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ABSTRACT. In this paper, we consider the adaptive multigrid method for solving the Black–
Scholes equation to improve the efficiency of the option pricing. Adaptive meshing is generally
regarded as an indispensable tool because of reduction of the computational costs. The Black–
Scholes equation is discretized using a Crank–Nicolson scheme on block-structured adaptively
refined rectangular meshes. And the resulting discrete equations are solved by a fast solver such
as a multigrid method. Numerical simulations are performed to confirm the efficiency of the
adaptive multigrid technique. In particular, through the comparison of computational results
on adaptively refined mesh and uniform mesh, we show that adaptively refined mesh solver is
superior to a standard method.

1. INTRODUCTION

Financial option pricing model developed by Black and Scholes [1] in 1973 and extended
by Merton [2]. Since then, methods for option pricing have been discovered and improved
by many scholars. Details can be found in reference [3] which is a good review of valuation
models and applications to the option pricing. However, because a closed-form solution cannot
be obtained or the formulas for the exact solutions are too difficult to be practically usable,
numerical solution has been a natural way to solve the problem in financial engineering [4].

To obtain an approximation of the option value, option pricing problems have been solved
by the lattice method [5, 6, 7, 8], the finite difference method [7, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18], the finite elements method [19, 20, 21, 22, 23, 24], and the finite volume method
[25, 26]. In this paper, we propose an efficient and accurate method based on multigrid method
and adaptive grid refinement method. Among the popular methods in recent years, multigrid
methods [27, 28, 29, 30] are widely used for the numerical solution of partial differential equa-
tions (PDE). In reference [31], authors evaluated the option price by using multigrid method
under Black–Scholes. Also, adaptive time-stepping has been proposed by some researchers
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[32], but few researchers use space-adaptive methods. Some examples, though, can be found
in Achdou and Pironneau [33] and Pironneau and Hecht [34] who use a space-adaptive finite
element method for discretization of the Black–Scholes PDE. In [35], an adaptive finite dif-
ference method is developed with full control of the local discretization error which is shown
to be very efficient. In this paper, for the option pricing, we consider an adaptive mesh re-
finement (AMR) method. The AMR method [36] is very useful to combine the two goals of
good accuracy and efficiency. In many science and engineering areas, such as fluid mechanics
[37], electromagnetics [38], and materials science [39], an adaptive finite difference method
has been very successful.

The purpose of our work is to propose an efficient adaptive FDM to solve the Black–Scholes
PDEs. We computationally show that applying an adaptive method to this problem is very effi-
cient compared to a standard FDM. We use the Crank–Nicolson method for the discretization.
Other key components of the algorithm are the use of dynamic, block-structured Cartesian
mesh refinement (see e.g., [40, 41]) and the use of an adaptive multigrid method [30] to solve
the equations at an implicit time level. Locally refined block-structured Cartesian meshes are
very natural to use together with multilevel multigrid methods. We note that other multilevel
multigrid algorithms have been developed as part of the CHOMBO [42] software packages.
Here, we follow the framework of a block-structured multilevel adaptive technique (MLAT)
developed by Brandt [43].

The outline of this paper is the following. In Section 2 we describe the two-dimensional
Black–Scholes PDE. In Section 3 we discretize the BS equation with finite difference method
and we explain the adaptive mesh refinement method in Section 4. In Section 5, we show the
numerical results by the proposed method. We draw conclusions in Section 6.

2. BLACK–SCHOLES MODEL

In their award-winning work [1, 2], Black, Scholes, and Merton derived a parabolic second
order PDE for the value u(x, y, t) of an option on a stock. We use the original Black–Scholes
model with two underlying assets to keep this presentation simple. Let u(x, y, t) denote the
value of the option at the underlying two assets x, y, and time t. The option value u(x, y, t) is
governed by the following two-asset Black–Scholes equation:
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where σ1, σ2 are the constant volatilities, ρ is the correlation, and r > 0 is a constant riskless
interest rate. The final condition is the payoff function Λ(x, y) at expiry date T

u(x, y, T ) = Λ(x, y). (2.2)

For instance, for European vanilla call option, the payoff at expiry is Λ(x, y) = max(x −
K, y −K, 0) with a given strike price K.
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3. DISCRETIZATION WITH FINITE DIFFERENCES

A finite difference method approximates derivatives by difference operators and is a common
numerical method. For an introduction to these methods we can recommend the books [10,
12, 13, 14, 15]. The original option pricing problems are defined in the unbounded domain
{(x, y, t)|x ≥ 0, y ≥ 0, t ∈ [0, T ]}. We need to truncate this domain into a finite computational
domain Ω = {(x, y, t)|0 ≤ x ≤ L, 0 ≤ y ≤ M, t ∈ [0, T ]}, where L and M are large enough
so that the error of the price u arisen by the truncation is negligible [44]. Using τ = T − t, we
have
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for (x, y, τ) ∈ Ω × (0, T ] with an initial condition u(x, y, 0) = Λ(x, y). Now, let us first
discretize the given computational domain Ω as a uniform grid with a space step h = L/Nx =
M/Ny and a time step ∆τ = T/Nτ . Here, Nx, Ny, and Nτ are the number of space and time
steps, respectively. Let us denote the numerical approximation of the solution by

unij = u(xi, yj , τ
n) = u ((i− 0.5)h, (j − 0.5)h, n∆τ) ,

where i = 1, . . . , Nx, j = 1, . . . , Ny, and n = 1, . . . , Nτ . By applying the Crank–Nicolson
scheme to Eq. (3.1), which has an accuracy O(∆τ2 + h2), we have
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We rewrite Eq. (3.2) by

N(un+1
ij ) = ϕn

ij , (3.3)

where N(un+1
ij ) = un+1

ij − ∆τ
2 Lun+1

ij and ϕn
ij = unij +

∆τ
2 Lunij .

4. NUMERICAL METHOD

4.1. Dynamic adaptive mesh refinement method. In this section, we present an adaptive
hierarchy of nested rectangular grids [37]. Both the initial creation of the grid hierarchy and the
subsequent regriding operations in which the grids are dynamically changed to reflect changing
solution conditions use the same procedure to create new grids [45]. Cells requiring additional
refinement are identified and tagged using user-supplied criteria. The tagged cells are grouped
into rectangular patches using the clustering algorithm given in Berger and Rigoutsos [46].
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These rectangular patches are refined to form the grids at the next level. The process is repeated
until a specified maximum level is reached. We consider a hierarchy of grids

Ω0, . . . ,Ωl,Ωl+1, . . . ,Ωl+l∗ ,

where Ω0, . . . ,Ωl are global and Ωl+1, . . . ,Ωl+l∗ are local grids. A typical hierarchy of grids
for the solution of the problem is shown in Fig. 1.
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FIGURE 1. Hierarchy of grids when l = 1 and l∗ = 2.

In this case, Ω0 and Ω1 are global grids (l = 1) and the refined grids Ωl+1, Ωl+2 (l∗ = 2)
cover increasingly smaller subdomains as indicated in Fig. 2. For instance, we can apply
the refined local grids near the strike price since the values of options are not smooth near the
strike price. We note that the grid refinement is automatically done by user-specified criteria. In
addition to the global and the local grids, we consider their “composition”. The corresponding
sequence of composite grids (see Fig. 2) is defined by
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FIGURE 2. Composite grids corresponding to the hierarchy of grids in Fig. 1
when l = 1 and l∗ = 2.

Ω̂k := Ωk (k = 0, . . . , l) and Ω̂l+k := Ωl ∪
k∪

j=1

Ωl+j (k = 1, . . . , l∗).
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We use the original multi-level adaptive technique (MLAT) proposed by Brandt [47]. We
now describe an adaptive multigrid cycle. Let us use the operator in Eq. (3.3) Nk (k =
0, 1, . . . , l, l + 1, . . . , l + l∗) and the restriction and interpolation operators between Ωk and
Ωk−1, Ik−1

k , Ikk−1 (k = 1, 2, . . . , l, l+1, . . . , l+ l∗) respectively. Let us assume the parameter
γ (the number of smoothing iterations), and starting on the finest grid k = l+l∗, the calculation
of a new iterate um+1

k from a given approximation umk proceeds: The details of overall steps
are given in Algorithm 1.

Algorithm 1 Adaptive cycle

um+1
k = adapcyc(k, umk , umk−1, Nk, ϕk, γ)

1. Presmoothing
- Compute ūmk by applying γ smoothing steps, Eq. (4.3), to umk on Ωk.

2. Coarse-grid correction
- Compute

ūmk−1 =

{
Ik−1
k ūmk on Ωk−1 ∩ Ωk

ūmk−1 on Ωk−1 − Ωk

- Compute the right-hand side

ϕn
k−1 =

{
Ik−1
k (ϕn

k −Nk(ū
m
k )) +Nk−1I

k−1
k ūmk on Ωk−1 ∩ Ωk

ϕn
k−1 on Ωk−1 − Ωk

- Compute an approximate solution ŵm
k−1 of the coarse grid equation on Ωk−1

Nk−1(w
m
k−1) = ϕn

k−1. (4.1)

If k = 1, employ smoothing steps.
If k > 1, solve Eq. (4.1) using ūmk−1 as an initial approximation.

ŵm
k−1 = adapcyc(k − 1, ūmk−1, u

m
k−2, Nk−1, ϕk−1, γ).

- Compute the correction v̂mk−1 = ŵm
k−1 − ūmk−1, on Ωk−1 ∩ Ωk.

- Set the solution um+1
k−1 = ŵm

k−1, on Ωk−1 − Ωk.
- Interpolate the correction v̂mk = Ikk−1v̂

m
k−1, on Ωk.

- Compute the corrected approximation um, after CGC
k =ūmk + v̂mk , on Ωk.

- Carry out a quadratic interpolation at the ghost points.
3. Postsmoothing

- Compute um+1
k by applying γ smoothing steps to um, after CGC

k on Ωk.

Our implementation of this algorithm is constructed using the CHOMBO infrastructure [42],
which has simplified the implementation of the locally adaptive algorithm. To perform the
nonlinear multilevel AMR solver, we use and modify the CHOMBO AMR elliptic solver. This
solver is based on a linear multigrid algorithm.
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4.2. Relaxation method in a multigrid cycle. Now we derive a Gauss–Seidel relaxation op-
erator. First, we rewrite Eq. (3.3) as
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Next, we replace un+1
kl in Eq. (4.2) with ūmkl if (k < i) or (k = i and l ≤ j), otherwise with
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Therefore, in a multigrid cycle, one smooth relaxation operator step consists of solving Eq.
(4.3) given above.

5. COMPUTATIONAL RESULTS

In this section, several numerical experiments are performed. To demonstrate its effective-
ness, we compare the total computational cost, i.e., the CPU times with uniform mesh results
on a test problem on the computational domain Ω = (0, 1200)× (0, 1200) with ∆τ = 1/1024.
The calculations have been performed on an IBM personal computer with 3.0GHz speed of
3.48GB RAM.

5.1. European vanilla call option. As the benchmark problem, we consider the European
vanilla option problem. This problem is of great interest to academicians in the finance litera-
ture and often used to show the accuracy of a given numerical scheme [7, 48, 49]. The initial
state is u(x, y, 0) = max[max(x, y) − 100, 0]. For the parameters, we take σ1 = σ2 = 0.5,
ρ = 0.5, and r = 0.03. We perform an adaptive mesh refinement every 5 time steps. The
refinement is based on the range of values of u, i.e., we refine the grids if 0.3 < u < 10. We
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compute this with a base 642 mesh with 3, 4, and 5 levels of refinements. To estimate the cost
of the equivalent uniform-grid solution, we compute 1024 time steps on the equivalent 5122,
10242, and 20482 meshes. In Fig. 3, (a) and (b) show the initial profile and the final configu-
ration at time τ = 1 on the adaptive mesh, respectively. We can observe fine meshes around
the region of our interests which are neighborhood of strike prices. And Fig. 3(c) and (d) show
magnified representations of (a) and (b), respectively.

(a) (b)

(c) (d)

FIGURE 3. European vanilla call option: (a) The initial configuration at time
τ = 0. (b) The final configuration at time τ = 1. (c) and (d): Magnified
representations of (a) and (b), respectively.

Next, we compare the CPU times with AMR and uniform mesh results. The computational
results are shown in Table 1 and it is clear that AMR is more efficient than the uniform mesh
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method. We scale CPU time with the AMR method. Here, 1 in CPU time of AMR stands for
the calculation time for AMR method.

TABLE 1. CPU time comparison between uniform mesh and AMR of Euro-
pean vanilla call option.

Case Uniform mesh 5122 AMR with base mesh size, 642

3 levels, effective mesh size 5122

CPU time 68.3 1
Case Uniform mesh 10242 AMR with base mesh size, 642

4 levels, effective mesh size 10242

CPU time 169.7 1
Case Uniform mesh 20482 AMR with base mesh size, 642

5 levels, effective mesh size 20482

CPU time 285.3 1

5.2. Cash-or-Nothing option. Next, we perform the comparison with a cash-or-nothing op-
tion. The initial state is

u(x, y, 0) =

{
Cash if x ≥ K and y ≥ K
0 otherwise.

Here, we simply set Cash = 1 and K = 100. And the other parameters and computational
conditions are chosen as the same in the numerical experiment of European call option. Figure
4(a) and (b) show the initial profile and the final configuration at time τ = 1 on the adaptive
mesh, respectively. And Fig. 4(c) and (d) show magnified representations of (a) and (b),
respectively. Next, the CPU times with AMR and uniform mesh results are presented in Table
2. As shown in Table 2, it is clear that AMR is more efficient than the uniform mesh method.

TABLE 2. CPU time comparison between uniform mesh and AMR of Cash-
or-Nothing option.

Case Uniform mesh 5122 AMR with base mesh size, 642

3 levels, effective mesh size 5122

CPU time 80.2 1
Case Uniform mesh 10242 AMR with base mesh size, 642

4 levels, effective mesh size 10242

CPU time 167.2 1
Case Uniform mesh 20482 AMR with base mesh size, 642

5 levels, effective mesh size 20482

CPU time 180.5 1
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FIGURE 4. Cash-or-Nothing option: (a) The initial configuration at time
τ = 0. (b) The final configuration at time τ = 1. (c) and (d): Magnified
representations of (a) and (b), respectively.

6. CONCLUSIONS

In this paper, we focused on two major aspects that we encounter when applying numerical
methods to option pricing problems such as grid resolutions and domain sizes. We proposed
an adaptive mesh refinement method to solve the Black–Scholes equation. We computation-
ally showed that the proposed adaptive scheme gave much better efficiency than the standard
FDM. In particular, we showed that the use of local refinement resulted in significant savings
in computational time and memory when compared to the equivalent uniform-mesh solution.
Studies of these methods in higher dimensions will be the subject of future research.
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