the computational do-

ain � = (0, 4) × (0, 4) × (0, 4). Unless otherwise specified, the ini-

ial shape of the cell is a unit sphere and 10,436 nodes represent the

ell boundary. The time step chosen is �t = 0.05h2. The astral centers

re Y = (2, 1.8, 2) and Y = (2, 2.2, 2).
1 2
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Fig. 6. Surface meshes (a) before and (b) after the remeshing procedure. From left to right, they are vertical and horizontal plane views.

Fig. 7. (a)–(e) Evolution of cell growth and division. The computational times are listed below each figure. (f) Mass change rate, V(Xn)/V(X0).
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w

.1. Evolution of cell division

In this experiment, we show the evolution of cell division on

he unit computational domain in three dimensions. The simula-

ion is conducted up to time T = 1.607. The evolution is shown

n Fig. 7(a)–(e), and the computational times are listed below
ach figure. Two point sources inside the cell make the cell grow

Fig. 7(a) and (b)). Once the cell volume doubles, the sources are

eactivated, and the contracting force is activated. With the pro-

osed division force, the cell is divided into two cells as shown

n Fig. 7(c)–(e). When the sources are deactivated at time t0,

e assume that the mass of the cell is conservative. Exact mass
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Fig. 8. Comparison of cell shapes at T = 0.156 with (a) and without (b) the remeshing process. (c) and (d) are the close-up views of (a) and (b), respectively.

Fig. 9. Evolution of cell division with the advection term (a) and without the advection term (b) in Eq. (1).

Table 2

Error and convergence rates with the remeshing procedure.

Grid size 323–643 643–1283 1283–2563

eh/ h
2

7.009e−6 2.050e−6 5.647e−7

Rate 1.77 1.86

s

s

e

N

d

o

b

s

e

i

f

c

4

(

t

conservation is achieved using the correction scheme, as shown in

Fig. 7(f).

4.2. Effect of the remeshing procedure

Fig. 8 (a) and (b) shows the cell shapes at time T = 0.156 with and

without the remeshing procedure, respectively. Parts (c) and (d) of

Fig. 8 are the close-up views of (a) and (b), respectively. Here, we

only consider the cell division step. Thus, the initial shape of the

cell is a sphere with a diameter of 1.26. From the results shown in

Fig. 8, note the excellent mesh quality throughout the evolution of

the remeshing procedure in contrast to the elongated elements that

can be seen when the remeshing procedure is not applied. The CPU

times are 23.79 min and 19.36 min for the two cases, respectively.

Thus, the fraction of time spent performing the remeshing procedure

is not much higher compared to the whole computational process.

4.3. Convergence test

To calculate the convergence rate, we consider the same test prob-

lem set in Section 4.2. Here, the remeshing procedure is not con-

sidered. The numerical solutions are computed on uniform grids,

where h = 4/2n, for n = 5, 6, 7, and 8. We run the computational

simulation up to time T = 0.0025 with corresponding time steps,

�t = 0.01h2. We define the discrete l2-norm error e
h/ h

2

by e
h/ h

2

=√
1
M

∑M
l=1 |Xh,l − Xh/2,l|2. Here, Xh/2, l is the point Xh, l in the succes-
ively finer grid. The rate of convergence is defined as the ratio of

uccessive errors, i.e., log2(e
h/ h

2

/e h
2

/ h
4

). Using these definitions, the

rrors and rates of convergence are calculated, as shown in Table 2.

ote that our discretization is second-order in space and first or-

er in time. By refining the spatial and temporal grids by a factor

f four and two, respectively, the ratio of successive errors increases

y a factor of two. Notice that the convergence rate is approximately

econd-order in space, which is expected from discretization. How-

ver, since the division force is defined based on the positions of the

mmersed points of the cell boundary and cell nuclei, nonlinear ef-

ects are added when the cell nuclei and immersed points move. The

onvergence rate slightly decreases, as shown in Table 2.

.4. Inertial effects in our proposed method

The vast majority of biological processes at the microscopic scale

including cell division) occur in the creeping flow regime. To inves-

igate the inertial effects in our proposed method, we compare the
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Fig. 10. Evolution of cell division with different aster positions. (a) Y1 = (2, 1.8, 2.4) and Y2 = (2, 2.2, 2.4), (b) Y1 = (2, 1.8, 2) and Y2 = (2, 2.2, 2), (c) Y1 = (2, 1.4, 2) and Y2 =
(2, 1.8, 2).

Fig. 11. Effect of ε. The computational times are shown below each figure. (a) ε = 0.005 and De = 2e−3, (b) ε = 0.005 and De = 4e−4, (c) ε = 0.1 and De = 2e−3.
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results obtained with and without the advection term in Eq. (1). Each

calculation is conducted up to time T = 0.176. The other parameters

and initial conditions are the same as those used in Section 4.2. Fig. 9

shows the evolutions of cell division with the advection term (a) and

without the advection term (b). The results fit a straight line. The sim-

ilar results obtained by the two cases imply that the inertial effects

are negligible during cell division.

4.5. Symmetric and nonsymmetric cell divisions

For most animal cells, cell division is symmetric during cytoki-

nesis and results in two equal daughter cells. During asymmetric

division, an axis of polarity is established and the mitotic spindle

reorients along the axis [5]. Several conserved proteins have been

identified that are required for asymmetric divisions. However, a

report [23] that analyzed the role of centrosomes and astral mi-

crotubules in Drosophila neuroblast divisions concluded that astral

microtubules are not required for signaling or positioning cytokine-

sis, which is consistent with the spindle midzone being required for

positioning the cleavage furrow [5,23]. Here, we consider symmetric

and nonsymmetric cell divisions by choosing the astral centers

to be Y1 = (2, 1.8, 2.4) and Y2 = (2, 2.2, 2.4), Y1 = (2, 1.8, 2) and

2 = (2, 2.2, 2), and Y1 = (2, 1.4, 2) and Y2 = (2, 1.8, 2). The first

two cases are for the symmetric cell divisions and the last one is

for nonsymmetric case. The evolution of the three cases is shown in

Fig. 10. These results suggest that our proposed mathematical model

performs well in simulating cell division and agrees well with [23],

where asterless neuroblasts assemble cytokinetic rings around the

central spindle midzone and undergo unequal cytokinesis.

4.6. Simulation of the cell bridge

In the last stage of animal cell division called cytokinesis, the

intercellular bridge between the two daughter cells thins and sev-

ers, and the mechanical separation of a mother cell in two daugh-

ter cells occurs [40]. In general, the intercellular bridge is formed in

the middle of the cell due to the cleavage furrow constricting; thus,

a good mathematical model should properly define the cleavage fur-

row, which can lead to the formation of a cylindrical bridge. To in-

vestigate the formation of the intercellular bridge in the cell division

by process, we simulate cell division using two values of ε = 0.005

and 0.1. Fig. 11(a) and (b) shows the evolution of cell division for

De = 2e−3 and De = 4e−4, respectively. Here ε = 0.005 is used. No-

tice that when ε is smaller, the contractile stress, De, increases to

make the mother cell split into two separate daughter cells. Further-

more, the division time decreases as De decreases. Compared with the

results in Fig. 11(c), which are obtained using ε = 0.1 and De = 2e−3,

a larger ε value makes the intercellular bridge longer.

5. Conclusion

We proposed an immersed boundary method to simulate eu-

karyotic cell growth and cytokinesis in three dimensions. Triangu-

lar meshes were employed to represent the cell membrane, and

nodes were used for the Lagrangian points to track the motion. To

prevent the mesh from being distorted, a surface remeshing algo-

rithm was applied, which allowed for sufficient evolution for cytoki-

nesis. To maintain the mass of the cell in cytokinesis, we used a

volume-conserving algorithm. Various numerical experiments were

performed to demonstrate the ability of the proposed method to

model the cell growth and division process. In our proposed method,

we assumed that the resistive force from the membrane other than

that of the contractile ring was surface tension, which means that

these cells behave like water droplets, and the lipid bilayers of the

cell membrane are allowed to stretch; however, the lipid bilayers can
lso be inextensible for cells such as red blood cells. In this frame-

ork, another external force, which forces the cell to its original cell

r conserves the surface area, should be added. In [41], the authors

eveloped an immersed boundary method to simulate the dynamics

f the inextensible vesicles with the new elastic force, which is de-

ived from the variational derivative of the proposed elastic energy to

esist bending the membrane, tension energy to enforce the surface

rea constraint, and other energy functions for biology justifications.

s future research, it would be interesting to consider a membrane

hat stretches and studies the effects of the external forces during

ell cytokinesis. In this paper, we adopt the mathematical model sug-

ested by Rejniak [13]. Effectively, two fluid sources push each other,

esulting in two new nuclei are placed along the cells’ longest axis.

e also plan to consider biological modelling and simulation of cell

rowth. One part is that flows into the cell through the cell membrane

nd another part would be that producing proteins and cytoplasmic

rganelles such as mitochondria and endoplasmic reticulum.
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