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We present a volume-preserving scheme for two-phase immiscible incompressible flows using an
immersed boundary method (IBM) in a three-dimensional space. The two-phase IBM employs a mixture
of Eulerian and Lagrangian variables, where the fluid interface is represented by discrete Lagrangian
markers exerting surface tension forces to the Eulerian fluid domain and the markers are advected by
the fluid velocity. The interactions between the Lagrangian markers and the fluid variables are linked
by the discretized Dirac delta function. The present study extends the previous two-dimensional research
(Li et al., Volume preserving immersed boundary methods for two-phase fluid flows, Int. J. Numer. Meth.
Fluids 69 (2012) 842–858) to the three-dimensional space. The key idea of the proposed method is relo-
cating surface points along the normal directions to conserve the total volume. We perform a number of
numerical experiments to show the efficiency and accuracy of the proposed method.
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1. Introduction

Two-phase fluid flows have been studied by using various
methods such as the volume of fluid [1–3], level set [4–7], front
tracking [8–10], phase field [11–13], and lattice Boltzmann meth-
ods [14,15]. As the immersed boundary method (IBM) proposed
by Peskin [16] can accurately simulate the interaction between
thin elastic material and fluid, it has been widely studied and ap-
plied successfully to many biological problems [17–29]. The main
idea of the IBM is to use an Eulerian grid for the fluid mechanics
together with Lagrangian markers of the immersed boundary in
the fluid. The immersed boundary exerts a singular force on the
fluid and moves at the fluid velocity. The interaction between the
fluid and the immersed boundary is achieved through the spread-
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Fig. 1. Illustration of Eulerian points x and Lagrangian points XðtÞ.
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ing of the singular force and the interpolation of the velocity by
using a discrete Dirac delta function [30,31].

Though the IBM has been studied for many applications
including the flow in the heart [16], the IBM does not conserve
the volume generally [32] and it is a drawback for simulating
immiscible multi-phase fluid flows. The volume loss can be
caused by the violated divergence-free condition at Lagrangian
grid of the immersed boundary point as the interpolated velocity
field through the delta function cannot be guaranteed to be
continuously divergence-free [33,34]. To resolve this problem,
Peskin and Printz [34] proposed the modified finite-difference
divergence stencils based on the interpolation scheme. The pro-
posed method is constructed in such a way that the interpolated
velocity field at the immersed boundary is more nearly
divergence-free. However, this method does not guarantee the
conservation of the polyhedron volume since we use a
finite time step size to advect the immersed boundary marker
points.

In this paper, we present a simple volume-preserving scheme
for two-phase immiscible incompressible fluid flows using the
IBM in a three-dimensional space, which is an extension of the
work of Li et al. [35] in which they focused on an area-preserving
scheme in a two-dimensional space. The key idea is to relocate
the interface marker points normally so that the polyhedron vol-
ume is preserved. Recently, some papers are reported on an im-
proved mass conservation of finite element tests [36,37]. The
severity of volume loss depends on many factors such as the grid
structure, the time integrator, and the constitutive law for the
boundary mechanics. It is worth noting that the lack of volume
conservation is not a problem for many IBM applications such as
those for which the structure has stress-free reference
configuration.

The rest of the paper is organized as follows. Section 2 briefly
summarizes the IBM for the immiscible incompressible two-phase
fluid flows. In Section 3, the numerical solutions including the sur-
face mesh generation, calculation of mean curvature, and volume
correction algorithm are described. Representative numerical
experiments are provided to show the efficiency and accuracy of
our volume-preserving scheme in Section 4. Finally, conclusions
are drawn in Section 5.
2. Governing equations

Let the fluid velocity uðx; tÞ ¼ ðuðx; tÞ;vðx; tÞ;wðx; tÞÞ be defined
on the fixed Cartesian coordinate x ¼ ðx; y; zÞ at time t (see Fig. 1).
Viscous and incompressible fluid flows in a Cartesian domain
X 2 R3 containing an immersed boundary C can be modeled by
the Navier–Stokes equation:

qðIÞ @u
@t
þ u � ru

� �
¼ �rpþ lDuþ f þ qðIÞg; ð1Þ

r � u ¼ 0; ð2Þ

where Iðx; tÞ is the indicator function, qðIðx; tÞÞ is the fluid density,
pðx; tÞ is the pressure, l is the viscosity, and g is the gravity. Here,
the singular surface tension force density fðx; tÞ is given by

fðx; tÞ ¼
Z

C
FðXðtÞÞdðx� XðtÞÞdA; ð3Þ

where XðtÞ is the Lagrangian variable for the immersed boundary
(see Fig. 1) and dðx� XðtÞÞ is the three-dimensional Dirac delta
function which is defined by the product of one-dimensional Dirac
delta functions, i.e., dðxÞ ¼ dðxÞdðyÞdðzÞ. The Lagrangian force den-
sity FðXðtÞÞ is defined as

FðXðtÞÞ ¼ rjðXðtÞÞnðXðtÞÞ; ð4Þ
where r is the surface tension coefficient, j ¼ j1 þ j2 is the mean
curvature for the two principal curvatures j1; j2, and n is the unit
outward normal vector.

The indicator function is obtained by solving the following Pois-
son equation with zero Dirichlet boundary condition:

DIðx; tÞ ¼ �r �
Z

C
nðXðtÞÞdðx� XðtÞÞdA:

The variable density is calculated by
qðIðx; tÞÞ ¼ q2 þ ðq1 � q2ÞIðx; tÞ, where q1 and q2 are densities of
fluid 1 and fluid 2, respectively. The immersed boundary velocity
UðXðtÞÞ is determined by

UðXðtÞÞ ¼
Z

X
uðx; tÞdðx� XðtÞÞdx: ð5Þ

Then the motion of the immersed boundary is determined by inte-
grating the equation

dXðtÞ
dt
¼ UðXðtÞÞ: ð6Þ
3. Numerical solution

In this section, we present the numerical method for solving the
governing equations.

3.1. Numerical algorithm

Let a computational domain be partitioned with a uniform
mesh spacing h in Cartesian geometry. The center of each cell is lo-
cated at xijk ¼ ðxi; yj; zkÞ ¼ ðði� 0:5Þh; ðj� 0:5Þh; ðk� 0:5ÞhÞ for
i ¼ 1; . . . ;Nx; j ¼ 1; . . . ;Ny, and k ¼ 1; . . . ;Nz. Here, Nx;Ny, and Nz

are the numbers of cells in the x-, y- and z-directions, respectively.
We denote the final time by T and the time step by Dt.

To generate an oriented triangular mesh connecting with im-
mersed boundary points, we use the distmesh algorithm [38,39].
Let us take a two-dimensional example to illustrate the basic idea
of the algorithm. Let the interface of two immiscible fluids be
implicitly represented as the zero level set of a signed distance
function. For example, for the unit circle interface, a signed dis-
tance function is given as /ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 1 (Fig. 2a). Here

are several steps on generating the triangular mesh.

Step A. Create an initial distribution in the computational
domain (Fig. 2b).
Step B. Remove points outside the region, /ðx; yÞ > 0 (Fig. 2c).
Step C. Make triangulation by the Delaunay algorithm [40,41]
(Fig. 2c).
Step D. Assign the repulsive force depending on the length of
side of each triangle and calculate the net force at each node
point (Fig. 2d). Move points according to the net force.
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Fig. 2. (a) Implicit representation of the interface, (b) initial distribution, (c) triangulation after removing outside points, (d) net forces, (e) final mesh, and (f) boundary points.

Fig. 3. Velocities are defined at cell boundaries while the pressure and indicator
function are defined at the cell centers.

Fig. 4. Schematic of the Voronoi area.
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Step E. Find points outside /ðx; yÞ > 0 and bring them back to
the boundary /ðx; yÞ ¼ 0.

We repeat Steps C–E until the mesh quality is satisfactory, that
is, all node points move less than a given tolerance (see [38,39])
(Fig. 2e), then take boundary points as the immersed boundary
markers (Fig. 2f).

We use a set of M Lagrangian points Xl ¼ ðXl;Yl; ZlÞ for
l ¼ 1; . . . ;M to represent the immersed boundary. Suppose that
there are MT triangles Tris ¼ ðXl;Xm;XqÞ for s ¼ 1; . . . ;MT . Note that
the three vertices Xl; Xm, and Xq are ordered counterclockwise.

Let us discretize the governing equations. A staggered marker-
and-cell (MAC) mesh of Harlow and Welch [42] is used. Pressure
and indicator functions are stored at cell centers. Velocity compo-
nents u; v , and w are defined at the x-, y-, and z-directional face
centers, respectively (see Fig. 3). That is, un

iþ1
2;jk
¼ uðxiþ1

2
; yj; zk;nDtÞ,

vn
i;jþ1

2;k
¼ ðxi; yjþ1

2
; zk;nDtÞ, and wn

ij;kþ1
2
¼ ðxi; yj; zkþ1

2
;nDtÞ.
Next, we describe the overall procedure for the numerical solu-
tion from n to nþ 1 time step. With a given divergence-free veloc-
ity field un and a boundary configuration Xn, we want to find unþ1

and Xnþ1 which are solved using the following fractional step
method:

qn unþ1 � un

Dt
¼ �qnun � rdun �rdpnþ1 þ lDdun þ fn þ qng; ð7Þ

rd � unþ1 ¼ 0; ð8Þ

where qn ¼ q2 þ ðq1 � q2ÞI
n and g ¼ ð0; 0;�gÞ.

Step 1. Evaluate the surface tension force Fn on the immersed
boundary from the given boundary configuration Xn. For
l ¼ 1; . . . ;M,

Fn
l ¼ rjn

l nn
l : ð9Þ

We briefly review the calculation of the normal mean curvature
at the immersed boundary point on the surface [43–48]. Let us de-
note a Voronoi area at Xl by AreaðNlÞ, where Nl is the set of neigh-
boring vertices of Xl. That is,

AreaðNlÞ ¼
1
8

X
q2Nl

ðcot alq þ cot blqÞjXl � Xqj2;

where alq and blq are angles opposite to the edge XlXq (see Fig. 4).
Then the normal mean curvature is given by

jðXlÞn ¼ lim
AreaðNlÞ!0

rAreaðNlÞ
AreaðNlÞ

¼ 1
2AreaðNlÞ

X
q2Nl

ðcot alq þ cot blqÞðXl � XqÞ;

wherer is the gradient with respect to the ðx; y; zÞ coordinates of Xl

[43].
To test this formula for computing the normal mean curvature,

we consider a unit sphere placed at the center of domain
X ¼ ð�1;1Þ � ð�1;1Þ � ð�1;1Þ. Then the analytic value of the mean
curvature is jðXÞ ¼ 2 for any point X on the surface.

First, we consider numerical mean curvature values with non-
obtuse and obtuse triangle meshes as shown in Fig. 5: (a) non-ob-
tuse triangles, the numerical value of j is 2, which means the error



Fig. 5. Mean curvature calculated by various triangles in a unit sphere with analytic value j ¼ 2. (a) Non-obtuse triangles, the numerical value of j is 2, which means the
error is on the order of machine precision. (b) Obtuse triangles, the numerical value of j is 2.00002.
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Fig. 6. (a) Triangular mesh generation of the unit sphere. (b) Stem plot of the normal mean curvature jðXÞ for 50 randomly chosen surface points.
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is on the order of machine precision and (b) obtuse triangles, the
numerical value of j is 2.00002. We have almost identical numer-
ical results for both cases comparing with the analytic mean curva-
ture value.

Second, Fig. 6a and b shows the triangular mesh of the unit
sphere by using the distmesh algorithm and the stem plot of
jðXÞ for 50 randomly chosen surface points, respectively. In this
case, we calculate the discrete l2-norm of error, which isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M

PM
l¼1j2� jðXlÞj2

q
¼ 3:02e�5. As can be seen from these results,

the formula is accurate.
Step 2. Spread the boundary surface tension force to the nearby

lattice points of the fluid.

fn
ijk ¼

XM

l¼1

Fn
l dh xijk � Xn

l

� �
DAl; for i ¼ 1; . . . ;Nx; j ¼ 1; . . . ;Ny; k

¼ 1; . . . ;Nz:

Here dh is a smoothed approximation to the three-dimensional
Dirac delta function as

dhðxÞ ¼
1

h3 d
x
h

� �
d

y
h

� �
d

z
h

� �
;

where a 4-point delta function [30] is given by

dðrÞ ¼
ð3� 2jrj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p
Þ=8 if jrj 6 1;

ð5� 2jrj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p
Þ=8 if 1 < jrj 6 2;

0 if jrj > 2:

8><
>: ð10Þ
Here the surface area element DAl is defined as one third of the
total surface area of neighboring triangles having Xl as the com-
mon vertex, i.e.,

DAl ¼
1
6

X
m;q2Nl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jXl � Xmj2jXl � Xqj2 � ððXl � XmÞ � ðXl � XqÞÞ2

q
:

Step 3. Solve the Navier–Stokes Eq. (7) on the Cartesian grid to
get unþ1 and pnþ1 from un, f n ¼ ðf n

1 ; f
n
2 ; f

n
3 Þ, and g ¼ ðg1; g2; g3Þ:

qn
iþ1

2;jk

unþ1 � un

Dt
þ un � rdun

� �
iþ1

2;jk

¼ �
pnþ1

iþ1;jk � pnþ1
ijk

h
þ lDdun

iþ1
2;jk
þ f n

1 iþ1
2;jk
þ qn

iþ1
2;jk

g1; ð11Þ

qn
i;jþ1

2;k

vnþ1 � vn

Dt
þ un � rdvn

� �
i;jþ1

2;k

¼ �
pnþ1

i;jþ1;k � pnþ1
ijk

h
þ lDdvn

i;jþ1
2;k
þ f n

2 i;jþ1
2;k
þ qn

i;jþ1
2;k

g2; ð12Þ

qn
ij;kþ1

2

wnþ1 �wn

Dt
þ un � rdwn

� �
ij;kþ1

2

¼ �
pnþ1

ij;kþ1 � pnþ1
ijk

h
þ lDdwn

ij;kþ1
2
þ f n

3 ij;kþ1
2
þ qn

ij;kþ1
2
g3; ð13Þ

rd � unþ1
ijk ¼ 0: ð14Þ
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Fig. 7. Schematic illustration for the polyhedron and a tetrahedron with a reference
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By using the projection method proposed by Chorin [49], com-
pute an intermediate velocity field, ~u, which does not satisfy the
incompressible condition. For example, from Eq. (11) without the
pressure gradient term, we have

qn
iþ1

2;jk

~unþ1 � un

Dt
þ un � rdun

� �
iþ1

2;jk

¼ lDdun
iþ1

2;jk
þ f n

1 iþ1
2;jk
þ qn

iþ1
2;jk

g1:

Then we have

~uiþ1
2;jk
¼ un

iþ1
2;jk
� Dtðun � rdunÞiþ1

2;jk
þ Dt

qn
iþ1

2;jk

f n
1 iþ1

2;jk

þ Dtl
h2qn

iþ1
2;jk

un
iþ3

2;jk
þ un

i�1
2;jk
þ un

iþ1
2;jþ1;k þ un

iþ1
2;j�1;k þ un

iþ1
2;j;kþ1

�

þþun
iþ1

2;j;k�1 � 6un
iþ1

2;jk

�
þ g1 Dt; ð15Þ

where the advection term is defined by

ðun � rdunÞiþ1
2;jk
¼ un

iþ1
2;jk

�un
x

iþ1
2
;jk

þ
vn

i;j�1
2;k
þ vn

iþ1;j�1
2;k
þ vn

i;jþ1
2;k
þ vn

iþ1;jþ1
2;k

4
�un

y
iþ1

2;jk

þ
wn

ij;k�1
2
þwn

iþ1;j;k�1
2
þwn

ij;kþ1
2
þwn

iþ1;j;kþ1
2

4
�un

z
iþ1

2;jk
:

ð16Þ

The values �un
x

iþ1
2;jk

is computed using the upwind method defined
as follows:

�un
x

iþ1
2;jk
¼

un
iþ1

2;jk
�un

i�1
2;jk

h if un
iþ1

2;jk
> 0;

un
iþ3

2
;jk
�un

iþ1
2
;jk

h otherwise:

8>><
>>:

ð17Þ

The other values �un
y

iþ1
2;jk

and �un
z

iþ1
2;jk

are calculated similarly as
above. Then, we solve the following equations for the advanced
pressure field at ðnþ 1Þ time step.

qn unþ1 � ~u
Dt

¼ �rdpnþ1; ð18Þ

rd � unþ1 ¼ 0: ð19Þ

Applying the divergence operator to Eq. (18), we have the Poisson
equation for the pressure at the advanced time ðnþ 1Þ.

rd �
1
qn
rdpnþ1

� �
¼ 1

Dt
rd � ~u; ð20Þ

where

rd �
1
qn
rdpnþ1

ijk

� �
¼

pnþ1
iþ1;jk

qn
iþ1

2;jk

þ
pnþ1

i�1;jk
qn

i�1
2;jk

þ
pnþ1

i;jþ1;k
qn

i;jþ1
2;k

þ
pnþ1

i;j�1;k
qn

i;j�1
2;k

þ
pnþ1

ij;kþ1
qn

ij;kþ1
2

þ
pnþ1

ij;k�1
qn

ij;k�1
2

h2

�

1
qn

iþ1
2;jk

þ 1
qn

i�1
2;jk

þ 1
qn

i;jþ1
2;k

þ 1
qn

i;j�1
2;k

þ 1
qn

ij;kþ1
2

þ 1
qn

ij;k�1
2

h2 pnþ1
ijk ;

ð21Þ

rd � ~uijk ¼
~uiþ1

2;jk
� ~ui�1

2;jk

h
þ

~v i;jþ1
2;k
� ~v i;j�1

2;k

h
þ

~wij;kþ1
2
� ~wij;k�1

2

h
: ð22Þ

The linear system of Eq. (20) is solved using a multigrid method
[50], specifically, V-cycles using a Gauss–Seidel relaxation with a
tolerance 1e�7. After solving the pressure field, we update unþ1

iþ1
2;j;k

as

unþ1
iþ1

2;jk
¼ ~uiþ1

2;jk
� Dt

qn
iþ1

2;jk

pnþ1
iþ1;jk � pnþ1

ijk

h
: ð23Þ
The variables vnþ1
i;jþ1

2;k
and wnþ1

ij;kþ1
2

are updated in a similar manner.
Step 4. Using the updated fluid velocity unþ1, we evaluate the

immersed boundary velocity Unþ1 and then the new boundary po-
sition Xnþ1 is updated according to

Unþ1
l ¼

XNx

i¼1

XNy

j¼1

XNz

k¼1

unþ1
ijk dhðxijk � Xn

l Þh
3
; ð24Þ

Xnþ1
l ¼ Xn

l þ DtUnþ1
l for l ¼ 1; . . . ;M: ð25Þ

This completes the process (Step 1–Step 4) by which the vari-
ables unþ1 and Xnþ1 are calculated.

3.2. Volume correction algorithm

In this section, we describe the volume correction algorithm.
First, let us define the volume of the polyhedron. We take a triangle
on the surface Tris ¼ ðXl;Xm;XqÞ ¼ ððXl;Yl; ZlÞ; ðXm;Ym;

ZmÞ; ðXq;Yq; ZqÞÞwith a reference point (O) (see Fig. 7) and calculate
the volume of tetrahedra one by one. Tris has positive orientation
since Xl;Xm, and Xq are in counterclockwise order.

Then we obtain the following formula for the volume of the
polyhedron

VðXÞ ¼ 1
6

XMT

s¼1

XqðYlZm � YmZlÞ � YqðXlZm � XmZlÞ þ ZqðXlYm � XmYlÞ
	 


where MT is the number of surface triangles [51–55]. This volume
formula is independent of the location of the reference point and
is valid even for a nonconvex polyhedron [51,52]. We define the rel-
ative error of volume VðXÞ with the initial volume VðX0Þ as

VerrorðXÞ ¼
jVðX0Þ � VðXÞj

VðX0Þ
: ð26Þ

To numerically demonstrate the invariant of the volume for-
mula on the reference point locations and the convexity of the sur-
face, we consider a torus as a test surface. The torus in Fig. 8 is the
nonconvex geometry and the origin is not inside the geometry. For
generating the surface mesh of the torus, we use the usual param-
etrization of the torus,

Tðh;/Þ ¼ ðð3þ cos hÞ cos /; ð3þ cos hÞ sin /; sin hÞ; 0 6 h;/ 6 2p:

To generate the mesh, we divide the domain into hi ¼ 2pi=Ntorus,
/j ¼ 2pj=Ntorus, for 0 6 i; j < Ntorus. Then Tðhi, /jÞ becomes the sur-
face point, see Fig. 8. The computed volumes are 57.76, 58.88,
59.14, and 59.20 with Ntorus ¼ 25;50;100, and 200, respectively.
This result shows that the computed volume converges to the ana-
lytic volume value 6p2 � 59:22 as we increase the number of sur-
face points.

The outline of the volume correction procedure is:

Step (1) Update the immersed boundary points X�l , Y�l , and Z�l
according to Eq. (25)
point O.



Fig. 8. Torus surface mesh with Ntorus ¼ 25.
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ðX�l ;Y
�
l ; Z

�
l Þ ¼ ðX

n
l ;Y

n
l ; Z

n
l Þ þ DtðUnþ1

l ;Vnþ1
l ;Wnþ1

l Þ: ð27Þ

Step (2) Compute the polyhedral volume VðX�Þ
For a given tolerance tol, we check whether VerrorðX�Þ < tol or
not. If it is true, then Xnþ1 ¼ X�. If not, update the interface
Xnþ1

l ;Ynþ1
l , and Znþ1

l with the following Eq. (28) by taking the
volume correction algorithm, Step 3).

ðXnþ1
l ;Ynþ1

l ; Znþ1
l Þ ¼ ðX�l ;Y

�
l ; Z

�
l Þ þ �ðal;bl; clÞ: ð28Þ

Here, ðal;bl; clÞ is the outward unit normal vector at the lth interface
node at time level t� and � is a constant, which will be determined
in the next step.Step (3) Determine the parameter �

The parameter � is a root of the following cubic equation which
is obtained from the volume correction, i.e.,
VðXnþ1Þ ¼ VðX� þ �nÞ ¼ VðX0Þ:

VðX0Þ ¼ VðX�Þ þ a�3 þ b�2 þ c�; ð29Þ

where

a ¼ 1
6

XMT

s¼1

cqðalbm � blamÞ � cmðalbq � blaqÞ þ clðambq � bmaqÞ
h i

;

ð30Þ

b ¼ 1
6

XMT

s¼1

X�l ðbmcq � cmbqÞ � Y�l ðamcq � cmaqÞ þ Z�l ðambq � bmaqÞ
h

� X�mðblcq � clbqÞ þ Y�mðalcq � claqÞ � Z�mðalbq � blaqÞ

þ X�qðblcm � clbmÞ � Y�qðalcm � clamÞ þ Z�qðalbm � blamÞ
i
; ð31Þ
Fig. 9. Examples of volume corrections for (a) sphere and (b) ellipsoid. The first colu
corrections in the cases of VðX0Þ < VðX�Þ and VðX0Þ > VðX�Þ, respectively.
c ¼ 1
6

XMT

s¼1

al Y�mZ�q � Z�mY�q
� �

� bl X�mZ�q � Z�mX�q
� �

þ cl X�mY�q � Y�mX�q
� �h

� amðY�l Z�q � Z�l Y�qÞ þ bm X�l Z�q � Z�l X�q
� �

� cm X�l Y�q � Y�l X�q
� �

þaq Y�l Z�m � Z�l Y�m
� �

� bq X�l Z�m � Z�l X�m
� �

þ cq X�l Y�m � Y�l X�m
� �i

:ð32Þ

Here, ðal;bl; clÞ; ðam; bm; cmÞ, and ðaq;bq; cqÞ are corresponding nor-
mal vectors at each point X�l ; Y

�
l ; Z

�
l

� �
; X�m;Y

�
m; Z

�
m

� �
, and X�q; Y

�
q; Z

�
q

� �
,

respectively.
If VðX�Þ > VðX0Þ, then � should be negative to lower the volume.

In the same way, if VðX�Þ < VðX0Þ, then � > 0. To find a root of Eq.
(29), we use the Newton’s method with a zero initial guess, � ¼ 0.
The residual error converges rather quickly to a tolerance 1e�7 in
3–5 iterations.

Fig. 9 shows examples of volume corrections for (a) a sphere
and (b) an ellipsoid. The first column is configurations before cor-
rections with VðX�Þ ¼ 0:524. The second and third columns are
after corrections in the cases of VðX0Þ ¼ 0:262 < VðX�Þ and
VðX0Þ ¼ 0:786 > VðX�Þ, respectively.

4. Numerical experiments

In this section, we perform various numerical experiments to
investigate the effect of our volume correction algorithm described
in Section 3.2 to overcome the volume loss problem. Unless other-
wise specified, we set the density to be q1 ¼ q2 ¼ 1 and the volume
correction tolerance to be tol = 1e�4.

4.1. Pressure jump of drop

In the absence of viscous, gravitational, or other external forces,
surface tension forces tend to make a drop spherical. Laplace’s for-
mula for a sphere surrounded by a background fluid at pressure
pbackground gives the internal pressure of the drop pdrop to be
pdrop ¼ pbackground þ 2r=R, where R is a radius of the drop [1]. In this
experiment, a fluid drop is placed at the center of domain
X ¼ ð0;1Þ � ð0;1Þ � ð0;1Þ with radius R ¼ 0:2. The pressure jumps
are computed on the uniform grids, h ¼ 1=2n for n ¼ 7, 8, and 9
with corresponding time steps, Dt ¼ 0:5h2. The calculations are
run up to time T ¼ Dt. By employing l ¼ 0:1 and r ¼ 1, we have
the theoretical pressure jump ½p� ¼ pdrop � pbackground ¼ 10. Table 1
shows a set of computed pressure jumps ½p� ¼ pmax � pmin. Here
pmax and pmin are the maximum and minimum values of the com-
mn is configurations before corrections. The second and third columns are after



Table 1
Pressure jump ½p� with r ¼ 1 and R ¼ 0:2 for different mesh sizes.

Mesh sizes 32� 32� 32 64� 64� 64 128� 128� 128

½p� 10.0796 10.0338 10.0326
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puted pressure, respectively. The numerical results of the pressure
jump are in quantitative agreements with the theoretical value.

4.2. Volume loss by spurious velocities induced by surface tension

We consider a spherical drop in spurious velocities [56]. In
incompressible fluids, surface tension forces are balanced by a dis-
continuity in pressure across the interface. Spurious velocities may
result from the inability of discretization schemes to represent this
discontinuous pressure. The initial drop has a radius of 0.25 and is
at the center of the unit domain. The other parameters are
h ¼ 1=64, Dt ¼ 0:5h2, l ¼ 0:01, and r ¼ 50. In Fig. 10, (a) shows
the initial shape, (b and c) depict the shape evolutions at
T ¼ 0:048 without and with volume corrections, respectively.
Without the volume correction, the volume loss is visually evident
and is about 17.15% at time T as shown in (d).

4.3. Rotating sphere by background fluid flows

Though a velocity field remains divergence-free on the Lagrang-
ian grid (in a continuous sense), the volume loss can be observed
by the discrete time step when the immersed boundary point is
updated. To illustrate the comparison between the volume loss
and our proposed volume correction method, we consider the pas-
sive advection of a sphere by the background velocity field such as

u ¼ ðu;v ;wÞ ¼ ð8pðy� 0:5Þ;�8pðx� 0:5Þ;0Þ: ð33Þ
0.25 0.5 0.75
0.25

0.5

0.75

(a)

0.25 0.5 0.75
0.25

0.5

0.75

(c)

Fig. 10. Volume loss test by spurious velocities induced by surface tension. (a) Initial
T ¼ 0:048, and (d) relative volume loss VðXnÞ=VðX0Þ with and without corrections.
The sphere with a radius of 0.25 is centered at (0.5,0.5,0.5) in
the unit domain as shown in Fig. 11a. We run the computation only
with Eq. (6) using the given velocity field, Eq. (33). We use
h ¼ 1=64 and Dt ¼ 0:5h2. Fig. 11b and c shows the shape evolutions
of the sphere without and with volume corrections at T ¼ 0:5,
respectively. Fig. 11d shows the relative volume change with and
without corrections. Without correction, the greater volume gains
36.1% from the initial.

Next, we consider another passive advection of a sphere by
the background velocity field u ¼ ðu;v ;wÞ ¼ ð8pðy� 0:5Þ;0;
�8pðx� 0:5ÞÞ. The sphere with a radius 0.15 is centered at
(0.5,0.5,0.75) in the unit domain. Then with the velocity field,
the sphere rotates about the axis (0.5,y,0.5) with the period of time
0.25. Thus the drop reaches the same position after T ¼ 0:25. With
the same numerical parameters as those used in the above test, the
shape evolutions are shown in Fig. 12a. Figs. 12(b–d) shows the ini-
tial shape, the final shape without and with volume corrections,
respectively. We can observe that the background velocity results
in volume gains without volume correction. It is worth noting here
that there is additional error introduced from the interpolation
operator, which is related to the discrete delta function.

4.4. Convergence test and computational cost

To calculate the convergence rate, we consider the numerical
investigations with the same first test problem set in Section 4.3.
The numerical solutions are computed on the uniform grids,
h ¼ 1=2n, for n ¼ 6;7, and 8 and with corresponding time steps,

Dt ¼ 0:1h2. We define the discrete l2-norm error en as

en ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

PM
l¼1jX

T
l � X0

l j
2

q
. The rate of convergence is defined as the

ratio of successive errors: log2ðen=enþ1Þ. Using these definitions,
the errors and rates of convergence are given in Table 2. The results
0.25 0.5 0.75
0.25

0.5

0.75

(b)

0 0.012 0.024 0.036 0.048
0.8

0.85

0.9

0.95

1

1.05

Time t

with correction
without correction

(d)

shape, (b) without volume correction at T ¼ 0:048, (c) with volume correction at
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Fig. 11. Rotating sphere by background fluid flows. (a) Initial shape, (b) without
volume correction at T ¼ 0:5, (c) with volume correction at T ¼ 0:5, and (d) relative
difference of volume VðXnÞ=VðX0Þ with and without corrections.

Table 2
Error and convergence rates.

Grid size 643 1283 2563

en 2.274e�4 5.781e�5 1.452e�5
Rate 1.98 1.99

Table 3
CPU times with different time steps and tolerance values. Note that A is the number of
volume correction algorithms which is taken from B iterations in ðA=BÞ.

Time step CPU time (s) CPU time (s) With correction

Dt Without correction tol = 1e�4 tol = 1e�5

h2 336.9 338.5 (190/8192) 340.9 (1638/8192)

0:5h2 674.3 674.9 (96/16384) 676.3 (963/16384)

Fig. 13. Schematic illustration of the initial and boundary conditions.
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suggest that the scheme has indeed the second order accurate in
space and the first order accurate in time.

Next, we compute the computational cost with different toler-
ance values and time steps when the volume correction algorithm
is applied. The problem is the same as above except T ¼ 1=2,
h ¼ 1=128, and a time step. Table 3 shows CPU times with different
0.1
0.5

0.9
0.1

0.5

0.9

t=1/8

t=3/16

(a

0.35 0.5 0.65
0.35
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(b)
0.35 0.5

0.35

0.5

0.65

(c)

Fig. 12. (a) Evolution of a drop by the background velocity field. (b) Initial shape, (c) w
time steps and tolerance values for without and with volume cor-
rection algorithms. This result suggests that the additional CPU
time due to the proposed volume correction algorithm is negligi-
ble. This also means that the rest of the computational time is sim-
ply interpolating the velocity and moving the boundary.
0.5 0.9

t=0

t=1/16

)

0.65 0.35 0.5 0.65
0.35

0.5

0.65

(d)

ithout volume correction at T ¼ 0:25, and (d) with volume correction at T ¼ 0:25.



Fig. 14. Evolution of a droplet in the shear flow. Top: Results without volume correction. Bottom: Results with volume correction. From left to right, computational times are
t ¼ 0; 0:20:8, and 1.2.
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Furthermore, the NS equations had been solved at every time step,
the fraction of time spent performing the volume correction would
be even smaller than reported in this test.

4.5. A droplet in shear flows

We investigate the deformation of a droplet in shear flows. The
initial droplet is assumed to be a spherical shape with radius R cen-
tered at ð2H;H;HÞ in the computational domain
X ¼ ð0;4HÞ � ð0;2HÞ � ð0;2HÞ. The upper plate speed is U and the
lower one is �U. Fig. 13 shows a schematic illustration of the initial
and boundary conditions.

Now we begin with a drop positioned at the center of the com-
putational domain X ¼ ð0;4Þ � ð0;2Þ � ð0;2Þ. In this simulation we
take the parameters: R ¼ 0:5, H ¼ 2, U ¼ 1, l ¼ 0:1, and r ¼ 1.
Here, 128� 64� 64 grid points and the time step Dt ¼ 0:1h2 are
used. The calculations are run up to the time T ¼ 1:2.

The top and bottom rows of Fig. 14 show the shape evolution of
the droplet without and with volume corrections, respectively. We
observe that without volume correction the droplet keeps shrink-
ing and cannot reach the steady state due to the volume loss. On
the other hand, the drop has reached to the steady state with the
volume correction method.

Also to verify the accuracy of the proposed method, we compare
it with several previous results. Those are from volume of fluid
computations of Li et al. [57], boundary integral computations of
0 0.1 0.2 0.3 0.4 0.5
0
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0.3

0.45
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Li et. al [57]
Rallison [58]
Inamuro et. al [59]
Rumscheidt and Mason [60]
Cox [61]

(a)

θ

Fig. 15. Comparison between our method and previous m
Rallison [58], lattice Boltzmann simulations by Inamuro et al.
[59], experimental results by Rumscheidt and Mason [60], and the-
oretical result by Cox [61]. We recall the definition of the drop
deformation D ¼ ðL� BÞ=ðLþ BÞ, where L and B are the maximum
and minimum drop dimensions in the xz plane, respectively. Also
h is the angle between the maximum axis of deformation and the
x axis. Previous simulations were performed with various capillary
numbers Ca ¼ 0:1;0:2;0:3, and 0.4 with fixed Reynolds number
Re ¼ 0:2. In our case, we fix l ¼ 5 and set r ¼ l=Ca. The initial
spherical drop with radius 0.25 is set at the center of the computa-
tional domain X ¼ ð0;2Þ � ð0;1Þ � ð0;2Þ. 64� 32� 64 grid points
and the time step Dt ¼ 0:01h2 are used. Plots of D and h at steady
states are shown in Fig. 15a and b, respectively. To compare the
proposed algorithm to the previous results, we put them together.
From these results, we observe that the results obtained by our
proposed method are in good agreement with the previous numer-
ical methods [57–59], experimental [60], and theoretical results
[61].

4.6. Rising bubble

We simulate the rising bubble with a high density ratio
q1=q2 ¼ 1=1000 with the gravity g ¼ ð0;0;�1Þ. The computation
is performed in a domain ð0;1Þ � ð0;1Þ � ð0;2Þ with a mesh size
h ¼ 1=32. A periodic boundary condition is specified in the x- and
y-directions. On the bottom and top sides of the domain,
0 0.1 0.2 0.3 0.4 0.5
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ethods for (a) drop deformation and (b) drop angle.
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Fig. 16. Shape evolution of a rising bubble at time t ¼ 0; 0:3125, and 0.5625.
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pz ¼ �qn and zero velocity are applied, respectively. In addition,
the other parameters Dt ¼ 1:6h2, l ¼ 0:01 and r ¼ 0:1 are used.
Fig. 16 shows the rising bubble, which is initially centered at
(0.5,0.5,1) with a radius of 0.12. The bubble rises and deforms
due to the buoyancy-driven force.

5. Conclusions

We have presented the volume-preserving scheme for two-
phase immiscible incompressible flows using the IBM in a three-
dimensional space. The present study extended the previous
two-dimensional research [35] to the three-dimensional space.
The key idea of the proposed method is relocating surface points
along the normal directions to preserve the total volume. We per-
formed various numerical experiments to show the efficiency and
accuracy of the proposed method. Moreover, additional CPU time
for the volume correction algorithm was negligible. The results
demonstrated that the volume-preserving algorithm has the po-
tential to solve many applications using the volume constrained
immersed boundary method.
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