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a b s t r a c t 

A new phase-field model for immiscible incompressible two-phase liquid flows has been developed. The 

model consists of a conservative Allen–Cahn equation with a space-time dependent Lagrange multiplier 

and a modified Navier–Stokes equation. Even though most phase-field methods for the multiphase flows 

preserve total mass, the bulk phase concentrations tend to shift from equilibrium concentration values of 

a double-well potential. The proposed model has a good feature which avoids mass spreading to the bulk 

phases. To validate the new system, the deformation of a drop from the initial circular shape in shear 

flow is presented and compared with other numerical results. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Many important industrial problems involve multiphase and

ulticomponent fluid flows [1] . There are many mathematical

odels and numerical solution methods for the multiphase and

ulticomponent fluid flows such as the level set method [1–3] , the

hase-field method [1,4,5] , the immersed boundary method [1,6,7] ,

nd the lattice Boltzmann method [8–10] , to name a few. In this

aper, we focus on the phase-field method. The Cahn–Hilliard (CH)

quation [11] has been used in simulating two-phase fluid flows

12–19] and multi-component fluid flows [20] , see a review pa-

er [21] and references therein. However, for a long time simula-

ion, the bulk phase concentrations tend to shift from equilibrium

oncentration values of a double-well potential even though most

hase-field methods for the multiphase flows preserve total mass.

o overcome this drawback, we propose a new phase-field model

or immiscible incompressible two-phase liquid flows. The pro-

osed model consists of a conservative Allen–Cahn equation with a

pace-time dependent Lagrange multiplier [22,23] and a modified

avier–Stokes equation. The new system has a good feature which

voids mass spreading to the bulk phase. In this paper, we consider

he following system modeling viscous, immiscible, incompressible,
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wo-phase fluid flow with surface tension force: 

∂ u 

∂t 
+ u · ∇u = −∇p + 

1 

Re 
�u + F s (φ) , (1) 

 · u = 0 , (2) 

here u is the fluid velocity, p is the pressure, Re is the Reynolds

umber, and F s is the surface tension of the interface. The interfa-

ial force F s ( φ) is given as 

 s (φ) = −3 

√ 

2 ε

4 W e 
∇ ·

( ∇φ

|∇φ| 
)

|∇ φ|∇ φ, 

here We is the Weber number [17] . The governing equation of

he order parameter φ is given by the following phase-field equa-

ion: 

∂φ

∂t 
+ ∇ · (φu ) = 

1 

P e 
(−F ′ (φ) + ε2 �φ) + β(t) 

√ 

F (φ) , (3) 

here Pe is the Peclet number, F (φ) = 0 . 25(φ2 − 1) 2 , ε is a posi-

ive constant, and β( t ) is a non-constant Lagrange multiplier which

nforces the mass conservation. Note that we view the current

odel as a computational method for simulating viscous, immisci-

le, incompressible, two-phase fluid flow with surface tension and

ravitational forces. 

If β(t) 
√ 

F (φ) is absent in Eq. (3) , then the equation becomes

 convective Allen–Cahn equation and the rigorous mathematical

nalysis for the resulting Allen–Cahn–Navier–Stokes system was

xtensively covered in [24] . Yang et al. [19] employed the following

http://dx.doi.org/10.1016/j.compfluid.2017.07.009
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Fig. 1. MAC discretization of the velocity, pressure, and phase-field components. 
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c  
energetic variational phase-field method to simulate jet pinching-

off and drop formation: 

∂φ

∂t 
+ ∇ · (φu ) = 

1 

P e 
(−F ′ (φ) + ε2 �φ) + β(t) . (4)

Di et al. [25] presented an adaptive moving mesh algorithm for

meshes of unstructured polyhedra in three space dimensions using

a conservative Allen–Cahn–Navier–Stokes system. Shah and Yuan

[5] proposed an artificial compressibility based numerical method

for a phase field model for simulating two-phase incompressible

viscous flows. In [26] , the authors have introduced a globally con-

servative residual-based Allen–Cahn phase field stabilized finite el-

ement model for the simulation of two immiscible fluids using the

same Eq. (4) . Using the conservative Allen–Cahn equation, the au-

thors in [8,9] proposed and improved a conservative Boltzmann

method to track the interface between two different fluids. The

method conserves mass locally and globally. 

The remaining parts of this paper are organized as follows. In

Section 2 , we give the numerical solution algorithm. To validate the

new proposed model, a droplet deformation in shear flow is pre-

sented in Section 3 . In Section 4 , conclusions are drawn. 

2. Numerical solutions 

The proposed numerical method is composed of two parts:

A projection method for the modified Navier–Stokes equation

[27] and a hybrid method for the conservative Allen–Cahn equation

with a space-time dependent Lagrange multiplier [23] . Let � =
(a, b) × (c, d) be a computational domain, which is partitioned into

a uniform mesh with a constant mesh spacing h = (b − a ) /N x =
(d − c) /N y , where N x and N y are the numbers of cells in x - and

y - directions, respectively. For i = 1 , · · · , N x and j = 1 , · · · , N y , let

(x i , y j ) = ( a + (i − 0 . 5) h, c + ( j − 0 . 5) h ) be the cell centers. Let φn 
i j 

and p n 
i j 

be approximations of φ( x i , y j , n �t ) and p ( x i , y j , n �t ), re-

spectively, where �t = T /N t is the temporal step size, T is the final

time, and N t is the total number of time steps. Velocities u 
i + 1 

2 
, j 

and

v 
i, j+ 1 

2 
are defined at cell edges (x 

i + 1 
2 
, y j ) = ( a + ih, c + ( j − 0 . 5) h )

and (x i , y j+ 1 
2 
) = ( a + (i − 0 . 5) h, c + jh ) , respectively. The staggered

marker-and-cell (MAC) mesh is used [28] . In the MAC mesh, pres-

sure and phase fields are defined at centers and velocities are at

edges (see Fig. 1 ). 

Given u 

n , and φn , we want to find u 

n +1 , φn +1 , and p n +1 which

solve Eqs. (1) –(3) . Initialize u 

0 to be the divergence-free velocity

field and φ0 to be the locally equilibrated concentration profile. 

Step 1. Solve the intermediate velocity field ˜ u : 

˜ u − u 

n 

= 

1 

�d u 

n + F n s − (u · ∇ d u ) n , 

�t Re e
here discretizations of the surface tension force F n s and the ad-

ection term can be found in [17,29] . For the discrete Laplacian op-

rator �d , we use the standard five-point discretization. For exam-

le, �d u i + 1 
2 

, j 
= (u 

i − 1 
2 

, j 
+ u 

i + 3 
2 

, j 
− 4 u 

i + 1 
2 

, j 
+ u 

i + 1 
2 

, j−1 
+ u 

i + 1 
2 

, j+1 
) /h 2 .

ext, we solve Eqs. (5) and (6) for the pressure field at (n + 1)

ime level. 

u 

n +1 − ˜ u 

�t 
= −∇ d p 

n +1 , (5)

 d · u 

n +1 = 0 . (6)

fter taking the divergence operator to Eq. (5) and using Eq. (6) ,

e have the following Poisson equation. 

d p 
n +1 = 

1 

�t 
∇ d · ˜ u . (7)

he resulting linear system of Eq. (7) is solved using a multigrid

ethod [30] . 

Step 2. Update the phase-field from φn to φn +1 : To solve Eq. (3) ,

e use an operator splitting method, in which the original problem

s split into a sequence of simpler problems [23] : 

∂φ

∂t 
= 

ε2 

P e 
�φ − ∇ · (φu ) , (8)

∂φ

∂t 
= −F ′ (φ) 

P e 
, (9)

∂φ

∂t 
= β(t) 

√ 

F (φ) . (10)

irst, we solve Eq. (8) by a semi-implicit scheme: 

φ∗
i j 

− φn 
i j 

�t 
= 

ε2 

P e 
�d φ

∗
i j − ∇ d · (φu ) n i j . (11)

e use the multigrid method [30] to solve the implicit discrete

q. (11) . Next, we solve Eq. (9) analytically using the method of

eparation of variables 

∗∗
i j = 

φ∗
i j √ 

e −
2�t 
Pe + (φ∗

i j 
) 2 (1 − e −

2�t 
Pe ) 

. (12)

q. (10) is discretized as 

φn +1 
i j 

− φ∗∗
i j 

�t 
= β∗∗

√ 

F (φ∗∗
i j 

) . (13)

sing Eq. (13) and the mass conservation, we have 

N x 
 

i =1 

N y ∑ 

j=1 

φ0 
i j = 

N x ∑ 

i =1 

N y ∑ 

j=1 

φn +1 
i j 

= 

N x ∑ 

i =1 

N y ∑ 

j=1 

(
φ∗∗

i j + �tβ∗∗
√ 

F (φ∗∗
i j 

) 
)
. (14)

hus, 

∗∗ = 

1 

�t 

N x ∑ 

i =1 

N y ∑ 

j=1 

(φ0 
i j − φ∗∗

i j ) 
/ N x ∑ 

i =1 

N y ∑ 

j=1 

√ 

F (φ∗∗
i j 

) . (15)

inally, we get φn +1 from Eq. (13) , i.e., φn +1 
i j 

= φ∗∗
i j 

+
tβ∗∗

√ 

F (φ∗∗
i j 

) . Note that here we focus on the conservative

llen–Cahn–Navier–Stokes system for incompressible two-phase

uid flows and we use first-order numerical schemes. However, we

an use high-order numerical schemes [19,31] for the governing

quations. 
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Fig. 2. The effect of Peclet number. (a) Pe = 0 . 01 , (b) Pe = 0 . 1 , and (c) Pe = 1 . Contour levels are −0 . 9 , −0 . 6 , −0 . 3 , 0 , 0 . 3 , 0 . 6 , 0 . 9 . Top and bottom rows are results with ε4 , 

h = 1 / 32 , �t = 0 . 1 h 2 Re and ε8 , h = 1 / 64 , �t = 0 . 1 h 2 Re, respectively. 
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. Numerical experiment 

To demonstrate the performance of the proposed conserva-

ive Allen–Cahn–Navier–Stokes (CAC–NS) system for incompress-

ble two-phase fluid flows, we consider a droplet deformation un-

er shear flow. The initial conditions are a circular droplet and zero

elocities on the computational domain � = (−2 , 2) × (−1 , 1) : 

(x, y, 0) = tanh 

( 

0 . 75 −
√ 

x 2 + y 2 √ 

2 ε

) 

, u (x, y, 0) = v (x, y, 0) = 0 . 

or the top and bottom wall boundary conditions, we take the fol-

owing: 

u (x, 1 , t) = −u (x, −1 , t) = 1 , v (x, 1 , t) = v (x, −1 , t) = 0 , 

p y (x, 1 , t) = p y (x, −1 , t) = φy (x, 1 , t) = φy (x, −1 , t) = 0 . 

e impose the periodic boundary condition for the x -direction for

ll fields. Across interfacial transition layer φ varies from −0 . 9 to

.9 over a length of about 2 
√ 

2 ε tanh 

−1 (0 . 9) . Therefore, if we want

his value to be about hm , then ε = εm 

= hm/ [2 
√ 

2 tanh 

−1 (0 . 9)]

21] . 

.1. Peclet number effect 

As a first test, we investigate the effect of the Peclet number

n the model (3) . We perform a series of tests with various Peclet

umbers with Re = 10 and W e = 3 . Fig. 2 (a)–(c) show snapshots

t time t = 0 . 244140625 with Pe = 0 . 01 , Pe = 0 . 1 , and Pe = 1 , re-

pectively. Top and bottom rows are results with ε4 , h = 1 / 32 ,

t = 0 . 1 h 2 Re and ε8 , h = 1 / 64 , �t = 0 . 1 h 2 Re, respectively. Here,

e fixed the model parameters and changed the numerical param-

ters. We can observe the convergence of the results with refined

iscretization parameters. If Pe is too small, then the conservative
llen–Cahn dynamics dominates. On the other hand, if Pe is too

arge, then the interfacial transition layer is not locally equilibrated

nd the thickness of the layer is not uniform. 

.2. Convergence test 

In this section, we investigate the spatial and temporal conver-

ence of the proposed numerical scheme. In this test, we fix the

odel parameters: ε = 0 . 05 , Re = 100 , and W e = 100 . The initial

onditions are a circular droplet and the Couette flow velocities on

he computational domain � = (−2 , 2) × (−1 , 1) : 

(x, y, 0) = tanh 

( 

0 . 7 −
√ 

x 2 + y 2 √ 

2 ε

) 

, u (x, y, 0) = y, v (x, y, 0) = 0 . 

ince there is no closed-form analytic solution for this prob-

em, we consider a reference numerical solution, φref , which

s obtained with very fine spatial and temporal steps. Then,

e denote the error by e N x ×N y := φN x ×N y − φref , where φN x ×N y 

s the numerical solution on the mesh grid point, N x × N y . The

onvergence rate is defined as the ratio of successive errors,

og 2 (‖ e N x ×N y ‖ 2 / ‖ e N x / 2 ×N y / 2 ‖ 2 ) . Here, ‖ e N x ×N y ‖ 2 is measured by the

iscrete l 2 -norm. To verify the convergence of numerical solution

ith respect to spatial grid, we compute the numerical solutions

n the mesh grids with N x × N y = 2 n +1 × 2 n for n = 4 , 5 , 6 and 7. In

ll cases, we use the time step size �t = 1 . 0 e −3 and the total time

 = 3 . The reference solution is evaluated with N x × N y = 512 × 256

nd �t = 1 . 0 e −3 . We measure the error between the reference so-

ution and the numerical solution on each grid by using the bilin-

ar interpolation. Table 1 lists the discrete l 2 -norm of errors and

onvergence rates with respect to different spatial step sizes. The

esults suggest that the proposed numerical method is greater than

he first-order accurate in space. 
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Fig. 3. The effect of capillary number. (a) Ca = 0 . 1 , (b) Ca = 0 . 2 , and (c) Ca = 0 . 3 . 

Fig. 4. Ca = 0 . 3 case. (a) Mesh view, (b) cross sections normal to x -axis, and (c) cross sections normal to y -axis. 

Table 1 

Convergence test with respect to spatial step size. 

N x × N y 32 × 16 Rate 64 × 32 Rate 128 × 64 Rate 256 × 128 

‖ e N x ×N y ‖ 2 0.1198 2.6873 0.0186 1.9274 0.0049 1.7236 0.0015 

Table 2 

Convergence test with respect to time step size. 

�t 0.008 Rate 0.004 Rate 0.002 Rate 0.001 

‖ e 128 × 64 ‖ 2 0.0067 1.0939 0.0031 1.2196 0.0013 1.5836 0.0 0 04 
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Now, we investigate the accuracy of numerical solution with re-

spect to time step size. For this, we consider the four different time

step sizes �t = 0 . 008 / 2 n for n = 0 , 1 , 2 , and 3. The numerical solu-

tion is solved up to time T = 4 . In all tests, we use the mesh grid

N x × N y = 128 × 64 . The reference solution φref is set by the nu-

merical solution with �t = 0 . 0 0 05 . Table 2 represents the discrete

l 2 -norm of errors and convergence rates with respect to different

time step sizes. We can see that the rate of convergence is first-

order. 

We note that we could use high-order schemes to increase the

accuracy of the proposed method. However, we focus on the model

itself in this paper. 

3.3. Capillary number effect 

Next, we study the capillary number effect on the droplet de-

formation. We vary the capillary number Ca = W e/Re by changing

the We number. The other values of the parameters are the same

to the previous test with Pe = 0 . 1 . Fig. 3 (a)–(c) show the tempo-

ral evolution the droplet interface (zero level set) with Ca = 0 . 1 ,

a = 0 . 2 , and Ca = 0 . 3 , respectively. The thick line is the numeri-

cal equilibrium profile. 
Fig. 4 (a)–(c) show mesh view, cross sections normal to x -axis,

nd cross sections normal to y -axis, respectively, for Ca = 0 . 3 case.

e can clearly observe the values of concentration away from

he interfacial transition layer are almost equilibrium states, i.e.,

≈ ± 1. 

.4. Area preservation 

There are many benchmark problems relating interface defor-

ation such as diagonal motion of a circular interface, Zalesak’s

otating disk, circular interface in shear flow and in a deforma-

ion field [8] . In this work, we choose a droplet deformation under

 simple shear flow and diagonal motion of a circular interface.

e perform the area preservation from the proposed numerical

cheme. Here, area is defined as the enclosed region by the zero

evel set of the phase-field φ. In general, 
∫ 
� φ(x, y, t) d xd y is con-

tant, however, 
∫ 
� H(φ(x, y, t)) d xd y is not constant with respect to

ime, where H ( φ) is a heaviside function which is one if φ ≥ 0 and

s zero otherwise. We define the total mass, m ( φ) and the polygo-

al area, A ( φ) as 

 (φ) = 

N x ∑ 

i =1 

N y ∑ 

j=1 

φi j h 

2 and A (φ) = 

∣∣∣∣∣
M ∑ 

l=1 

(X l Y l+1 − Y l X l+1 ) / 2 

∣∣∣∣∣. 
ere X l = (X l , Y l ) for l = 1 , . . . , M are the points which are located

n the zero level of φ and X M+1 = X 1 (see Fig. 5 ). 

Fig. 6 shows temporal evolution of the relative percent error

f the polygonal area, 100 | A (φn ) /A (φ0 ) − 1 | % , with temporal and

patial step refinements, i.e., h = 1 / 32 , 1/64, and 1/128 until t =
9 . 53125 . Here, we took Ca = 0 . 3 case with Pe = 0 . 1 . The relative

ercent errors are about 0.1% for h = 1 / 128 . The inscribed small

gures are the zero level contours of the phase-field at the indi-

ated times. 

Next, we consider the motion of a circular interface due

o a constant velocity field (u, v ) = (1 , 1) on a doubly periodic



D. Jeong, J. Kim / Computers and Fluids 156 (2017) 239–246 243 

Fig. 5. Polygonal area A ( φ) with the boundary points X l = (X l , Y l ) , which are lo- 

cated on the zero level of the phase field, i.e., A (φ) = 

∣∣∑ M 
l=1 (X l Y l+1 − Y l X l+1 ) / 2 

∣∣. 

Fig. 6. Temporal evolution of the relative percent error of the polygonal area under 

shear flow: 100 | A (φn ) /A (φ0 ) − 1 | % . 

Fig. 7. Temporal evolution of the relative percent error of the polygonal area under 

diagonal translation: 100 | A (φn ) /A (φ0 ) − 1 | % . 
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Fig. 8. Temporal evolution of the drop deformation, D = (L − B ) / (L + B ) , for Re = 1 , 

Ca = 0 . 2 , 0 . 4 , 0 . 9 . 
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omputational domain � = (−2 , 2) × (−2 , 2) [8] . The initial con-

ition is 

(x, y, 0) = tanh 

( 

1 −
√ 

x 2 + y 2 √ 

2 ε

) 

. 

ere, ε = 0 . 1 , Pe = 0 . 1 , and �t = 0 . 512 h are used. Fig. 7 shows the

emporal evolution of the relative percent error of the polygonal

rea under diagonal translation, 100 | A (φn ) /A (φ0 ) − 1 | % , for three

ifferent mess grid points until 10 cycles. We can observe the con-

ergence of the results with refined discretization parameters. 

.5. Comparison with the previous result [32] 

Fig. 8 shows the temporal evolution of the drop deformation

arameter D = (L − B ) / (L + B ) , where L and B are the maximum

nd minimum drop lengths, respectively, for Re = 1 and several
alues of the capillary number. The initial conditions are a cir-

ular droplet and the Couette flow velocities on the domain � =
(−1 , 1) × (−1 , 1) : 

(x, y, 0) = tanh 

( 

0 . 5 −
√ 

x 2 + y 2 √ 

2 ε

) 

, u (x, y, 0) = y, v (x, y, 0) = 0 . 

he parameters used are h = 1 / 32 and �t = 0 . 2 h 2 Re . In Fig. 8 , the

olid line is from Sheth and Pozrikidis [32] and the circled symbol

s from the proposed CAC–NS model. They are in good agreement.

ere, Pe = 0 . 03 , Pe = 0 . 06 , and Pe = 0 . 135 are used for Ca = 0 . 2 ,

a = 0 . 4 , and Ca = 0 . 9 , respectively. We can observe that Pe num-

er is proportional to Ca number. 

.6. Comparison with another surface tension model 

In this section, we compare the effects of using the present sur-

ace tension with a widely adopted surface tension model [25] , 

3 

√ 

2 ε

4 W e 
∇ · (∇φ � ∇φ) , (16) 

here ∇ φ�∇ φ is the tensor product. Eq. (16) is explicitly written

s 

 · (∇φ � ∇φ) = ∇ ·
(

φ2 
x φx φy 

φy φx φ2 
y 

)
= (2 φx φxx + φy φxy + φx φyy , φx φxy + φy φxx + 2 φy φyy ) , (17) 

here we omitted the constant coefficient for simplicity. We dis-

retize Eq. (17) using a centered difference scheme. 

[ ∇ · (∇φ � ∇φ)] i j 

= 

(
1 

h 

3 
(φi +1 , j − φi −1 , j )(φi +1 , j − 2 φi j + φi −1 , j ) 

+ 

1 

8 h 

3 
(φi, j+1 −φi, j−1 )(φi +1 , j+1 +φi −1 , j−1 −φi +1 , j−1 −φi −1 , j+1 ) , 

+ 

1 

2 h 

3 
(φi +1 , j − φi −1 , j )(φi, j+1 − 2 φi j + φi, j−1 ) , 

1 

8 h 

3 
(φi +1 , j − φi −1 , j )(φi +1 , j+1 + φi −1 , j−1 − φi +1 , j−1 − φi −1 , j+1 ) 

+ 

1 

2 h 

3 
(φi, j+1 − φi, j−1 )(φi +1 , j − 2 φi j + φi −1 , j ) 

+ 

1 

h 

3 
(φi, j+1 − φi, j−1 )(φi, j+1 − 2 φi j + φi, j−1 ) 

)
(18) 

et us consider the evolution of a droplet placed within another

uid under shear flow. The initial condition on � = (−2 , 2) ×



244 D. Jeong, J. Kim / Computers and Fluids 156 (2017) 239–246 

Fig. 9. (a) and (b) are pressure fields after one time step and 50 0 0 time steps, respectively. Top and bottom rows are the results with − 3 
√ 

2 ε
4 We 

∇ · (∇φ � ∇φ) and − 3 
√ 

2 ε
4 We 

∇ ·( ∇φ
|∇φ| 

)|∇ φ|∇ φ, respectively. 

Fig. 10. Temporal evolution of a droplet under a shear flow with two different sur- 

face tension models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Schematic illustration of the gas bubble rising in liquid. 
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(−1 , 1) is given as 

φ(x, y, 0) = tanh 

( 

0 . 5 −
√ 

x 2 + y 2 √ 

2 ε8 

) 

, u (x, y, 0) = v (x, y, 0) = 0 . 

Here, ε8 , Re = 20 , W e = 10 , Pe = 0 . 1 , h = 1 / 32 , and �t = 0 . 1 h 2 Re

are used. In Fig. 9 , columns (a) and (b) are the pressure fields af-

ter one time step and 50 0 0 time steps, respectively. Top and bot-

tom rows are the results with the surface tension forces − 3 
√ 

2 ε
4 We ∇ ·

(∇ φ � ∇ φ) and − 3 
√ 

2 ε
4 We ∇ ·

( ∇φ
|∇φ| 

)
|∇ φ|∇ φ, respectively. 

Fig. 10 shows the temporal evolution of a droplet under a shear

flow with two different surface tension models. In early times,

both the results are identical. However, in later times, there is dif-

ference. 

3.7. Bubble rising test with large density ratio 

In this section, we simulate the rising bubble in water with a

density ratio of 10 0 0 and viscosity ratio of 100 [33] by the pro-

posed method. The schematic illustration of this test is depicted

in Fig. 11 . A gas bubble with radius R = 0 . 5 is placed at (1, 1) in a

rectangular domain � = [0 , 2] × [0 , 4] . The density and viscosity of

the bubble and the surrounding fluid are noted as ρL , μL , ρH , and

μH , respectively. Here, we set h = 1 / 32 , �t = 0 . 0 0 01 , T = 4 , Re =
35 , W e = 125 , F r = 1 , ρ = 1 , ρ = 10 0 0 , μ = 1 , and μ = 100 . 
L H L H 
The governing equations for variable density and viscosity are

s follows: 

(φ)(u t + u · ∇u ) = −∇p + 

1 

Re 
∇ ·

[
η(φ)(∇u + ∇u 

T ) 
]

+ F s (φ) + 

ρ(φ) 

F r 
g , (19)

 · u = 0 , (20)

t + ∇ · (φu ) = 

1 

P e 

(
−F ′ (φ) + ε2 �φ

)
+ β(t) 

√ 

F (φ) , (21)

here ρ(φ) = ρH (1 − φ) / 2 + ρL (1 + φ) / 2 is the density, η(φ) =
H (1 − φ) / 2 + ηL (1 + φ) / 2 is the viscosity, g = (0 , −1) is the grav-

ty. 

Then, we obtain the following temporal discretization of dimen-

ionless form of Eqs. (19) –(21) and then we solve these equations

n order: 

n u 

n +1 − u 

n 

�t 
= −ρn (u · ∇ d u ) n − ∇ d p 

n +1 

+ 

1 ∇ ·
[
η(φn )(∇ d u 

n + ∇ d ( u 

n ) T ) 
]

+ F n s + 

ρn 

g , (22)
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Fig. 12. Time evolution of a bubble rising in liquid at t = 0 , 1 , 2 , 3 , and 4. 

Fig. 13. Schematic illustration for the polyhedron and a tetrahedron with a refer- 

ence point O . 
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s

 d · u 

n +1 = 0 , (23) 

φ∗ − φn 

�t 
= 

ε2 

P e 
�d φ

∗ − ∇ d · (φu ) n , (24) 

∗∗ = 

φ∗√ 

e −
2�t 
Pe + (φ∗) 2 (1 − e −

2�t 
Pe ) 

, (25) 

φn +1 − φ∗∗

�t 
= β∗∗

√ 

F (φ∗∗) . (26) 

ere, β∗∗= 

1 

�t 

∑ N x 
i =1 

∑ N y 
j=1 

(φ0 
i j 

− φ∗∗
i j 

) 
/ ∑ N x 

i =1 

∑ N y 
j=1 

√ 

F (φ∗∗
i j 

) . Fig. 12 

hows the temporal evolution of a bubble rising in liquid at t =
 , 1 , 2 , 3 , and 4. We can see that the result is comparable to the

esult in Ref. [34] . 

.8. Comparison study of the Cahn–Hilliard and conservative 

llen–Cahn equations 

In this section, we show the superiority of the conserva-

ive Allen–Cahn (CAC) model compared to the Cahn–Hilliard (CH)
Fig. 14. Time evolution of discrete volume of a droplet in th
odel in the case of a single drop with relatively coarse grid

oints. The CH equation [11,21] is 

∂φ

∂t 
= �

(
F ′ ( φ) − ε2 �φ

)
. (27) 

e check the temporal evolution of the discrete volume of a drop

ithout fluid flow. Here, the discrete volume is defined by the total

olume of the polyhedrons: 

 (X )= 

1 

6 

M T ∑ 

s =1 

[ X q (Y l Z m 

−Y m 

Z l )−Y q (X l Z m 

−X m 

Z l )+Z q (X l Y m 

−X m 

Y l ) ] , 

here M T is the number of surface triangles Tri s = (X l , X m 

, X q )

ith a reference point O as shown in Fig. 13 . Each point X i means

 X i , Y i , Z i ) [35] . 

The initial droplet is defined to be a spherical shape with radius

 = 0 . 4 which is centered at (0.5, 0.5, 0.5) in a three-dimensional

omain � = (0 , 1) 3 . For numerical test, we use the following pa-

ameters: Pe = 1 , ε = 4 h/ (2 
√ 

2 tanh 

−1 (0 . 9)) , �t = 0 . 1 h 2 , and T =
0 0 0 0 / 2 12 . Fig. 14 (a) and (b) show the temporal evolution of nor-

alized discrete volume of a droplet in the absence of fluid flow

ith CH and CAC model when N x = N y = N z = 32 and N x = N y =
 z = 64 , respectively. As shown in Fig. 14 , although physics of CH

odel have the mass conservation, the lack of mesh resolution

enerates the loss of the discrete mass. However, the CAC model

onserves the discrete mass regardless of the grid size h . 

. Conclusions 

In this paper, we proposed a conservative Allen–Cahn equa-

ion with a space-time dependent Lagrange multiplier and a mod-

fied Navier–Stokes equation for immiscible incompressible two-

hase liquid flows. In the phase-field method for two-phase fluid

ows, preservation of total mass is one thing, and preserva-

ion of enclosed area (volume) by a contour (isosurface) is an-

ther. The new conservative Allen–Cahn–Navier–Stokes system has

 good feature preserving enclosed area (volume) under fluid

ow deformation. Numerical results confirmed that the proposed

ethod has a good area and volume conservation property. The

ew scheme will be useful in modeling and simulation three-

imensional drop deformation because it needs relatively coarse

rid resolution compared to the standard Cahn–Hilliard–Navier–

tokes system. Further improvements are possible by using higher-

rder numerical schemes. Another future research direction would

e extensions to multi-component (more than two-phase) fluid

ystems. 
e absence of fluid flow with the CH and CAC models. 
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