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Abstract We present an accurate and efficient finite difference method for solving the
Black–Scholes (BS) equationwithout boundary conditions. TheBS equation is a back-
ward parabolic partial differential equation for financial option pricing and hedging.
When we solve the BS equation numerically, we typically need an artificial far-field
boundary condition such as the Dirichlet, Neumann, linearity, or partial differential
equation boundary condition. However, in this paper, we propose an explicit finite
difference scheme which does not use a far-field boundary condition to solve the BS
equation numerically. The main idea of the proposed method is that we reduce one
or two computational grid points and only compute the updated numerical solution
on that new grid points at each time step. By using this approach, we do not need a
boundary condition. This procedure works because option pricing and computation
of the Greeks use the values at a couple of grid points neighboring an interesting spot.
To demonstrate the efficiency and accuracy of the new algorithm, we perform the
numerical experiments such as pricing and computation of the Greeks of the vanilla
call, cash-or-nothing, power, and powered options. The computational results show
excellent agreement with analytical solutions.
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1 Introduction

In this paper, we propose an accurate and efficient finite difference method to solve
the Black–Scholes (BS) equation:

∂u

∂t
= −1

2
(σ x)2

∂2u

∂x2
− r x

∂u

∂x
+ ru, for (x, t) ∈ (0,∞) × [0, T ) (1)

with the final condition u(x, T ) = p(x), where u(x, t) is the value of an option, x is
the value of the underlying asset, t is the time, T is the expiry date, σ is the volatility
of the underlying security, and r is the risk-free interest rate (Black and Scholes 1973;
Merton 1973). Change of the variable τ = T − t transforms Eq. (1) into the initial
value problem (Farnoosh et al. 2016):

∂u

∂τ
= 1

2
(σ x)2

∂2u

∂x2
+ r x

∂u

∂x
− ru, for (x, τ ) ∈ (0,∞) × (0, T ] (2)

with the initial condition u(x, 0) = p(x). Since we cannot numerically solve the BS
equation on an infinite domain (0,∞), we must truncate the infinite domain into a
finite domain and need artificial boundary conditions to solve the BS equation numer-
ically (Tavella and Randall 2000). If one knows asymptotical values of the solution of
the BS equation, then we can use the Dirichlet boundary condition (Company et al.
2008; Hajipour and Malek 2015; Reisinger and Wittum 2004; Smith 2000; Tangman
et al. 2008; Tavella and Randall 2000; Vazquez 1998; Windcliff et al. 2004). Another
simplest Dirichlet boundary condition is simply setting the boundary values to be fixed
all the time with the payoff value (Kangro and Nicolaides 2000; Pooley et al. 2003).
Neumann boundary condition specifies values for the derivative of the solution at the
boundary of the spatial domain. This boundary condition also requires the knowledge
of the asymptotical behavior of the derivatives of the solution (Kurpiel and Roncalli
1999). Linearity boundary condition assumes that the second derivative of the option
value with respect to the underlying asset price x vanishes to zero for the large value
of the asset price (Floc’h 2014; Linde et al. 2009; Lötstedt et al. 2007; Windcliff et al.
2004). In the partial differential equation (PDE) boundary condition, we use one-sided
discretizations at the boundary points so that we do not require the values of the ghost
points (Tavella and Randall 2000; Windcliff et al. 2004).

The main purpose of this work is to present an accurate and efficient numerical
method for solving the Black–Scholes equation without boundary conditions. The
principle of the proposed method is to reduce one or two computational grid points
and only compute the advanced numerical solution on that new grid points at each
time step. This approach does not require a boundary condition.

This paper is organized as follows. In Sect. 2, we discretize the BS equation on
a non-uniformly spaced grid. Section 3 provides numerical results for the proposed
numerical algorithm. Section 4 concludes with a short summary.
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Fig. 1 A non-uniform grid with the grid spacing hi

2 Numerical Solution

We discretize the BS equation on a grid defined by x0 = 0 and xi+1 = xi + hi for
i = 0, . . . , Nx − 1, where hi is the grid size and Nx is the number of grid intervals,
see Fig. 1.

Let uni ≈ u(xi , nΔτ) be the numerical approximation of the solution, where Δτ =
T/Nτ is the time step size and Nτ is the total number of time steps. By applying an
explicit scheme to Eq. (2), we have

un+1
i − uni

Δτ
= σ 2x2i

2

(
2uni−1

hi−1(hi−1 + hi )
− 2uni

hi−1hi
+ 2uni+1

hi (hi−1 + hi )

)

+ r xi (uni+1 − uni−1)

hi−1 + hi
− runi . (3)

Since the numerical scheme is explicit, to get un+1
i we only need three values, i.e.,

uni−1, u
n
i , and uni+1. At x = 0, Eq. (2) becomes ∂u/∂τ = −ru. Therefore, un0 =

u00e
−rτ . However, we do not use any boundary conditions for the far-field boundary.

Instead, we reduce grid points by one in every time step. In most computational
finance applications, we only need a couple of numerical values at limited grid points
to calculate the option price itself and its derivatives such as the Greeks.

To derive a stability condition of the proposed scheme, we follow the stability
analysis in (Zvan et al. 1998). Rewriting Eq. (3) gives

un+1
i = Δτ(σ 2x2i − r xi hi−1)

hi−1(hi−1 + hi )
uni−1 +

(
1 − rΔτ − Δτσ 2x2i

hi−1hi

)
uni

+ Δτ(σ 2x2i + r xi hi )

hi (hi−1 + hi )
uni+1. (4)

In order for all coefficients of uni−1, u
n
i , and uni+1 in Eq. (4) to be positive, the

following Peclet condition should be satisfied

hi−1 <
σ 2xi
r

. (5)

Note that this condition is automatically satisfied if σ 2/r > 1; otherwise we can
put grid points far away from zero to satisfy the condition. The other condition is

123



D. Jeong et al.

Δτ <
hi−1hi

rhi−1hi + σ 2x2i
. (6)

Under two conditions Eqs. (5) and (6), let un,max
i = max(uni−1, u

n
i , u

n
i+1), then

Eq. (4) can be written as

un+1
i ≤ Δτ(σ 2x2i − r xi hi−1)

hi−1(hi−1 + hi )
un,max
i +

(
1 − rΔτ − Δτσ 2x2i

hi−1hi

)
un,max
i

+ Δτ(σ 2x2i + r xi hi )

hi (hi−1 + hi )
un,max
i ≤ (1 − rΔτ)un,max

i ≤ un,max
i . (7)

Let un,min
i = min(uni−1, u

n
i , u

n
i+1), then by a similar argument we obtain

un+1
i ≥ (1 − rΔτ)un,min

i . (8)

Finally, from Eqs. (7) and (8) we have

un,min ≤ (1 − rΔτ)un,min
i ≤ un+1

i ≤ un,max
i ≤ un,max, (9)

where un,min = mini u
n,min
i and un,max = maxi u

n,max
i . By Eq. (9), the numerical

solutions are bounded and stable if the time-step satisfies Eq. (6) and Δτ ≤ 1/r from
Eq. (8).

Next, we describe the basic idea of the proposed algorithm. Let us assume that
we are interested in finding numerical solutions at points, xm1 , . . . , xm2 . Given σ , r ,
and T , we generate a time step Δτ and a non-uniform grid which satisfy Eq. (6).
Once the time step and grid are defined, we compute un+1

i for i = m3(n), . . . ,m4(n),
where m3(n) = 0 if n ≤ Nτ − m1 − 2; otherwise m3(n) = n − Nτ + m1 + 1,
and m4(n) = Nx − n − 1. Figure 2 shows a schematic illustration of the proposed
numerical algorithm for a European call option with a strike price K .

0 xm1 K xm2 xNx

n =0

n = Nτ − m1 − 1

n = Nτ − 1

n = Nτ

xm4(n)xm3(n)

xNx
xm2Kxm10n =0

n = Nτ − m1 − 1

un

n = Nτ

(a) (b)

Fig. 2 Schematic illustration of the proposed numerical algorithm for a European call option with a strike
price K . a A reducing grid with respect to time. b Value u(x, τ ) on the reducing grid
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3 Computational Results

In order to show the efficiency and accuracy of the proposed algorithm, we present the
numerical experiments such as pricing and computation of the Greeks of the vanilla
call, cash-or-nothing, power, and powered options. The Greeks of option values are
derivatives with respect to market variables or model parameters. Delta (Δ), Gamma
(Γ ), Theta (Θ), Vega (ν), and Rho (ρ) are defined as follows: ∂u/∂x , ∂2u/∂x2,
∂u/∂t = −∂u/∂τ , ∂u/∂σ , and ∂u/∂r , respectively (Haug 1997). Unless otherwise
specified, we use the following parameters: σ = 0.3, r = 0.03, and T = 1. The
proposed model was implemented in MATLAB 9.0 (MathWorks, Inc. 2015) on a
computer with Intel(R) Core(TM)i5-6400 CPU@2.70GHZ with 16GB RAM, and the
Windows 10 operating system.

3.1 European Call Option

As the first numerical test, we consider a European call option. The initial condition is
given as u(x, 0) = max(x−K , 0)with the strike price K = 100.Wewill approximate
the solutions at x = 100 − h, 100, 100 + h to compute the option pricing and the
Greeks, where h = 1, 0.5, and 0.25. Let xi = hi for i = 0, . . . , 106/h. Therefore,
hi = h for i = 0, . . . , 106/h − 1. Let us define a temporary time step,

Δτtmp = sh106/h−2h106/h−1

rh106/h−2h106/h−1 + σ 2x2106/h−1

, (10)

where s is a safety factor and we take s = 0.95 unless otherwise stated. Let Nτ =
[T/Δτtmp] + 1, where [x] denotes the largest integer not greater than x . We define
the time step as Δτ = T/Nτ . For i = 106/h, . . . , 100/h + Nτ , we define hi =
Δτ(σ xi )2/(shi−1 − Δτrhi−1) and xi+1 = xi + hi . Therefore, Nx = 106/h + Nτ ,
m1 = 100/h − 1, m2 = 100/h + 1, m3(n) = 0 if n ≤ Nτ − m1 − 2; otherwise
m3(n) = n − Nτ + m1 + 1, and m4(n) = Nx − n − 1. For the European call option,
the closed-form solution of the BS equation is

u(x, τ ) = xN (d1) − Ke−rτ N (d2),

d1 =
(
ln (x/K ) +

(
r + 0.5σ 2

)
τ
)

/(σ
√

τ), d2 = d1 − σ
√

τ ,

where N (d) = (1/
√
2π)

∫ d
−∞ exp(−0.5x2) dx is the cumulative distribution function

for the standard normal distribution (Black and Scholes 1973). The sensitivities of
options, called Greeks, are represented as follows (Haug 1997).

Δ = N (d1), Γ = N ′(d1)
σ x

√
τ

, Θ = −σ xN ′(d1)
2
√

τ
− r Ke−rτ N (d2),

ν = x
√

τN ′(d1), ρ = τ xe−rτ N (d2).
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Table 1 Convergence of a European call option: absolute errors in the option price and its Greeks at
x = 100 and T = 1

h Nτ u Δ Γ Θ ν ρ

(13.283) (0.599) (0.013) (−7.197) (38.667) (46.587)

1 1050 6.55e−3 2.53e−5 2.83e−6 1.61e−4 1.04e−2 3.21e−3

[0.09] [0.09] [0.09] [0.09] [0.19] [0.18]
1
2 4183 1.65e−3 6.33e−6 7.12e−7 3.98e−5 2.61e−3 7.86e−4

[1.24] [1.24] [1.24] [1.24] [2.45] [2.61]
1
4 16,717 4.12e−4 1.58e−6 1.78e−7 9.92e−6 6.50e−4 1.73e−4

[19.25] [19.25] [19.25] [19.25] [38.47] [40.73]
The exact values are in parentheses and the CPU times in seconds for each test are in squared parentheses
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Fig. 3 Convergence of the numerical results for a European call option with various h

Table 1 displays the absolute errors in the option price and its Greeks at x = 100
and T = 1. The exact values are in parentheses and the CPU times in seconds for each
test are listed in squared parentheses. We can see the convergence of the numerical
results of a European call option as we refine the grid size.

Figure 3 shows the absolute errors of numerical results for u,Δ, Γ,Θ, ν, and ρ

with various spatial step sizes. As we expected, the numerical results converge with
second-order accuracy.

3.2 Cash-or-Nothing Option

Next, we consider the cash-or-nothing option which pays an amount C at expiration
if the underlying asset is greater than K ; otherwise, the payoff is zero. For this test,
we use C = K = 100. The exact solution and Greeks are written as follows.
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Table 2 Convergence of a European cash-or-nothing option: absolute errors in the option price and its
Greeks at x = 100 and T = 1

h Nτ u Δ Γ Θ ν ρ

(46.587) (1.289) (−0.011) (2.364) (−32.222) (82.302)

1 1050 6.93e−4 2.88e−4 1.23e−5 5.19e−4 3.49e−2 7.26e−2

[0.10] [0.10] [0.10] [0.10] [0.18] [0.19]
1
2 4183 1.71e−4 7.25e−5 3.08e−6 1.28e−4 8.62e−3 1.83e−2

[1.26] [1.26] [1.26] [1.26] [2.50] [2.45]
1
4 16,717 4.26e−5 1.82e−5 7.71e−7 3.19e−5 2.05e−3 4.72e−3

[18.45] [18.45] [18.45] [18.45] [38.09] [37.85]
The exact values are in parentheses and the CPU times in seconds for each test are in squared parentheses

u(x, τ ) = Ce−rτ N (d2), Δ = Ce−rτ N ′(d2)
σ x

√
τ

, Γ = −Cd1e−rτ N ′(d2)
(σ x)2τ

,

ν = −Ce−rτ d1
σ
N ′(d2), Θ = Ce−rτ

(
r N (d2) +

(
d1
2τ

− r

σ
√

τ

)
N ′(d2)

)
,

ρ = Ce−rτ
(

−τN (d2) +
√

τ

σ
N ′(d2)

)
.

The initial condition is given as u(x, 0) = 100 if x > 100 and zero otherwise. We
will approximate the solutions at x = 100−1.5h, 100−0.5h, 100+0.5h, 100+1.5h to
compute the option pricing and theGreeks, where h = 1, 0.5, and 0.25. Let x0 = 0 and
xi = h(i − 0.5) for i = 1, . . . , 106/h. Therefore, hi = h for i = 0, . . . , 106/h − 1.
Let the number of time steps be defined as follows:

Nτ =
[
T (rh106/h−2h106/h−1 + σ 2x2106/h−1)

sh106/h−2h106/h−1

]
+ 1,

thenΔτ = T/Nτ . For i = 106/h, . . . , 100/h+Nτ ,we define hi = Δτ(σ xi )2/(shi−1
− Δτrhi−1) and xi+1 = xi + hi . Therefore, Nx = 106/h + Nτ , m1 = 100/h − 1,
m2 = 100/h+1,m3(n) = 0 if n ≤ Nτ −m1−2; otherwisem3(n) = n−Nτ +m1+1,
and m4(n) = Nx − n − 1.

Table 2 shows the absolute errors in the option price and its Greeks at x = 100 and
T = 1. The exact values are in parentheses and the CPU times in seconds for each test
are listed in squared parentheses. We can see the convergence of the numerical results
of a European cash-or-nothing option as we refine the grid size.

Figure 4 shows the absolute errors of numerical results for u,Δ, Γ,Θ, ν, and ρ

with various spatial step sizes and demonstrates the second-order convergence of the
numerical results.
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Fig. 4 Convergence of the numerical results for a European cash-or-nothing option with various h

3.3 Standard Call Power Option

Standard call power option has nonlinear payoff at maturity, u(x, 0) = max(x p −
K , 0), where p is some power. The closed-form solution of this power option is given
by (Haug 1997):

u(x, τ ) = x pe(p−1)(r+0.5pσ 2)τ N (d1) − Ke−rτ N (d2), (11)

where d1 = (
ln

(
x/K 1/p

) + (
r + (p − 0.5)σ 2

)
τ
)
/(σ

√
τ), d2 = d1 − pσ

√
τ . We

consider a standard power option with current asset price of 10, power of 2, and
K = 100.

We will calculate the solutions at x = 10 − h, 10, 10 + h, to compute the option
pricing and the Greeks, where h = 0.125, 0.0625, and 0.003125. Let xi = hi for
i = 1, . . . , 16/h. Therefore, hi = h for i = 0, . . . , 16/h − 1. Let the number of time
steps be defined as follows:

Nτ =
[
T (rh16/h−2h16/h−1 + σ 2x216/h−1)

sh16/h−2h16/h−1

]
+ 1, (12)

thenΔτ = T/Nτ . For i = 16/h, . . . , 10/h+Nτ , we define hi = Δτ(σ xi )2/(shi−1−
Δτrhi−1) and xi+1 = xi + hi . Therefore, Nx = 16/h + Nτ , m1 = 10/h − 1,
m2 = 10/h+1,m3(n) = 0 if n ≤ Nτ −m1−2; otherwisem3(n) = n−Nτ +m1+1,
and m4(n) = Nx − n − 1.

Table 3 lists the absolute errors in the option price and its Greeks at x = 10 and
T = 1. The exact values are in parentheses and the CPU times in seconds for each test
are listed in squared parentheses. We can observe the convergence of the numerical
results of a standard power option as we refine the grid size.
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Table 3 Convergence of a standard power option: absolute errors in the option price and its Greeks at
x = 10 and T = 1

h Nτ u Δ Γ Θ ν ρ

(33.334) (15.984) (4.176) (22.588) (125.287) (126.509)

1
8 673 3.64e−3 1.71e−4 1.17e−4 9.21e−4 1.66e−2 5.45e−3

[0.16] [0.16] [0.16] [0.16] [0.32] [0.31]
1
16 5462 9.10e−4 4.24e−5 2.98e−5 2.29e−4 4.21e−3 1.38e−3

[2.10] [2.10] [2.10] [2.10] [4.15] [4.19]
1
32 21832 2.27e−4 1.06e−5 7.49e−6 5.72e−5 1.12e−3 3.57e−4

[32.26] [32.26] [32.26] [32.26] [64.04] [65.15]
The exact values are in parentheses and the CPU times in seconds for each test are in squared parentheses
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Fig. 5 Convergence of the numerical results for a standard power option with various h

In Fig. 5, we also confirm the second-order convergence of the numerical results
for u,Δ, Γ,Θ, ν, and ρ.

3.4 Powered Option

Finally,we consider a powered optionwhose payoff function atmaturity T is u(x, 0) =
max(x − K , 0)p, where p is a power (Haug 1997). The closed-form solution (Esser
2003; Heynen and Kat 1996; Zhang 1998) of the powered option is given by

u(x, τ ) =
p∑

q=0

p!
q!(p − q)! x

p−q(−K )qe(p−q−1)(r+0.5(p−q)σ 2)τ N (dp,q), (13)
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Table 4 Convergence of a powered option: absolute errors in the option price and its Greeks at x = 100
and T = 1

h Nτ u Δ Γ Θ ν ρ

(676.758) (40.102) (1.598) (819.296) (4795.291) (3333.420)

1 1050 1.02e−1 5.20e−3 5.30e−5 7.65e−2 1.07e−0 1.10e−0

[0.09] [0.09] [0.09] [0.09] [0.18] [0.18]
1
2 4183 2.54e−2 1.30e−3 1.34e−5 1.92e−2 2.63e−1 2.71e−1

[1.24] [1.24] [1.24] [1.24] [2.47] [2.47]
1
4 16717 6.35e−3 3.26e−4 3.34e−6 4.80e−3 5.88e−2 6.41e−2

[18.92] [18.92] [18.92] [18.92] [38.37] [39.06]
The exact values are in parentheses and the CPU times in seconds for each test are in squared parentheses
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Fig. 6 Convergence of the numerical results for a powered option with various h

where dp,q = [ln(x/K ) + (r + (p − q − 0.5)σ 2)τ ]/(σ√
τ). In this example, we

choose p = 2 and K = 100. We use the same time step and non-uniform grid as used
in the European call option test. Table 4 reports the absolute errors in the option price
and its Greeks of powered option. From the table, we see that the computed option
prices and its Greeks converge toward the exact values as the grid sizes are refined.

Figure 6 shows the second-order convergence of the numerical results for a powered
option with various h.

4 Conclusions

We presented an accurate and efficient finite difference method for solving the BS
equation without boundary conditions. Unlike most finite difference methods which
need an artificial far-field boundary condition such as theDirichlet,Neumann, linearity,
or PDE boundary condition, the proposed explicit finite difference scheme does not
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use a far-field boundary condition. The basic idea of the method is that we reduce one
or two computational grid points and only compute the updated numerical solution
on that new grid points at each time step. Therefore, we do not need a boundary
condition. This algorithmworks because option pricing and computation of theGreeks
use the values at a couple of grid points. We demonstrated the efficiency and accuracy
of the new proposed algorithm by performing the numerical experiments such as
pricing and computation of the Greeks of the vanilla call, cash-or-nothing, power,
and powered options. The computational results showed excellent agreement with
analytical solutions. In real world financial practices, the sizes of the space step and
time step are sufficiently large and small, respectively. Therefore, it is reasonable to
use an explicit time marching scheme to advance the numerical solutions. As future
researchworks, it is natural to extend the proposed scheme tomulti-asset option pricing
problems.
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