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Abstract When density variations are sufficiently small the Boussinesq approximation is valid. The approxima-
tion is introduced to reduce the degree of the complexity of density variations and implies that density effects are
considered only in the buoyancy force term of the momentum equation. Because of its simplicity in practical imple-
mentations, the approximation is widely used. Although there are many studies related to the approximation, some
important characteristics are still missing. In this article, we compare the Boussinesq approximation and variable
density models for the two-dimensional (2D) Rayleigh–Taylor instability with a phase-field method. Numerical
experiments indicate that for an initially symmetric perturbation of the interface the symmetry of the heavy and
light fronts for the Boussinesq model can be seen for a long time. However, for the variable density model, the
symmetry is lost although the flow starts symmetrically.

Keywords Boussinesq approximation model · Phase-field method · Projection method ·
Rayleigh–Taylor instability · Variable density model

1 Introduction

In fluids, the dynamic variables typically required to describe the motion are the velocity, pressure, viscosity, and
density. The density is a very important quantity for fluids since it determines fluid properties, such as compress-
ibility. Because of the complexity of density variations in fluids, some assumptions have been introduced to reduce
the degree of the complexity. One of these assumptions is the Boussinesq approximation [1], which is used in the
field of buoyancy-driven flows.

Assume that the densities ρ1 and ρ2 (ρ1 and ρ2 are the densities of the heavier and lighter fluid, respectively)
are uniform on each side of the interface, and that the density difference is small in the sense that the Atwood
number At = (ρ1 − ρ2)/(ρ1 + ρ2) is small. The Boussinesq approximation can be made in this case and is also
related to the assumption that all of the accelerations of flow are small compared to the gravitational acceleration.
In this approximation, the background density can be treated as a constant ρ∗, i.e., the variation of background
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density is neglected, and the difference between the actual density and ρ∗ will contribute only to the buoyancy force
term of the momentum equation [2]. Because of its simplicity in practical implementations (we solve a constant
instead of a variable coefficient Poisson equation), the Boussinesq approximation is employed in many previous
articles [3–16]. On the other hand, many numerical methods (e.g., front tracking [17–21], volume of fluid [22–26],
lattice Boltzmann [27–30], level set [31–34], and phase-field [35–38] methods) have been proposed to study the
Rayleigh–Taylor instability for the variable density model. However, there has been no comparison studies on the
different models, to authors’ knowledge.

In order to understand the difference of the basic dynamics between two different models, we focus on the
Rayleigh–Taylor instability. The Rayleigh–Taylor instability is an instability of an interface between two fluids
with different densities, which occurs when the lighter fluid is pushing the heavier fluid. And the instability is
characterized by the Atwood number. The Rayleigh–Taylor instability for a fluid in a gravitational field was orig-
inally introduced by Rayleigh [39] and later applied to all accelerated fluids by Taylor [40]. This instability has
been applied to a wide range of problems, such as inertial confinement fusion [41], supernova explosion [42],
nuclear weapon explosion [43], oceanography [44], atmospheric physics [45], and supernova remnant [46]. In this
article, we employ a phase-field model to study the two-dimensional (2D) Rayleigh–Taylor instability. This method
replaces sharp fluid interfaces by thin but nonzero thickness transition regions where the interfacial forces are
smoothly distributed [47]. The basic idea is to introduce a conserved order parameter φ that varies continuously
over thin interfacial layers and is mostly uniform in the bulk phases. The advantages of this approach are topology
changes without difficulties; interfaces can either merge [48] or break up [49] and no extra coding is required; the
concentration field φ has physical meanings not only on the interface but also in the bulk phases; it can be naturally
extended to multicomponent systems [50] and three space dimensions [51] with a straightforward manner.

The article is organized as follows. The governing equations are introduced in Sect. 2. In Sect. 3, we briefly
review previous studies using the Boussinesq approximation. We discuss the Boussinesq approximation of the
incompressible Navier–Stokes equations in Sect. 4. Numerical results are presented in Sect. 5. In Sect. 6, conclu-
sions are drawn. In the Appendix A, we derive the discrete scheme and numerical solution. We also present the
approximate projection method used to solve the discrete Navier–Stokes equations.

2 Governing equations

The equations governing the motion of unsteady, viscous, incompressible, immiscible two-fluid system are the
Navier–Stokes equations (the subscript i denotes the i th fluid component):

ρi

(
∂ui

∂t
+ ui · ∇ui

)
= −∇ pi + ∇ · [ηi (∇ui + ∇uT

i )] + ρi g in Ωi ,

∇ · ui = 0 in Ωi ,

where ρi is the density, ui is the velocity, pi is the pressure, and ηi is the viscosity of fluid i = 1, 2, the superscript
T denotes the transpose, and g is the gravitational force. A schematic of a two-phase domain is shown in Fig. 1.

Fig. 1 Schematic of a
two-phase domain
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Fig. 2 Contour plots of time evolution of the density field. The times are shown below each figure

Γ is the interface between two fluids, n = (n1, n2) is the outward unit normal vector to the interface, and t = (t1, t2)
is the unit tangent vector to the interface.

In fluid flow problems with moving interfaces, part of the interface of the computational domain is unknown and
must be determined as part of the solution. On the unknown interface, the boundary conditions should be satisfied.
The dynamic condition requires that the forces acting on the fluid at the interface be in equilibrium (momentum
conservation at the interface). This means that the normal forces on either side of the interface are of equal magni-
tude and opposite direction, while the forces in the tangential direction are of equal magnitude and direction [52]
(neglecting surface tension):

(n · τ)1 · n = −(n · τ)2 · n and (n · τ)1 · t = (n · τ)2 · t,

where τ is the stress tensor (including pressure terms). The kinematic condition requires that the interface be a sharp
boundary separating the two fluids that allows no flow through it. This states that the components of the velocity
normal (or tangential) to the interface are equal for two fluids:

u1 · n = u2 · n and u1 · t = u2 · t.

The density field is passively convected by the fluid velocity:

ρt + ∇ · (ρu) = 0.

However, using this form of the transport equation may cause significant problems in computation of two-fluid
flows. We will give an example about how this form causes problems. Consider a light bubble rising under gravity
in a heavy background fluid. The initial conditions are a zero velocity field and a density field:

ρ(x, y, 0) = ρ1 + ρ2

2
+ tanh

(
100(

√
(x − 0.5)2 + (y − 0.5)2 − 0.1)√

2

)

on the unit square domain. Here, ρ1 = 1 and ρ2 = 3 (ρ1 and ρ2 are densities inside and outside the bubble,
respectively). The viscosity is matched and is given as η = 0.1. Contour plots of time evolution of the density field
from the calculation with a mesh size 256 × 256 are shown in Fig. 2. These show the rise of the bubble. However,
there is unphysical numerical compression and diffusion.

Hence, to overcome these problems, we consider the advective Cahn–Hilliard (CH) equation. Let φ be the phase
variable (i.e., φ = (m1 − m2)/(m1 + m2) where m1 and m2 are the masses of phases 1 and 2), then

φt + ∇ · (φu) = M	μ,

μ = F ′(φ) − ε2	φ,
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Fig. 3 Double well
potential,
F(c) = 0.25(c2 − 1)2
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where M is the mobility, μ is the chemical potential, F(φ) = 0.25(φ2 − 1)2 is the Helmholtz free energy (see
Fig. 3), and ε > 0 is the interface thickness parameter. Ding et al. [35] derived the advective CH equation from the
conservation law of mass of binary mixtures for fluids.

Therefore, the fluids are governed by the Navier–Stokes–Cahn–Hilliard (NSCH) equations [3,8,9,13,35,38,
47–50,53–56]:

ρ(φ)(ut + u · ∇u) = −∇ p + η	u + ρ(φ)g, (1)

∇ · u = 0, (2)

φt + ∇ · (φu) = M	μ, (3)

μ = φ3 − φ − ε2	φ, (4)

where ρ(φ) = ρ1(1 + φ)/2 + ρ2(1 − φ)/2 is the variable density, η is the constant viscosity, and g = (0,−g).
These are approximations to the complete Navier–Stokes equations. In this article, the effect of surface tension is
neglected. We note that even though a phase-field method can deal with the variable viscosity case straightforwardly,
we focus on viscosity-matched fluids since our main interest is the density variation.

In the Boussinesq approximation, the background density can be treated as a constant ρ∗, i.e., the variation of
background density is neglected, and the difference between the actual density and ρ∗ will contribute only to the
buoyancy force term of the momentum equation [2]. Hence, Eq. 1 becomes

ρ∗(ut + u · ∇u) = −∇ p + η	u + ρ(φ)g, (5)

where ρ∗ = (ρ1 +ρ2)/2 is the mean density [3,13]. The advantage of this model is that we solve a constant instead
of a variable coefficient Poisson equation.

3 Review of the Boussinesq model

In this section, we briefly review previous studies using the Boussinesq approximation. Aref and Tryggvason [5]
proposed a model for the development of the Rayleigh–Taylor instability in the Boussinesq approximation using
concentrations of vorticity along the interface. In their case, the density was not coupled to a scalar field, and the
buoyancy term in the Boussinesq Navier–Stokes equations was the only term related to the weak stratification. Han
and Tryggvason [6] examined the deformation and breakup of axisymmetric drops, accelerated by a constant body
force, for small density differences between the drops and the surrounding fluid. In their work, the density ratio was
ρ1/ρ2 = 1.15 and a front tracking numerical technique was used to solve the unsteady Navier–Stokes equations
for both the drops and the surrounding fluid. They showed, in the Boussinesq limit, as the Eötvös number increases
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the drops break up in a backward facing bag, a transient breakup, and a forward facing bag mode. Young et al. [7]
investigated the miscible Rayleigh–Taylor instability in both two and three dimensions. In their work, the fluid was
assumed incompressible under the Boussinesq approximation to make the problem more tractable. They found that
the 3D mixing zone expands two times faster than the 2D mixing zone through the simulation of randomly perturbed
interfaces and identified three phases of evolution for the 3D mixing zone: the free-falling phase, the mixing phase,
and the another free-falling phase. Liu and Shen [8] modeled the mixture of two incompressible fluids with a phase
field model. A semi-discrete Fourier-spectral method for the numerical approximation of a Navier–Stokes system
coupled with a CH equation was proposed and analyzed. They used the Boussinesq approximation to model the
case where the two fluids have different densities.

Vladimirova and Rosner studied the fully nonlinear behavior of premixed flames in a gravitationally stratified
medium, subject to the Boussinesq approximation in [10,11]. Vladimirova [12] simulated a bubble of reaction
products rising in the reactant fluid under the influence of gravity using the Boussinesq buoyancy approximation.
The Atwood numbers in their experiments were in the range of 0.075–0.16. The author showed that the evolution
of the bubble can be divided into two stages: the bubble grows radially in an essentially motionless fluid in the
first stage, and the bubble rises and is distorted by the flow during the second stage. Celani et al. [13] studied
the Rayleigh–Taylor instability of two immiscible fluids in the limit of small Atwood numbers by means of a
phase-field description. They analytically re-derived the known gravity–capillary dispersion relation in the limit of
vanishing mixing energy density and capillary width, and numerical results were compared with known analytic
results, both for the linearly stable and unstable cases, and for the weakly nonlinear stages of the latter. Forbes
[14] studied the development of the Rayleigh–Taylor instability for inviscid and viscous fluids. The author used the
approximate Boussinesq approach rather than the full Navier–Stokes equations of viscous flow and the density ratio
was ρ1/ρ2 = 1.05. A separate spectral method was presented to study the Rayleigh–Taylor instability in a viscous
Boussinesq fluid. The results were shown to agree closely with the inviscid calculations for small to moderate times.
In [16], Boffetta et al. investigated the Rayleigh–Taylor turbulence in three dimensions at small Atwood number
and at Prandtl number one by means of high resolution direct numerical simulations of the Boussinesq equations.
The authors extended the mean-field analysis for velocity and temperature fluctuations and showed that small-scale
velocity and temperature fluctuations develop intermittent distributions with structure function scaling exponents
consistent with Navier–Stokes turbulence advecting a passive scalar.

4 The Boussinesq approximation model

If we add and subtract the term ρ∗g to and from Eq. 5, we get

ρ∗(ut + u · ∇u) = −∇ p + ρ∗g + η	u + (ρ(φ) − ρ∗)g. (6)

In the 2D case, we can write Eq. 6 as follows:

ρ∗(ut + u · ∇u) = −∇(p + ρ∗gy) + η	u + (ρ(φ) − ρ∗)g. (7)

If we reset the pressure field as p = p + ρ∗gy and divide by ρ∗, then Eq. 7 becomes

ut + u · ∇u = − 1

ρ∗
∇ p + η

ρ∗
	u + ρ(φ) − ρ∗

ρ∗
g.

The buoyancy contribution can be rewritten in terms of ρ1, ρ2, and φ as

ρ(φ) − ρ∗
ρ∗

g = ρ1(
1+φ

2 ) + ρ2(
1−φ

2 ) − ρ∗
ρ∗

g = Atφg.

On the other hand, applying the similar procedure to the case of the variable density model, the buoyancy contribution
in Eq. 1 can be rewritten as

ρ(φ) − ρ∗
ρ(φ)

g = Atφ

1 + Atφ
g.
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Fig. 4 Profiles of Atφ (the
Boussinesq case) and
Atφ/(1 + Atφ) (the
variable density case) for
two different Atwood
numbers At1 = 0.01 and
At2 = 0.5
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In our phase-field model, φ varies from −1 to 1. Note that Atφ (the Boussinesq case) and Atφ/(1 + Atφ) (the
variable density case) are linear and nonlinear functions with respect to the phase-field φ. Figure 4 shows profiles
of Atφ and Atφ/(1 + Atφ) for two different Atwood numbers At = 0.01 and At = 0.5. For At = 0.01, there is
almost no difference between Atφ and Atφ/(1+ Atφ), and both Atφ and Atφ/(1+ Atφ) are nearly zero. However,
for At = 0.5, there is a difference between Atφ and Atφ/(1 + Atφ). This difference implies the difference of
the buoyancy force. Figure 5a and b shows the buoyancy force for the Boussinesq and the variable density models
with At = 0.5, respectively. In the case of the Boussinesq model, the buoyancy force is symmetric along the inter-
face. However, in the case of the variable density model, the buoyancy force is not symmetric along the interface
although the phase-field is symmetric. This difference of the buoyancy force causes a difference of the interface
evolution for the Boussinesq and the variable density models. If the density variation goes to zero, i.e., At → 0,
then the difference between the Boussinesq and the non-Boussinesq fluids disappears. However, in general there is
a difference between the Boussinesq and the non-Boussinesq fluids. Solutions of the two different models will be
compared in the next section.

5 Numerical results

In this section, we compared the effect of the Boussinesq and the variable density models for the Rayleigh–Taylor
instability with a phase-field method.

5.1 Relation between the Atwood number and the height of bubbles and spikes

In the Rayleigh–Taylor instability, fingers of the lighter fluid penetrate the heavier fluid as “bubbles,” while “spikes”
of the heavier fluid move into the lighter fluid. To investigate the relation between the Atwood number and the
height of bubbles and spikes, we take an initial state as

φ(x, y, 0) = tanh

(
y − 2 − 0.1 cos(2πx)√

2ε

)

on the computational domain Ω = (0, 1) × (0, 4). We perform simulations with a mesh size 128 × 512 and
η = 0.01, g = 10, M = 0.1,	t = 2.0 × 10−4, and ε = 0.01. The zero level set of the initial profile is symmetric
(see Fig. 6a). We define the height of bubbles (bh) and spikes (sh) as distance between two tangent lines (denoted
by solid and dashed lines) of tips of bubbles and spikes, respectively (see Fig. 6b).
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Fig. 5 The buoyancy force for a the Boussinesq approxima-
tion and b the variable density models with At = 0.5. This
difference causes a difference of the interface evolution for the
two different models
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Fig. 6 a The zero level set of the initial profile, φ(x, y, 0) =
tanh

(
y−2−0.1 cos(2πx)√

2ε

)
. b Schematic for the measurement of

the height of bubbles (bh) and spikes (sh)

Time evolution of the interface from the Boussinesq simulation with At = 0.5 is shown in Fig. 7. The times are
shown below each figure. The symmetry of the heavy and light fronts for the Boussinesq flows can be clearly seen
for a long time. Note that the symmetry can always be observed regardless of the Atwood number when we use
the Boussinesq model. For the variable density models, Fig. 8a, b, and c shows concentration fields with At = 0.1
and t = 2.32, At = 0.3 and t = 1.38, and At = 0.5 and t = 1.116, respectively. Figure 8a still resembles the
Boussinesq flows. Figure 8b shows that the heavy front moves faster than the light front. This observation can
be seen even more clearly in Fig. 8c. As can be seen in Fig. 8, for the variable density flows, the symmetry is
lost although the flow starts symmetrically. The phase shifts of the Boussinesq and the variable density flows with
At = 0.5 are shown in Fig. 9. In Fig. 9, the circles are obtained by the symmetry about y = 2 and then a 90◦ phase
shift of the symmetry-imposed phase. In the case of the Boussinesq model (Fig. 9a), the shifted phase is equivalent
to the original phase, but it is not for the variable density model (Fig. 9b). The symmetry and non-symmetry of
the heavy and light fronts affect heights of bubbles and spikes. Figure 10a shows the height of bubbles (bh) versus
height of spikes (sh) with At = 0.01, 0.1, 0.3, and 0.5 for the Boussinesq and the variable density models. In the
case of the Boussinesq model, the symmetry of the heavy and light fronts results in identical propagation heights
of bubbles and spikes regardless of the value of the Atwood number. In the case of the variable density model, the
height of spikes is almost the same as the height of bubbles when the Atwood number is very small. However, as
the Atwood number increases, the height of spikes decreases compared with the height of bubbles. In Fig. 10b, the
solid and dashed lines represent the interface of the Boussinesq (t = 1.116) and the variable density (t = 1.116)
models for At = 0.5, respectively. In both cases, sh is 1.2, and bh of the Boussinesq and the variable density models
are 1.2 and 1.45, respectively.
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Fig. 7 Time evolution of the interface from the Boussinesq simulation with At = 0.5. The times are shown below each figure

Fig. 8 Concentration fields
from the non-Boussinesq
simulation: a At = 0.1 and
t = 2.320, b At = 0.3 and
t = 1.380, and c At = 0.5
and t = 1.116
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6 Conclusion

When density variations are sufficiently small the Boussinesq approximation is valid. The approximation is intro-
duced to reduce the degree of the complexity of density variations and implies that density effects are considered
only in the buoyancy force term of the momentum equation. Because of its simplicity in practical implementations,
the approximation is widely used. Although there are many studies related to the approximation, some important
characteristics are still missing. In this article, we compared the Boussinesq approximation and the variable density
models for the 2D Rayleigh–Taylor instability with a phase-field method. Numerical experiments indicated that for
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Fig. 11 Velocities are defined at cell boundaries while pressure
and phase-fields are defined at the cell centers

an initially symmetric perturbation of the interface the symmetry of the heavy and light fronts for the Boussinesq
model can be seen for a long time. However, for the variable density model the symmetry is lost although the flow
starts symmetrically.
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Appendix A: Numerical solution

An efficient approximation can be obtained by decoupling the solution of the momentum equations from the solution
of the continuity equation by a projection method [57–59]. The extension to three-dimensions is straightforward.
We will focus on describing the idea in two-dimensions. In this section, we present the numerical solution for the
Boussinesq approximation model. For the numerical solution of the variable density model, please refer to Ref. [38].

A staggered marker-and-cell (MAC) mesh of Harlow and Welch [60] is used in which pressure and phase-fields
are stored at cell centers and velocities at cell boundaries (see Fig. 11).

Let a computational domain be partitioned in Cartesian geometry into a uniform mesh with mesh spacing h. The
center of each cell, Ωi j , is located at (xi , y j ) = ((i − 0.5)h, ( j − 0.5)h) for i = 1, . . . , Nx and j = 1, . . . , Ny . Nx

and Ny are the numbers of cells in x and y-directions, respectively. The cell vertices are located at (xi+ 1
2
, y j+ 1

2
) =

(ih, jh). We denote by ∇d ,∇d ·, and 	d the discrete gradient, divergence, and Laplacian, respectively. These are
described in Eqs. 10 and 14.

At the beginning of each time step, given un and φn , we want to find un+1, φn+1, and pn+1 which solve the
following temporal discretization of Eqs. 2–4 and 7 of motion:

ρ∗
un+1 − un

	t
= −ρ∗(u · ∇du)n − ∇d pn+1 + η	dun + (ρn − ρ∗)g,

∇d · un+1 = 0,

φn+1 − φn

	t
= M	dνn+1 − M	dφn − ∇d · (φu)n, (8)

νn+1 = (φn+1)3 − ε2	dφn+1, (9)

where ρn = ρ(φn). The outline of the main procedures in one time step is:

Step 1. Initialize u0 to be the divergence-free velocity field and φ0.
Step 2. Solve an intermediate velocity field, ũ, which generally does not satisfy the incompressible condition,

without the pressure gradient term,
ũ − un

	t
= −un · ∇dun + η

ρ∗
	dun + ρn − ρ∗

ρ∗
g.

The resulting finite difference equations are written out explicitly. They take the form:

ũi+ 1
2 , j = un

i+ 1
2 , j

− 	t (uux + vuy)
n
i+ 1

2 , j

+ 	tη

h2ρ∗

(
un

i+ 3
2 , j

+ un
i− 1

2 , j
− 4un

i+ 1
2 , j

+ un
i+ 1

2 , j+1
+ un

i+ 1
2 , j−1

)
, (10)

ṽi, j+ 1
2

= vn
i, j+ 1

2
− 	t (uvx + vvy)

n
i, j+ 1

2
−

	t

(
ρn

i, j+ 1
2

− ρ∗
)

g

ρ∗

+ 	tη

h2ρ∗

(
vn

i+1, j+ 1
2

+ vn
i−1, j+ 1

2
− 4vn

i, j+ 1
2

+ vn
i, j+ 3

2
+ vn

i, j− 1
2

)
.

Details for the calculation of the advection terms are presented in [38].
Then, we solve the following equations for the advanced pressure field at (n + 1) time step:

un+1 − ũ
	t

= − 1

ρ∗
∇d pn+1, (11)

∇d · un+1 = 0. (12)

With application of the divergence operator to Eq. 11, we find the Poisson equation for the pressure at the advanced
time (n + 1).
1

ρ∗
	d pn+1 = 1

	t
∇d · ũ, (13)
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where we have made use of Eq. 12 and the terms are defined as in the following:

	d pn+1
i j = pn+1

i+1, j + pn+1
i−1, j − 4pn+1

i j + pn+1
i, j+1 + pn+1

i, j−1

h2 ,

∇d · ũi j =
ũi+ 1

2 , j − ũi− 1
2 , j

h
+

ṽi, j+ 1
2

− ṽi, j− 1
2

h
. (14)

The boundary condition for the pressure is

n · ∇d pn+1 = n ·
(

−ρ∗
un+1 − un

	t
− ρ∗(u · ∇du)n + η	dun + (ρn − ρ∗)g

)
,

where n is the unit normal vector to the domain boundary.
In our application of the phase-field to the Rayleigh–Taylor instability, we will use a periodic boundary condition

to vertical boundaries and no slip boundary condition to the top and bottom domains. Therefore,

n · ∇d pn+1 = n · (ρn − ρ∗)g, i.e.,
∂p

∂y
= −(ρn − ρ∗)g at y = 0 and y = L y .

The resulting linear system of Eq. 13 is solved using a multigrid method [61], specifically, V-cycles with a
Gauss–Seidel relaxation. Then the divergence-free normal velocities un+1 and vn+1 are defined by

un+1 = ũ − 	t

ρ∗
∇d pn+1,

i.e., un+1
i+ 1

2 , j
= ũi+ 1

2 , j − 	t

ρ∗h
(pi+1, j − pi j ), vn+1

i, j+ 1
2

= ṽi, j+ 1
2

− 	t

ρ∗h
(pi, j+1 − pi j ).

We implement the unconditionally gradient stable scheme in Eqs. 8 and 9 with a nonlinear multigrid method.
For a detailed description of the numerical method used in solving these equations, please refer to Refs. [62,63].

In our simulations, mass conservation is an important factor. Therefore, we use a conservative discretization of
the convective part of the phase-field equation (8).

((φu)x + (φv)y)
n
i j =

un
i+ 1

2 , j
(φn

i+1, j + φn
i j ) − un

i− 1
2 , j

(φn
i j + φn

i−1, j )

2h
+

vn
i, j+ 1

2
(φn

i, j+1 + φn
i j ) − un

i, j− 1
2
(φn

i j + φn
i, j−1)

2h
.

These complete one time step.
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