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a b s t r a c t

The Rayleigh–Taylor instability is a fundamental instability of an interface between two flu-
ids of different densities, which occurs when the light fluid is pushing the heavy fluid. Dur-
ing the nonlinear stages, the growth of the Rayleigh–Taylor instability is greatly affected by
three-dimensional effects. To investigate three-dimensional effects on the Rayleigh–Taylor
instability, we introduce a new method of computation of the flow of two incompressible
and immiscible fluids and implement a time-dependent pressure boundary condition that
relates to a time-dependent density field at the domain boundary. Through numerical ex-
amples, we observe the two-layer roll-up phenomenon of the heavy fluid, which does not
occur in the two-dimensional case. And by studying the positions of the bubble front, spike
tip, and saddle point, we show that the three-dimensional Rayleigh–Taylor instability ex-
hibits a stronger dependence on the density ratio than on the Reynolds number. Finally, we
perform a long time three-dimensional simulation resulting in an equilibrium state.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Rayleigh–Taylor instability (RTI) is a fundamental instability of an interface between two fluids of different den-
sities, which occurs when a heavy fluid is superposed over a light fluid in a gravitational field or when a hydrodynamic
instability occurs in any accelerating fluid system in which the density and pressure gradients have opposite signs. For a
fluid in a gravitational field, the RTI was first introduced by Rayleigh [1] and later applied in considering all accelerated flu-
ids by Taylor [2]. The Rayleigh–Taylor instability has been applied in considering a wide range of problems such as inertial
confinement fusion [3–6], supernova explosion [7,8] and remnants [9,10], atmospheric physics [11], geophysics [12], and
oceanography [13].

The growth of the RTI can be roughly divided into four stages [14]. In the first stage, the amplitude h of the perturbation is
much smaller than the wavelength λ. The linear stability theory is valid and shows that the amplitude grows exponentially
with time [2]:

h = h0eαt ,

where h0 is the initial amplitude, α is the growth rate, and t is the time. The growth rate depends on the density ratio (ρH/ρL,
or Atwood number At = (ρH − ρL)/(ρH + ρL), where ρH and ρL are the densities of the heavy and light fluids, respectively),
the surface tension, the viscosity, and the compressibility [14]. When the amplitude grows to a size of order 0.1λ to 0.4λ,
substantial deviations from the linear theory are observed and the RTI evolves into the second (nonlinear) stage. During the
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second stage, the light fluid rises into the heavy fluid in the form of bubbles and the heavy fluid falls into the light fluid in
the form of spikes. In the third stage, the nonlinearity becomesmuch stronger. The Kelvin–Helmholtz instability [15] occurs
due to a velocity difference across the interface between two fluids and a roll-up of vortices forms a mushroom-type shape
of the spikes. Also, there is bubble amalgamation, in which large bubbles absorb smaller ones and large bubbles grow larger
and move faster. In the final stage, the RTI evolves into turbulent or chaotic mixing.

The first two stages can be dealt with by the analytic and quasi-analyticmethods [15]. The behavior during the late stages
is mainly studied numerically. Although there have been many numerical studies [16–26], the nonlinear evolution of the
three-dimensional RTI in the late stages, which results fromdifferent dimensionless parameters or Atwood numbers, has not
been well documented and, furthermore, to the best of the authors’ knowledge, numerical simulations were stopped well
before the fluid system reached an equilibrium state. The purpose of this paper is to investigate the late stage evolution of
the three-dimensional RTI of two fluids and to perform a long time three-dimensional simulation resulting in an equilibrium
state.

In this paper, direct numerical simulations of the three-dimensional RTI are carried out using a phase-field method. The
main idea of the method is to treat the interface between two fluids as a thin mixing layer across which physical properties
vary steeply but continuously. The method avoids a direct tracking of the interface and produces the correct interfacial ten-
sion from themixing layer free energy. The properties and evolution of themixing layer are governed by an order parameter
φ (a phase-field variable) that obeys the Cahn–Hilliard equation [27]. The Cahn–Hilliard equation has been extensively stud-
ied using finite element methods [28–32], finite difference algorithms [33–40], spectral methods [41,42], and collocation
techniques [43,44] based on Legendre and Chebyshev polynomials [45]. Recently, Dehghan and Mirzaei [46] applied a nu-
merical method based on the boundary integral equation and dual reciprocity methods using radial basis functions [47,48].

The governing equations for two incompressible and immiscible fluids are the Navier–Stokes–Cahn–Hilliard equa-
tions [49–64]:

ρ(φ)


∂u
∂t

+ u · ∇u


= −∇p +
1
Re

1u +
ρ(φ)

Fr2
g, (1)

∇ · u = 0, (2)
∂φ

∂t
+ ∇ · (φu) =

1
Pe

1µ, (3)

µ = f (φ) − ϵ21φ, (4)

where u is the velocity, p is the pressure, ρ(φ) = (ρH(1 + φ)/2 + ρL(1 − φ)/2)ρc is the variable density, g = (0, 0, −1)
is the gravitational direction, and µ is the generalized chemical potential. f (φ) = φ3

− φ and ϵ are redefined according to
the scaling. The dimensionless parameters are the Reynolds number, Re = ρcUcLc/η, the Froude number, Fr = Uc/

√
gLc ,

and the Péclet number, Pe = UcLc/(Mµc). Here, the subscript ‘c ’ indicates characteristic values used to make the governing
equations dimensionless, η is the viscosity, g is the gravitational acceleration, andM is the mobility. In this paper, the effect
of the surface tension is neglected. We note that even though our phase-field method can deal with the variable viscosity
case straightforwardly, we focus on the viscosity matched case. When the densities of two incompressible fluids are differ-
ent, the incompressible condition (2) is no longer valid in the mixed region of the two incompressible fluids despite each
fluid being incompressible. Such fluids are referred to as quasi-incompressible in Ref. [65]. In recent work [66], the authors
discussed this issue and formulated a pair of phase-field models that conserve mass, momentum, and total volume for each
individual phase of two fluids.

This paper is organized as follows. In Section 2, we give a numerical solution with linear and nonlinear multigrid
methods [67,68]. The pressure boundary condition which allows long time simulation will also be addressed in this section.
Numerical results for the three-dimensional RTI are presented in Section 3. In Section 4, conclusions are drawn.

2. A numerical solution

The solution of large systems of equations resulting from discretization of the governing equations (1)–(4) is very costly,
especially in three dimensions. An efficient approximation can be obtained by decoupling the solution of the momentum
equations from the solution of the continuity equation by a projection method [69–74].

Let a three-dimensional computational domain be partitioned in Cartesian geometry into a uniform mesh with mesh
spacing h. The center of each cell, Ωijk, is located at (xi, yj, zk) = ((i − 0.5)h, (j − 0.5)h, (k − 0.5)h) for i = 1, . . . ,Nx, j =

1, . . . ,Ny, and k = 1, . . . ,Nz . Nx,Ny, and Nz are the numbers of cells in the x-, y-, and z-directions, respectively. Cell vertices
are located at (xi+ 1

2
, yj+ 1

2
, zk+ 1

2
) = (ih, jh, kh). In this paper, the fluid variables are defined on a staggered marker-and-cell

(MAC)mesh introduced byHarlow andWelch [75]; that is, pressures and phase fields are stored at cell centers and velocities
at cell faces (see Fig. 1).

Let 1t be the time step and n be the time step index. At the beginning of each time step, given un and φn, we want to
find un+1, pn+1, and φn+1 which solve the following temporal discretization of Eqs. (1)–(4):

ρn u
n+1

− un

1t
= −ρn(u · ∇du)n − ∇dpn+1

+
1
Re

∆dun
+

ρn

Fr2
g,
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Fig. 1. Location of the fluid variables on a MAC mesh cell. Velocities are defined at the cell faces while pressures and phase fields are defined at the cell
centers.

∇d · un+1
= 0,

φn+1
− φn

1t
= −∇d · (φu)n +

1
Pe

∆dν
n+1

−
1
Pe

∆dφ
n, (5)

νn+1
= (φn+1)3 − ϵ2∆dφ

n+1, (6)

where ρn
= ρ(φn). The outline of the main procedures in one time step is as follows.

Step 1. Initialize φ0 to be the locally equilibrated composition profile and u0 to be the divergence-free velocity field.
Step 2. Solve for an intermediate velocity field, ũ, which generally does not satisfy the continuity equation, without the
pressure gradient:

ũ − un

1t
= −(u · ∇du)n +

1
ρnRe

∆dun
+

1
Fr2

g,

where the convective term, (u · ∇du)n, is computed using an upwind scheme [62,63].
Then, we solve the following equations for the advanced pressure field at the (n + 1)th time step:

un+1
− ũ

1t
= −

1
ρn

∇dpn+1, (7)

∇d · un+1
= 0. (8)

Applying the divergence operator to Eq. (7), we find that Eq. (7) is equivalent to a Poisson equation for pn+1:

∇d ·


1
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

=
1

1t
∇d · ũ, (9)

where we have made use of Eq. (8) and the terms are defined as follows:
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
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1
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2
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+
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+
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ijk ,

∇d · ũijk =
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2 ,j,k − ũi− 1

2 ,j,k

h
+

ṽi,j+ 1
2 ,k − ṽi,j− 1

2 ,k
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+
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2
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h
,

where ρn
i+ 1

2 ,j,k
= (ρn

i+1,j,k + ρn
ijk)/2 and the other terms are similarly defined.

The boundary condition for the pressure [62] is

n · ∇dpn+1
= n ·


−ρn u

n+1
− un

1t
− ρn(u · ∇du)n +

1
Re

∆dun
+

ρn

Fr2
g


,

where n is the unit vector normal to the domain boundary.
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Fig. 2. Evolution of the interface at (a) t = 1.0, (b) t = 2.0, (c) t = 3.0, and (d) t = 4.0. The Atwood number is 0.5 and the Reynolds number is 1024. The
interface is viewed from the heavy-fluid side (left column) and from the light-fluid side (right column). The interfaces in the left column are shifted 0.5 in
both x- and y-directions for a better view of the bubble.

In our application of the phase-field method to the three-dimensional RTI, we will use periodic boundary conditions at
the four sides and no slip boundary conditions at the top and bottom walls. Therefore,

n · ∇dpn+1
= n ·

ρn

Fr2
g, i.e.,

∂pn+1

∂z
= −

ρn

Fr2
at z = 0 and z = Lz .

The resulting linear system of Eq. (9) is solved by a fast solver, such as a linear multigrid method [67]. Also, a Gauss–Seidel
relaxation scheme is used as the smoother in the multigrid method. Then, the divergence-free velocities are defined by

un+1
= ũ −

1t
ρn

∇dpn+1.

Step 3. Update the phase field φn to φn+1. We implement an unconditionally gradient stable scheme in Eqs. (5) and (6) with a
nonlinear multigrid method [67]. For a detailed description of the numerical method used in solving Eqs. (5) and (6), please
refer to Refs. [38,76].

Since we are interested in a long time simulation, mass conservation is an important factor. Therefore, we use a
conservative discretization of the convective part of the phase field Eq. (5):

((φu)x + (φv)y + (φw)z)
n
ijk =

un
i+ 1

2 ,j,k
(φn

i+1,j,k + φn
ijk) − un

i− 1
2 ,j,k

(φn
ijk + φn

i−1,j,k)

2h

+

vn
i,j+ 1

2 ,k
(φn

i,j+1,k + φn
ijk) − vn

i,j− 1
2 ,k

(φn
ijk + φn

i,j−1,k)

2h

+

wn
i,j,k+ 1

2
(φn

i,j,k+1 + φn
ijk) − wn

i,j,k− 1
2
(φn

ijk + φn
i,j,k−1)

2h
.

These complete one time step.
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(a) t = 1.0. (b) t = 2.0.

(c) t = 3.0. (d) t = 4.0.

Fig. 3. Cross-sectional views of the interface at three vertical planes, x = 0, x = 0.5, and x = y. Times are shown below each figure.

3. Numerical results

In this section, we simulate the three-dimensional RTI in a rectangular box with a square horizontal cross-section. In
the previous work of He et al. [22], similar numerical experiments were performed using a lattice Boltzmann method. The
height–width aspect ratio is fixed at 4:1. Unless otherwise specified, the initial condition is

φ(x, y, z, 0) = tanh

z − 2 − 0.05(cos(2πx) + cos(2πy))

√
2ϵ


on the computational domain Ω = (0, 1) × (0, 1) × (0, 4).

3.1. Three-dimensional Rayleigh–Taylor instability

The evolution of the interface in the three-dimensional RTI is shown in Fig. 2. Left and right columns in each subfigure
show two different views of the interface from the heavy-fluid side and the light-fluid side, respectively. Here, the Atwood
number is 0.5 and the Reynolds number is 1024. And we use h = 1/128 (a 128 × 128 × 512 grid), 1t = 0.001, ϵ = 0.01,
and Pe = 100/ϵ. During the early stages, the interface grows nearly symmetrically up and down and remains rather simple
(see Fig. 2(a)). But, as time goes by, it becomes more complicated and spikes of the heavy fluid first form near the middle
of the four sides of the computational domain (see Fig. 2(b)). The roll-up at the edge of the spike starts at a later time (see
Fig. 2(c)). At t = 4.0, these roll-ups are stretched into two extra layers of the heavy fluid folded upward (see Fig. 2(d)). This
two-layer roll-up phenomenon is a unique feature of the three-dimensional RTI. Fig. 3 shows cross-sectional views of the
interface at three vertical planes, x = 0, x = 0.5, and x = y. The interfaces in the x = 0 and x = 0.5 planes look like those
in the two-dimensional RTI. However, the interface in the x = y plane is quite different. In this plane, we can see clearly the
two-layer roll-up phenomenon. These results are in qualitative agreement with the previous computations of Li et al. [21]
and He et al. [22].

3.2. Long time evolution of the three-dimensional Rayleigh–Taylor instability

Owing to the pressure boundary treatment mentioned in Section 2, we can perform long time evolution resulting in an
equilibrium state. The Atwood number is 0.5 and the Reynolds number is 3000. And we use h = 1/64 (a 64 × 64 × 256
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Fig. 4. Long time evolution of the three-dimensional Rayleigh–Taylor instability at (a) t = 0, (b) t = 3.53, (c) t = 7.07, (d) t = 14.14, (e) t = 17.67, and
(f) t = 70.7. Top and bottom rows show two different views of the interface from the light-fluid side and the heavy-fluid side, respectively.

grid), 1t = 0.001
√
2, ϵ = 0.01

√
2, and Pe = 1/ϵ. The evolution of the interface is shown in Fig. 4. At time t = 70.7, the

heavy fluid falls down and the light fluid rises up completely.

3.3. The effect of the Reynolds number

To investigate the effect of the Reynolds number on the three-dimensional RTI, we perform numerical simulations at
a number of Reynolds numbers with the Atwood number fixed at 0.5. We use h = 1/128 (a 128 × 128 × 512 grid),
1t = 0.001, ϵ = 0.01, and Pe = 1/ϵ. Fig. 5 shows the positions of the bubble front, spike tip, and saddle point at different
Reynolds numbers. For all Reynolds numbers, at later times, the bubble rises with a constant speed and the spike accelerates
slightly. The saddle points move downward as time increases, but the movement is rather slow compared to those of the
bubble and spike. Also, we observe that a decrease in the Reynolds number delays the development of the RTI. This delay
is larger for the spike than for the bubble and saddle points. The effect of the Reynolds number is obvious at low Reynolds
numbers but becomes negligible for Re > 512.

3.4. The effect of the Atwood number

To study the effect of the Atwood number on the three-dimensional RTI, we perform numerical simulations at a number
of Atwood numbers with the Reynolds number fixed at 1024.We use h = 1/128 (a 128×128×512 grid),1t = 0.001, ϵ =

0.01, and Pe = 1/ϵ. Fig. 6 shows the positions of the bubble front, spike tip, and saddle point at different Atwood numbers.
When the Atwood number is small (at At = 0.2), the position change of the bubble front is almost the same as that of
the spike tip. This means that the interface grows nearly symmetrically up and down. However, as the Atwood number
increases, the position of the spike tip changes much more quickly than that of the bubble front and the symmetry of the
initial structure becomes lost. From the results of Fig. 6, we see that the three-dimensional RTI exhibits a strong dependence
on the Atwood number.
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Fig. 5. Effect of the Reynolds number on the positions of the bubble front, spike tip, and saddle point. The Atwood number is fixed at 0.5. Solid, dotted,
dash–dotted, and dashed lines show the results for Re = 1024, 512, 256, and 128, respectively.

Fig. 6. Effect of the Atwood number on the positions of the bubble front, spike tip, and saddle point. The Reynolds number is fixed at 1024. Solid, dotted,
dash–dotted, and dashed lines are the results of At = 0.5, 0.4, 0.3, and 0.2, respectively.

4. Conclusions

The three-dimensional RTI between two incompressible and immiscible fluids was studied using a phase field. During
the early stages, the interface grows nearly symmetrically up and down and remains rather simple. During the late stages,
the heavy fluid rolls up at both the saddle point and the spike tip due to the Kelvin–Helmholtz instability. As a result, we
observed the two-layer roll-up phenomenon of the heavy fluid, which does not occur in the two-dimensional case. And we
studied the positions of the bubble front, spike tip, and saddle point to investigate the effect of the Reynolds and Atwood
numbers on the three-dimensional RTI. We showed that a decrease in the Reynolds or Atwood numbers delays the devel-
opment of the RTI. Note that the three-dimensional RTI exhibits a stronger dependence on the Atwood number than on the
Reynolds number. Finally, owing to the pressure boundary treatment, wewere able to perform long time three-dimensional
simulation resulting in an equilibrium state.
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