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We propose an efficient finite difference scheme for solving the Cahn–Hilliard equation
with a variable mobility in complex domains. Our method employs a type of uncondition-
ally gradient stable splitting discretization. We also extend the scheme to compute the
Cahn–Hilliard equation in arbitrarily shaped domains. We prove the mass conservation
property of the proposed discrete scheme for complex domains. The resulting discretized
equations are solved using a multigrid method. Numerical simulations are presented to
demonstrate that the proposed scheme can deal with complex geometries robustly. Fur-
thermore, the multigrid efficiency is retained even if the embedded domain is present.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider an efficient finite difference scheme for the Cahn–Hilliard (CH) equation with a variable mobil-
ity in complex domains.
@/ðx; tÞ
@t

¼ r � ½Mð/ðx; tÞÞrlð/ðx; tÞÞ�; x 2 X; 0 < t 6 T; ð1Þ

lð/ðx; tÞÞ ¼ F 0ð/ðx; tÞÞ � �2D/ðx; tÞ; ð2Þ
where X � Rdðd ¼ 1;2;3Þ is a domain, / = mA �mB is a difference of molar fractions mA and mB of species A and B, and M(/) is
a nonnegative diffusional mobility. F(/) is the free energy density of a homogeneous fluid and � is a positive constant. The CH
equation has the total free energy functional:
Eð/Þ ¼
Z

X
Fð/Þ þ �

2

2
jr/j2

� �
dx: ð3Þ
The CH equation was originally introduced to describe the complicated phase separation and coarsening phenomena called
the spinodal decomposition in binary alloys [5,6]. We also define the quantity c as the molar fraction mA, i.e., c = mA. Note that
/ = 2c � 1. Typical forms of the free energy are given as [11]
Fð/Þ ¼ ð1� /2Þ2

4
and FðcÞ ¼ c2ð1� cÞ2

4
: ð4Þ
. All rights reserved.
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Fig. 1. (a) Free energy F(/). (b) Variable diffusional mobility M(/).
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The free energy has a double-well potential that has local minima at the minimum and maximum of the concentration as
shown in Fig. 1(a). And we take variable mobilities of the form
Mð/Þ ¼ 1� /2 and MðcÞ ¼ cð1� cÞ ð5Þ
which are degenerated at the minimum and maximum of the concentration as shown in Fig. 1(b) [7]. This mobility signif-
icantly lowers the long-range diffusion across bulk regions with the enhanced diffusion in the interfacial region. The system
is completed by taking an initial condition and the natural and no-flux boundary conditions n�r/ = n�rl = 0 on @X, where n
is a unit normal vector to @X.

In the original derivation of the CH equation, a concentration dependent mobility appeared [4–6]. Various numerical
methods have been applied to solve the CH equation with a constant mobility [1,9,12,14,15,17,22,25,27,32]. However, rel-
atively few authors have considered the CH equation with a concentration dependent mobility [2,3,16,19–21,26,30,31,33].

In this paper, we propose an efficient finite difference scheme for the CH equation with a variable mobility. Furthermore,
we also extend the scheme to compute the CH equation in arbitrarily shaped domains. The application of Cartesian mesh for
solving problems with complex geometry has been used in the past decade. Many authors have studied the Cartesian grid
method and the finite volume method for solving the Poisson equation with an irregular domain [8,10,18,23,29]. Cartesian
grid embedded boundary methods have advantages over unstructured grid methods because of simpler grid generation.

This paper is organized as follows. In Section 2, we describe the numerical solution of the CH equation with a variable
mobility and the details of the treatment of arbitrarily shaped domains. The numerical results showing the robustness
and superiority of the proposed scheme with a variable mobility are described in Section 3. Conclusions are presented in
Section 4.

2. Numerical methods

2.1. Numerical discretization

2.1.1. The Cahn–Hilliard equation in a rectangular domain
In this section, we present fully discrete schemes for the CH equation in a rectangular domain. For simplicity of exposi-

tion, we shall discretize the CH Eqs. (1) and (2) in two-dimensional space X = (a,b) � (c,d). Three-dimensional discretization
is analogously defined. Let Nx and Ny be positive even integers, Dx = (b � a)/Nx and D y = (d � c)/Ny be the uniform mesh sizes.
We assume h = Dx = D y. Also let Xh = {(xi,yj): xi = a + (i � 0.5)h, yj = c + (j � 0.5)h, 1 6 i 6 Nx,1 6 j 6 Ny} be the set of cell-cen-
ters. Let /n

ij and ln
ij be approximations of /(xi,yj, tn) and l(xi,yj, tn), where tn = nDt and Dt is the time step. We use zero Neu-

mann boundary condition for / and l at the domain boundary, for example
Dx/1
2;j
¼ Dx/Nxþ1

2;j
¼ Dy/i;12

¼ Dy/i;Nyþ1
2
¼ 0;
where the discrete differentiation operators are
Dx/iþ1
2;j
¼

/iþ1;j � /ij

h
and Dy/i;jþ1

2
¼

/i;jþ1 � /ij

h
:

And we use the notationrd/ij ¼ Dx/iþ1
2;j
;Dy/i;jþ1

2

� �
to represent the discrete gradient of / at cell-edges. Correspondingly, the

divergence at cell-centers, using values from cell-edges, is rd � Dx/iþ1
2;j
;Dy/i;jþ1

2

� �
ij
¼ Dx/iþ1

2;j
� Dx/i�1

2;j
þ Dy/i;jþ1

2
�

�
Dy/i;j�1

2
Þ=h.

Then we define the discrete Laplacian by Dd/ij:¼rd�rd/ij and the discrete l2 inner products by
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ðc;dÞh :¼ h2
XNx

i¼1

XNy

j¼1

cijdij;

rdc;rddð Þe :¼ h2
XNx

i¼0

XNy

j¼1

Dxciþ1
2;j

Dxdiþ1
2;j
þ
XNx

i¼1

XNy

j¼0

Dyci;jþ1
2
Dydi;jþ1

2

 !
:

We also define discrete norms as jcj22 = (c,c)h and jcj21 ¼ ðrdc;rdcÞe.
In Ref. [20], a Crank–Nicolson (CN) method for the CH equation was proposed as follows:
cnþ1
ij � cn

ij

Dt
¼ rd � MðcÞnþ

1
2

ij rdl
nþ1

2
ij

� �
; ð6Þ

lnþ1
2

ij ¼ 1
2

F 0ðcnþ1
ij Þ þ F 0ðcn

ijÞ
� �

� �
2

2
Ddðcnþ1

ij þ cn
ijÞ; ð7Þ
where MðcÞnþ
1
2

iþ1
2;j

:¼ M ðcn
ij þ cn

iþ1;j þ cnþ1
ij þ cnþ1

iþ1;jÞ=4
� �

. This CN method has second-order accuracy in time and space. However, it

has a severe time step restriction.
In this paper, we present a semi-implicit time and centered difference space discretization of Eqs. (1) and (2). For the

phase-field variable c, we have the following discretization:
cnþ1
ij � cn

ij

Dt
¼ rd � MðcÞnijrdl

nþ1
2

ij

� �
; ð8Þ

lnþ1
2

ij ¼ 1
2

cnþ1
ij � �2Ddcnþ1

ij þ F 0ðcn
ijÞ �

1
2

cn
ij ð9Þ
and for the phase-field variable /, we have the following one:
/nþ1
ij � /n

ij

Dt
¼ rd � Mð/Þnijrdl

nþ1
2

ij

� �
; ð10Þ

lnþ1
2

ij ¼ 2/nþ1
ij � �2Dd/

nþ1
ij þ F 0ð/n

ijÞ � 2/n
ij; ð11Þ
where
rd � Mð/Þnijrdl
nþ1

2
ij

� �
:¼

Mn
iþ1

2;j
lnþ1

2
iþ1;j � lnþ1

2
ij

� �
�Mn

i�1
2;j

lnþ1
2

ij � lnþ1
2

i�1;j

� �
h2 þ

Mn
i;jþ1

2
lnþ1

2
i;jþ1 � lnþ1

2
ij

� �
�Mn

i;j�1
2

lnþ1
2

ij � lnþ1
2

i;j�1

� �
h2 : ð12Þ
Here Mn
iþ1

2;j
¼ M ð/n

iþ1;j þ /n
ijÞ=2

� �
and the other terms are similarly defined. We note that if the mobility M(/) is constant, then

the discrete schemes (8)–(11) become unconditionally gradient stable linear splitting schemes [13].
During computation, the values of the concentration c can be negative or greater than one and also / has a similar case.

For physical relevance of the solution, we want the non-negative mobility (M(�) P 0), therefore we use M(c) = jc(1 � c)j and
M(/) = j1 � /2j for numerical evaluations with the concentration dependent mobility.
Fig. 2. Shaded area Xin is embedded in X and Xout is defined as X nXin ¼ X \Xc
in .



7444 J. Shin et al. / Journal of Computational Physics 230 (2011) 7441–7455
2.1.2. The Cahn–Hilliard equation in a non-rectangular domain
Now, we give a numerical scheme for the CH equation in a non-rectangular domain with homogeneous Neumann bound-

ary conditions. Let Xin be an arbitrarily shaped open domain which is embedded in X. Also, let C = oXin be the arbitrarily
shaped domain boundary (see Fig. 2).

To solve Eqs. (10) and (11) in an arbitrarily shaped domain Xin, we propose the following numerical scheme:
/nþ1
ij � /n

ij

Dt
¼ rd � GijMð/n

ijÞrdl
nþ1

2
ij

� �
; ð13Þ

lnþ1
2

ij ¼ 2/nþ1
ij � �2rd � Gijrd/

nþ1
ij

� �
þ F 0ð/n

ijÞ � 2/n
ij: ð14Þ
Here the boundary control function G is defined in Xh by
Gðx; yÞ ¼
1 if ðx; yÞ 2 Xh

in;

0 if ðx; yÞ 2 Xh
out ¼ X nXh

in;

(
ð15Þ
where Xh
in is an open region that consists of interior points of the union of the closed cells whose centers are inside the inter-

face C. For example, in Fig. 3 the value of function G at points (�,�) in Xh
out is zero. The value of function G at point (�, �) in Xh

in

is one.
As we refine the mesh, i.e., h ? 0, the arbitrarily shaped domain Xin is approximated by Xh

in (see Fig. 4).

2.2. Conservation property of the total mass

In this section, we show that our scheme inherits the conservation of total mass in a complex domain. We want to show
that
 X

ij2Xin
/nþ1

ij ¼
X

ij2Xin
/n

ij for all n ¼ 0;1; . . . : ð16Þ
We start by summing Eq. (13) in the whole numerical domain X, i.e.,
X
ij2X

/nþ1
ij � /n

ij

Dt
¼ 1

h2

X
ij2X

Giþ1
2;j

Mn
iþ1

2;j
lnþ1

2
iþ1;j � lnþ1

2
ij

� �
� Gi�1

2;j
Mn

i�1
2;j

lnþ1
2

ij � lnþ1
2

i�1;j

� �h

þGi;jþ1
2
Mn

i;jþ1
2

lnþ1
2

i;jþ1 � lnþ1
2

ij

� �
� Gi;j�1

2
Mn

i;j�1
2

lnþ1
2

ij � lnþ1
2

i;j�1

� �i

¼ 1

h2

XNy

j¼1
GNxþ1

2;j
Mn

Nxþ1
2;j

lnþ1
2

Nxþ1;j � lnþ1
2

Nx ;j

� �
� G1

2;j
Mn

1
2;j

lnþ1
2

1j � lnþ1
2

0;j

� �h i

þ 1

h2

XNx

i¼1
Gi;Nyþ1

2
Mn

i;Nyþ1
2

lnþ1
2

i;Nyþ1 � lnþ1
2

i;Ny

� �
� Gi;12

Mn
i;12

lnþ1
2

i1 � lnþ1
2

i0

� �h i
: ð17Þ
Then, by applying zero Neumann boundary condition of lnþ1
2

ij on oX, we obtain
X
ij2X

/nþ1
ij � /n

ij

Dt
¼ 0; i:e:;

X
ij2X

/nþ1
ij ¼

X
ij2X

/n
ij: ð18Þ
Fig. 3. Shaded area Xh
in is embedded in X and Xh

out is defined as X \Xh
in

c
. Note that the value of function G at points (�,�) in Xh

out is zero.
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in to Xin as we refine the mesh. Mesh sizes are shown below each figure.
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Next, we consider summation of Eq. (13) in the outside numerical domain Xout, i.e.,
Fig. 5.
X
ij2Xout

/nþ1
ij � /n

ij

Dt
¼ 1

h2

X
ij2Xout

Giþ1
2;j

Mn
iþ1

2;j
lnþ1

2
iþ1;j � lnþ1

2
ij

� �
� Gi�1

2;j
Mn

i�1
2;j

lnþ1
2

ij � lnþ1
2

i�1;j

� �
þ Gi;jþ1

2
Mn

i;jþ1
2

lnþ1
2

i;jþ1 � lnþ1
2

ij

� �h
�Gi;j�1

2
Mn

i;j�1
2

lnþ1
2

ij � lnþ1
2

i;j�1

� �i
¼ 0; ð19Þ
where we have used the assumption (15) that G is zero in Xout. By using the above property (18), we obtain
X
ij2Xin

/nþ1
ij ¼

X
ij2X

/n
ij �

X
ij2Xout

/nþ1
ij ¼

X
ij2Xin

/n
ij þ

X
ij2Xout

/n
ij �

X
ij2Xout

/nþ1
ij ¼

X
ij2Xin

/n
ij � Dt

X
ij2Xout

/nþ1
ij � /n

ij

Dt
¼
X

ij2Xin
/n

ij;
where we have used Eq. (19) in the last equality. Therefore, we proved the conservation property of mass, Eq. (16), in a com-
plex domain Xin.

2.3. Numerical algorithm

In this section, we show the way to control a matrix in finer and coarser grids with the boundary control function G. And
we describe the multigrid method and implementation in detail to solve the resulting coupled system of equations.

First we set the boundary control matrix function G as defined in Eq. (15) to represent a complex domain. In Figs. 3 and 5,
the cell-edge (�,�) values are used in the smoothing step and the cell-center (�) values are used in the restriction and inter-
polation operators. Denote that Gh is a discrete boundary control function defined in Xh. In the coarser grid XH, the control
function GH is different from Gh because XH is defined as shown in Fig. 5. The details about the coarser domain XH are ex-
plained by the restriction and interpolation operators. Note that as a set we have the following inclusion: Xh

in � XH
in.

Next, we describe a full approximation storage (FAS) multigrid method to solve the discrete system (13) and (14) at the
implicit time level. A pointwise Gauss–Seidel relaxation is used as the smoother in the multigrid method. See the reference
text [28] for additional details and backgrounds. The algorithm of the multigrid method for solving the discrete CH system is:
First, let us rewrite Eqs. (13) and (14) as follows.
Illustration of the coarsening process for the multigrid method. Shaded area XH
in is also embedded in X but is not generally same to Xh

in , i.e., Xh
in � XH

in .
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Lð/nþ1;lnþ1
2Þ¼ ðnn;wnÞ; where Lð/nþ1;lnþ1

2Þ

¼ /nþ1
ij =Dt�rd � GijMð/n

ijÞrdl
nþ1

2
ij

� �
; �2rd � Gijrd/

nþ1
ij

� �
�2/nþ1

ij þlnþ1
2

ij

� �
and the source term is ðnn;wnÞ¼ /n

ij=Dt;F 0ð/n
ijÞ�2/n

ij

� �
:

In the following description of one FAS cycle, XH is coarser than Xh by factor 2. Given the number m1 and m2 of pre-and post-
smoothing relaxation sweeps, an iteration step for the multigrid method using the V-cycle is formally written as in Fig. 6
[28]. In Fig. 6, f/nþ1;m;lnþ1

2;mg and f/̂nþ1;mþ1; l̂nþ1
2;mþ1g are the approximations of /n+1(xi,yj) and lnþ1

2ðxi; yjÞ before and after
an FAS cycle.

The FAS multigrid algorithm in Fig. 6 consists of the following components.

� Smoothing:
f�/nþ1;m; �lnþ1
2;mg ¼ SMOOTHm1 ð/nþ1;m;lnþ1

2;m; Lh; n
n;wnÞ;
which means performing m1-smoothing steps with the initial approximations /nþ1;m;lnþ1
2;m, source terms nn, wn, and SMOOTH

relaxation operator to get the approximations �/nþ1;m and �lnþ1
2;m. One SMOOTH relaxation operator step consists of solving the

system (22) and (23) given below by 2 � 2 matrix inversion for each i and j. Here, we derive the smoothing operator in two
dimensions. Rewriting Eq. (13), we get
/nþ1;m
ij

Dt
þ

Giþ1
2;j

Mn
iþ1

2;j
þ Gi�1

2;j
Mn

i�1
2;j
þ Gi;jþ1

2
Mn

i;jþ1
2
þ Gi;j�1

2
Mn

i;j�1
2

h2 lnþ1
2;m

ij

¼ nn
ij þ

Giþ1
2;j

Mn
iþ1

2;j
lnþ1

2;m
iþ1;j þ Gi�1

2;j
Mn

i�1
2;j
lnþ1

2;m
i�1;j

h2 þ
Gi;jþ1

2
Mn

i;jþ1
2
lnþ1

2;m
i;jþ1 þ Gi;j�1

2
Mn

i;j�1
2
lnþ1

2;m
i;j�1

h2 : ð20Þ
Also, by rewriting Eq. (14), we obtain
� �2

h2 Giþ1
2;j
þGi�1

2;j
þGi;jþ1

2
þGi;j�1

2

� �
þ2

� �
/nþ1;m

ij þlnþ1
2;m

ij ¼wn
ij�
�2

h2 Giþ1
2;j

/nþ1;m
iþ1;j þGi�1

2;j
/nþ1;m

i�1;j þGi;jþ1
2
/nþ1;m

i;jþ1 þGi;j�1
2
/nþ1;m

i;j�1

� �
:

ð21Þ
Fig. 6. The FAS multigrid cycle (Xh,XH) two-grid method.
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Next, we replace /nþ1;m
kl and lnþ1

2;m
kl in Eqs. (20) and (21) with �/nþ1;m

kl and �lnþ1
2;m

kl if k 6 i and l 6 j, otherwise with /nþ1;m
kl and

lnþ1
2;m

kl , i.e.,
�/nþ1;m
ij

Dt
þ

Giþ1
2;j

Mn
iþ1

2;j
þ Gi�1

2;j
Mn

i�1
2;j
þ Gi;jþ1

2
Mn

i;jþ1
2
þ Gi;j�1

2
Mn

i;j�1
2

h2
�lnþ1

2;m
ij

¼ nn
ij þ

Giþ1
2;j

Mn
iþ1

2;j
lnþ1

2;m
iþ1;j þ Gi�1

2;j
Mn

i�1
2;j

�lnþ1
2;m

i�1;j

h2 þ
Gi;jþ1

2
Mn

i;jþ1
2
lnþ1

2;m
i;jþ1 þ Gi;j�1

2
Mn

i;j�1
2
�lnþ1

2;m
i;j�1

h2 : ð22Þ

� �2

h2 Giþ1
2;j
þGi�1

2;j
þGi;jþ1

2
þGi;j�1

2

� �
þ2

� �
�/nþ1;m

ij þ �lnþ1
2;m

ij ¼wn
ij�
�2

h2 Giþ1
2;j

/nþ1;m
iþ1;j þGi�1

2;j
�/nþ1;m

i�1;j þGi;jþ1
2
/nþ1;m

i;jþ1 þGi;j�1
2

�/nþ1;m
i;j�1

� �
:

ð23Þ
H
� Restriction: A restriction operator Ih is defined as
dH
ij ¼ IH

h dh
ij ¼

1
Rij

Gh
2i�1;2j�1dh

2i�1;2j�1 þ Gh
2i�1;2jd

h
2i�1;2j þ Gh

2i;2j�1dh
2i;2j�1 þ Gh

2i;2jd
h
2i;2j

� �
;

where Rij ¼ Gh
2i�1;2j�1 þ Gh

2i�1;2j þ Gh
2i;2j�1 þ Gh

2i;2j and if Rij = 0, then we define dH
ij ¼ 0 (see Fig. 7(a)). For example, Fig. 7(c) shows

notations and symbols on fine and coarse grids. Restriction from level-h to level-H is done as follows:
dH
11 ¼

1
R11

Gh
11dh

11 þ Gh
12dh

12 þ Gh
21dh

21 þ Gh
22dh

22

� �
¼ 1

4
dh

11 þ dh
12 þ dh

21 þ dh
22

� �
;

dH
12 ¼ 0; dH

21 ¼
1
3

dh
31 þ dh

32 þ dh
34

� �
; and dH

22 ¼
1
2

dh
33 þ dh

43

� �
:

� Interpolation: The interpolation operator Ih
H (see Fig. 7(b)) represents the prolongation of corrections from level-H to

level-h and is defined as
dh
2i�1;2j�1

dh
2i�1;2j

dh
2i;2j�1

dh
2i;2j

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ Ih

HdH
ij ¼

Gh
2i�1;2j�1dH

ij for }

Gh
2i�1;2jd

H
ij for 	

Gh
2i;2j�1dH

ij for M

Gh
2i;2jd

H
ij for � :

8>>>>><
>>>>>:

ð24Þ
For example, interpolation from level-H and level-h is done as follows (see Fig. 7(c)):
dh
11

dh
12
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By the above restriction and interpolation, the proposed discretization has an effect that none of grid points in Xout partic-
ipates in the evolution of values in Xin.

3. Numerical experiments

In this section, we perform the following tests: showing the relation between the � value and the width of the transition
layer, calculating the accuracy of the proposed method, demonstrating the multigrid efficiency, comparing stabilities of the
Crank–Nicolson and the proposed scheme, investigating the effect of constant and variable mobilities in 2D and 3D, validat-
ing the total mass conservation and the total energy dissipation, and spinodal decomposition on complex domains such as a



Fig. 7. (a) Restriction. (b) Interpolation. (c) Gh = 1 on gray region and Gh = 0 on white region.
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wavy curved channel, sequential T-junctions, a sphere, and a wavy curved tube. Note that we will use either / or c in our
numerical experiments because two equations with different phase-field variables are equivalent.

3.1. The relation between the � value and the width of the transition layer

In the first numerical experiment, we consider the relation between the � value and the width of the transition layer for
the CH equation. Across the interfacial region, the concentration field varies from 0.05 to 0.95 over a distance of approxi-
mately 4

ffiffiffi
2
p

tanh�1ð0:9Þ for c and varies from �0.9 to 0.9 over a distance of approximately 2
ffiffiffi
2
p

tanh�1ð0:9Þ for /. Therefore,
if we want this value to be approximately m grid points, the � value needs to be taken as follows, respectively:
�m ¼
mh

4
ffiffiffi
2
p

tanh�1ð0:9Þ
for c and �m ¼

mh

2
ffiffiffi
2
p

tanh�1ð0:9Þ
for /:
To confirm those formula, we run simulations with the initial data /(x,y,0) = �0.4 + 0.001rand (x,y) in a domain X = (0,64)
� (0,64) with a 64 � 64 mesh and h = Dt = 1. Here, the random number, rand (x,y), is uniformly distributed between �1 and
1. Shaded region indicates the embedded domain. Fig. 8(a) and (b) show contours from / = �0.9 to / = 0.9 increased by 0.2
with �3 and �10 at t = 5000, respectively. From the two figures, we can see that the interfacial transition layer is about 3 and
10 grid points, respectively.

3.2. Convergence test

We should demonstrate the convergence of the proposed scheme. The initial state for the test is /(x,y,0) = 0.8cos(2px)-
cos(2p y) in a domain Xin = (�1,1) � (�1,1) � (�0.5,0.5) � (�0.5,0.5) (see Fig. 9). To calculate the accuracy of the proposed
method, we perform a number of simulations on a set of increasingly finer grids. The numerical solutions are computed on
the grids h = 1/2n+1 for n = 5, 6, 7, 8, and 9. For each case, the calculation is run up to time t = 0.01 with the time step
D t = 0.001/4n�5 and a fixed � = 0.04. We define the error of a grid to be the discrete l2-norm of the difference between that
grid and the average of the next finer grid cells covering it as follows. eh=h

2 ij
:¼ /hij � ð/h

22i;2j
þ /h

22i�1;2j
þ /h

22i;2j�1
þ /h

22i�1;2j�1
Þ=4.



Fig. 8. The concentration contours at the nine levels from / = �0.9 to / = 0.9 increased by 0.2 with (a) �3 and (b) �10.

Fig. 9. The initial condition /(x,y,0) with a small obstacle on X = (�1,1) � (�1,1).

Table 1
The errors and rates of convergence for concentration /.

Case 32–64 Rate 64–128 Rate 128–256 Rate 256–512

l2-error 1.44E�2 1.89 3.89 E�3 2.12 8.94E�4 2.05 2.16E�4
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Fig. 10. The number of fine grid iterations needed to converge to a residual norm of 1.0E-6.
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Table 2
The number of the fine grid iterations(FGI) for each level.

Level 1 2 3 4 5 6 7 8

FGI 9407 3289 809 221 65 29 29 29

Table 3
Stability constraint of Dt for the CN scheme and the proposed scheme.

Mesh size Scheme

Crank–Nicolson scheme Proposed scheme

h = 1/64 Dt 6 0.001120 Dt 6 0.777
h = 1/128 Dt 6 0.000270 Dt 6 0.914
h = 1/256 Dt 6 0.000672 Dt 6 1.140
h = 1/512 Dt 6 0.000166 Dt 6 0.879
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And the rate of convergence is defined as the ratio of successive errors as log2ðkeh=h
2
k2=keh

2=
h
4
k2Þ. Then Table 1 shows the errors

and rates of convergence. The results suggest that the scheme is first-order accurate in time and second-order in space as we
expect from the discretization.

3.3. Multigrid efficiency

To demonstrate the efficiency of the multigrid method, we perform the similar simulation as in [34]. The initial state and
computational domain are same to the convergence test case. The parameters are �3, h = 1/256, Dt = 1.0h, and 512 � 512
mesh grid. All available vcycle levels are considered. Fig. 10 shows the maximum value of residual versus the number of fine
grid iterations needed to converge to a residual norm of 1.0E-6 (we only plot four different levels for clarity). And in Table 2
the number of the fine grid iterations is listed for all levels. Significant improvement in the convergence is observed as we
increase the vcycle level.

3.4. Stability comparison of two schemes

We compare the stability constraints for the CN scheme (6) and (7) and the proposed scheme (8) and (9). For each
scheme, we calculate the maximum Dt so that stable solutions can be computed up to T = 100Dt. The initial concentration
is taken to be c(x,y,0) = 0.5 + 0.5rand (x,y) in the computational domain X = (0,1) � (0,1). Table 3 shows the results of the
stability constraints of Dt with two schemes. We can see that the proposed scheme can use larger time steps. If the time
step is reasonably small, then the stability of the proposed scheme seems independent of space step size.

3.5. The effect of constant and variable mobilities

3.5.1. Two-dimensional case
We examine the evolution of a random perturbation with the small magnitude about a mean composition and also con-

sider numerical experiments highlighting the difference between the variable mobility M(c) = c(1 � c) and the constant
mobility M(c) 
 0.25 which is the maximum value of the variable mobility M(c). The initial condition is taken to be
c(x,y,0) = 0.25 + 0.001rand (x,y) in the computational domain X = (0,1) � (0,1). And we take the simulation parameters:
�4, h = 1/128, and Dt = 0.5h. We stop the numerical computations when the discrete l2 -norm of the difference between
(n + 1)th andnth time step solutions becomes less than 10�6, that is, kcn+1 � cnk2 6 10�6. In the constant mobility case,
we start the simulation with c(x,y,7.813) from the variable mobility case.

In Fig. 11, the first row and the second row represent time evolutions of phase-fields with the constant and the variable
mobilities, respectively. The final numerical solutions are stationary numerical solutions according to the stopping criteria.
In the bottom row of figure, dark regions are nucleated. As the remaining regions grow, a numerical equilibrium state is
reached. The variable mobility generally reduces the bulk diffusion, which corresponds to the interface-diffusion-controlled
dynamics, i.e., diffusion process takes place along the interface between the two phases. This fact is made clear by comparing
the results with the constant mobility. In the case of the constant mobility, the evolution leads to a single disk.

3.5.2. Three-dimensional case
Next, we investigate the effect of constant and variable mobilities on the three-dimensional domain. We simulate the

evolution on a 643 mesh and use the following parameters: � = 0.01, h = 1/64, and Dt = h. The initial condition is taken to
be c(x,y,z,0) = 0.25 + 0.2rand (x,y,z) in the computational domain X = (0,1) � (0,1) � (0,1). In the constant mobility case,
we start the simulation with c(x,y,z,62.5) from the variable mobility case. In Fig. 12, evolutions of the concentration c(x,y,z, t)



Fig. 11. Evolution of the concentration c(x,y, t) with a constant mobility M(c) 
 0.25 (the top row) and a variable mobility M(c) = c(1 � c) (the bottom row).
The times are shown below each figure.

Fig. 12. Evolution of the concentration c(x,y,z, t) with a constant mobility M(c) 
 0.25 (the top row) and a variable mobility M(c) = c(1 � c) (the bottom row).
The times are shown below each figure.
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with a constant mobility M(c) 
 0.25 (the top row) and a variable mobility M(c) = c(1 � c) (the bottom row) are shown. In the
case of the variable mobility, two nucleated components are the numerical steady state solution. However, in the case of the
constant mobility (the top row), only one component is shown.
3.6. The decrease of the total energy and the conservation of the average concentration

3.6.1. Rectangular domain case
In order to demonstrate that the numerical scheme inherits the energy decreasing property, we consider the evolution of

the discrete total energy. We define a discrete energy functional by
EhðcnÞ ¼ ðFðcnÞ;1Þh þ
�2

2
jcnj21: ð25Þ
The initial state is taken to be c(x,y,0) = 0.25 + 0.001rand (x,y) in the computational domain X = (0,1) � (0,1). Parameters
h = 1/128, �4, and Dt = 0.1 are taken. In Fig. 13, the time evolution of the non-dimensional discrete total energy
EhðcnÞ=Ehðc0Þ (solid line) is shown. We can see that the total discrete energy is non-increasing and the average concentration
is preserved. And this numerical result agrees well with the total energy dissipation property. Also, the inscribed small fig-
ures are the concentration fields at the indicated times.
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Fig. 13. The temporal evolution of non-dimensional discrete total energy EhðcnÞ=Ehðc0Þ (solid line) of the numerical solutions with the initial condition,
c(x,y,0) = 0.25 + 0.001 rand (x,y).
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3.6.2. Non-rectangular domain case
Now, we apply the numerical scheme for arbitrarily domains. The initial state is taken to be /(x,y,0) = 0.25 + 0.001rand

(x,y) in the computational domain X = (0,1) � (0,1) with the mesh size 256 � 256 and the temporal step size Dt = 0.1/256.
The interface C is a circle whose radius is 0.45 and center is located at (0.5,0.5). Xin is the enclosed domain by the interface
C. To demonstrate the discrete energy dissipation property in an arbitrary domain, we define a discrete energy functional by
Fig. 14
(x,y,0)
Ehð/nÞ ¼ ðGFð/nÞ;1Þh þ
�2

2
jG/nj21: ð26Þ
Fig. 14 shows that the discrete total energy is monotonically decreasing and the average concentration is conserved. The in-
scribed small figures are the evolution of the concentration field.
3.7. Evolution in complex domains

3.7.1. Spinodal decomposition in a wavy curved channel
We also apply our proposed scheme to a more complicated domain. First, we define the interface C which has the upper

bound u(x) and the lower bound l(x) in the computational domain X = (0,4) � (0,1). That is,
uðxÞ ¼ 0:05
ffiffiffi
x
p

sinð3pxÞ þ 0:75; ð27Þ
lðxÞ ¼ 0:01x2 cosð2pxÞ � 0:04 sinð6pxÞ þ 0:3: ð28Þ
We simulate the evolution on a 1024 � 256 mesh size. The spatial size h = 1/256, the temporal size Dt = 0.5h, and �4 are used.
The initial condition is taken to be /(x,y,0) = �0.35 + 0.1rand (x,y). Fig. 15 shows the evolution of the concentration /(x,y, t)
0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time

 

 

total energy
mass

. The time dependent non-dimensional discrete total energy Ehð/nÞ=Ehð/0Þ (solid line) of the numerical solutions with the initial condition, /
= 0.25 + 0.001 rand (x,y).
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Fig. 15. Evolution of the concentration /(x,y, t) with a variable mobility M(/) = 1 � /2 in two-dimensional domain with the boundary control function G.
The times of each figure are (a) t = 0.98, (b) t = 3.91, and (c) t = 9.77.

Fig. 16. Spinodal decomposition in sequential T-junctions.
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with a variable mobility M(/) = 1 � /2 and the boundary control function G. The times of each figure are (a) t = 0.98, (b)
t = 3.91, and (c) t = 9.77.
3.7.2. Spinodal decomposition in sequential T-junctions
Microfluidic technology offers capabilities for the precise handling of small fluid volumes dispersed as droplets. Sequen-

tial application of the geometrically mediated T-junction is used to facilitate the precise conversion of large initial slugs of
the dispersed phase into small droplets comparable in size to the channel [24]. We test our scheme on sequential T-junc-



Fig. 17. Evolution of the concentration c(x,y,z, t) with an initial condition c(x,y,z,0) = 0.25 + 0.2rand (x,y,z). The times are shown below each figure.

Fig. 18. Evolution of the concentration c(x,y,z, t) with a variable mobility M(c) = c(1 � c) in a three-dimensional domain. The times are shown below each
figure.
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tions. The numerical parameters are h = 1/512, Dt = 0.1h, and �4. The initial state is /(x,y,0) = �0.4 + 0.001rand (x,y) in the
computational domain X = (0,3) � (0,2). In Fig. 16, we see spinodal decomposition in sequential T-junctions at time
t = 0.0098.
3.7.3. Spinodal decomposition in a sphere
We extend the numerical experiment to the three-dimensional space. The surface C is a sphere whose radius is 0.45 and

center is (0.5, 0.5, 0.5). In this computation, we choose �4, h = 1/64, and Dt = h. The initial condition is taken to be
c(x,y,z,0) = 0.25 + 0.2rand (x,y,z) on 643 mesh grid. In Fig. 17, Xin is inside mesh. For visibility, we plot only the longitude
and latitude of the boundary of the domain Xin. This simulation also represents that the separation and small nucleation
occur at an early stage (t = 2.34). After this initial phase separation, the coarsening process is developed slowly
(t = 96.88,312.5).
3.7.4. Spinodal decomposition in a wavy curved tube
Next, for a more complex domain simulation in 3D, we use the following surface:
rðh; zÞ ¼ ð0:01z2 cosð2pzÞ � 0:04 sinð6pzÞ þ 0:3Þð0:9� 0:3 cosðhþ pzÞÞ for 0 6 h 6 2p; 2 6 z 6 4;
where r, h, and z are distance from, azimuthal angle about, and distance along axis, respectively (see Fig. 18 (a)). The numer-
ical parameters are 128 � 128 � 256 mesh size, h = 1/128, Dt = h, and �3. The initial condition is c(x,y,z,0) = 0.25 + 0.002rand
(x,y,z) in the computational domain X = (�0.5,0.5) � (�0.5,0.5) � (2,4). Fig. 18(b)–(d) show the evolution of the concentra-
tion c(x,y,z, t) with a variable mobility M(c) = 1 � c2. The times are shown below each figure.
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4. Conclusions

We considered an efficient finite difference scheme for the Cahn–Hilliard equation with a variable mobility of a model for
phase separation in a binary mixture. The numerical method is based on a type of the unconditionally gradient stable split-
ting discretization. We also extended the scheme to compute the Cahn–Hilliard equation in complex domains. And we
proved the mass conservation property of the proposed discrete scheme for complex domains. The resulting discretized
equations are solved by a multigrid method. Numerical simulations were presented to show the robustness and the supe-
riority of the proposed scheme compared to other Crank–Nicolson scheme. The most salient feature is that although the
algorithm is simple, it is applicable to many complex domains. Also, the algorithm is well suited to the multigrid method.
The method described here is a specific application of a general formulism for constructing conservative finite difference
methods for problems with complex embedded domains. Therefore, it is applicable to other partial differential equations
in irregular domains.
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