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Abstract We propose a simple and efficient direct discretization scheme for solving the
Cahn–Hilliard (CH) equation on an evolving surface. By using a conservation law and trans-
port formulae, we derive the CH equation on evolving surfaces. An evolving surface is
discretized using an unstructured triangular mesh. The discrete CH equation is defined on
the surface mesh and its dual surface polygonal tessellation. The evolving triangular sur-
faces are then realized by moving the surface nodes according to a given velocity field. The
proposed scheme is based on the Crank–Nicolson scheme and a linearly stabilized splitting
scheme. The scheme is second-order accurate, with respect to both space and time. The
resulting system of discrete equations is easy to implement, and is solved by using an effi-
cient biconjugate gradient stabilized method. Several numerical experiments are presented
to demonstrate the performance and effectiveness of the proposed numerical scheme.

Keywords Cahn–Hilliard equation · Evolving surface · Laplace–Beltrami operator ·
Triangular surface mesh

1 Introduction

TheCahn–Hilliard equation (CH) [1] has been extensively applied in awide range of research
fields, such as biological modelling and simulations [2,3], multi-phase fluid flow dynamics
[4,5], volume reconstruction [6], and materials science [7–9]. Various studies have showed
that phase separations can occur on surfaces, such as in the evolution of nanoporosity in
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dealloying [10], lipid bilayer membranes [11], diblock copolymers on surfaces [12,13],
crystal growth [14,15], and biological membranes [16]. The CH equation is a fourth-order
nonlinear parabolic partial differential equation (PDE). In general, this equation cannot be
solved analytically. Hence, we have to employ approximate techniques to solve the equation
in order to understand non-equilibrium processing. Various computational algorithms have
been developed to solve the CH equation numerically [17–21].

Only a few studies have solved the CH equation on curved surfaces [16,22–25].Mercker et
al. [16] presented aCH-typemodel for lateralmembranedynamics on a surface, and computed
membrane dynamics using a finite element method (FEM). In [22], Du et al. demonstrated
the convergence and well-posedness of a fully discrete FEM of the CH equation defined on a
fixed surface. Elliott and Ranner [23] used a finite element technique to solve the CH equation
on an evolving surface with a given velocity field. They presented a rigorous well-posedness
result for the CH equation by showing convergence of the FEM. All of the above-mentioned
methods are based on the finite element technique. Here, the Laplace operator is represented
using the tangential gradient. However, approaches based on the FEMare deceptively difficult
to implement. An alternative approach to solving PDEs on evolving surface is with implicit
methods [26–31]. Such methods extend a PDE to a three-dimensional narrow band domain
and then solve the extended PDEon the domain. The implicit method can be extended to solve
the CH equation on an evolving surface. However, all implicit methods are computationally
expensive for complex surfaces.

The main purpose of the present article is to develop a stable second-order time-accurate
scheme for the Cahn–Hillard equation on an evolving surface. We use a simple method
to approximate the regular evolving surface by an evolving triangular mesh, on which the
gradient, divergence, and Laplacian operators can be directly defined. Unlike in the implicit
method,we can reduce the additional computational costs, becausewe solve two-dimensional
schemes on surfaces. Compared with the FEM, the proposed discretization is easy to imple-
ment. It should be noted that our methods may generally be limited according to the quality
of the surface mesh. However, owing to [32,33], the mesh quality has been significantly
improved.

The outline of this paper is as follows. In Sect. 2, we derive the CH equation on an evolving
surface. In Sect. 3, we present the numerical solution. In Sect. 4, we present numerical
experiments. Finally, conclusions are drawn in Sect. 5.

2 The CH Equation on Evolving Surfaces

Let S(s, t) be a general surface, where s lies on the surface S and t is the time. Assume that a
surface S(s, t) evolves according to a given velocity field V(s, t) for the time t . Here, V(s, t)
can be decomposed into a normal vector field Vν(s, t)N(s, t) and a tangential vector field
Vτ (s, t), i.e.,

V(s, t) = Vν(s, t)N(s, t) + Vτ (s, t). (1)

Then, taking the inner product with the unit normal vector N(s, t) on both sides of Eq. (1)
yields

Vν(s, t) = 〈V(s, t),N(s, t)〉, (2)

where 〈 , 〉 is the inner product operator. Furthermore, we obtain that

Vτ (s, t) = V(s, t) − 〈V(s, t),N(s, t)〉N(s, t). (3)
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For any point s ∈ S(s, t), we assume that the point s moves under Newton’s first law:

ds(t)
dt

= V(s, t). (4)

The CH equation on an evolving surface is defined by

∂∗φ(s, t)
∂t

+ φ∇τ · V(s, t) = M�τμ(s, t), s ∈ S, t > 0, (5)

μ(s, t) = F ′(φ(s, t)) − ε2�τφ(s, t), (6)

with the initial condition

φ(s, 0) = φ0(s), in S, (7)

where ∂∗φ/∂t = ∂φ/∂t+V ·∇φ is the material derivative of φ and∇ is the gradient operator
[23]. The order parameter φ(s, t) denotes the difference between the concentrations of the
binary mixture. We let M = 1 for the sake of convenience. The operators �τ and ∇τ

denote the tangential (surface) Laplacian and gradient operators, respectively. Furthermore,
F(φ) = 0.25(φ2 − 1)2 is a free energy density and ε is a positive constant. If the evolving
surface S(s, t) is closed, then there is no boundary condition. Otherwise, we consider the
Neumann boundary condition for both the chemical potential μ and the order parameter,
for a simpler presentation, i.e., n̂ · ∇τ φ(s, t) = n̂ · ∇τμ(s, t) = 0. Here, n̂ is normal to the
boundary and tangent to the surface S. Note that our method can also be extended to the
cases of Dirichlet and periodic boundary conditions. It should be noted that the term φ∇τ ·V
in Eq. (5) can not be omitted, because of the Leibniz formula [34]:

d

dt

∫
S
φds =

∫
S

(
∂∗φ
∂t

+ φ∇τ · V
)
ds. (8)

The CH equation on an evolving surface satisfies total mass conservation:

0 =
∫
S

(
∂∗φ
∂t

+ φ∇τ · V − M�τμ

)
ds

=
∫
S

(
∂∗φ
∂t

+ φ∇τ · V
)
ds − M

∫
∂S

n̂ · ∇τμ dτ = d

dt

∫
S
φ ds. (9)

In order to simplify the calculation, we rewrite the term V · ∇φ + φ∇τ · V as

V · ∇φ + φ∇τ · V = (VνN + Vτ ) · ∇φ + φ∇τ · (VνN + Vτ )

= VνN · ∇φ + φVν∇τ · N + ∇τ · (φVτ ). (10)

Furthermore, if we denote by H(s) the sum of the principal curvatures at s of the surface,
then H(s) can be written as

H(s) = ∇τ · N(s), (11)

and H(s) satisfies �τ s = H(s)N(s) [35]. Then, we can calculate H(s) as

H(s) = 〈�τ s, N(s)〉. (12)

Using Eqs. (10) and (11), we can rewrite Eq. (5) as

∂φ

∂t
+ VνN · ∇φ + φVνH + ∇τ · (φVτ ) = M�τμ. (13)
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Fig. 1 A vertex s with several
neighbors for evaluating the
divergence and Laplace–Beltrami
operators

Letφ be constant in the direction normal to the surface [27]. Then,we can set VνN·∇φ = 0
and rewrite Eq. (13) as

∂φ

∂t
+ φVνH + ∇τ · (φVτ ) = M�τμ. (14)

Finally, our proposed method for the CH equation on evolving surfaces can be written as
follows:

∂φ

∂t
+ φVνH + ∇τ · (φVτ ) = M�τμ, (15)

μ = F ′(φ) − ε2�τφ. (16)

3 Numerical Solution

Instead of using the evolving surface FEM for the CH equation [23], we employ a simple
approach to approximate the regular evolving surface by an evolving triangular mesh. Let
us introduce basic notations on a triangular mesh, and then present our proposed method for
the CH equation on evolving surfaces.

3.1 Discretizations of the Laplace–Beltrami Operator

Let us define a triangular surface mesh by (S, F), where S = {si |1 ≤ i ≤ Ns} is the list of
vertices and F = {Tk |1 ≤ k ≤ NF } is the list of triangles. Here, Ns is the number of vertices
and NF is the number of triangles. For j = 0, 1, . . . , p, let s j be the neighboring vertices
of s ∈ S, where s0 = sp . We label the vertices s j counterclockwise relative to the outside of
the shape. Let Tj be the triangle with three vertices s, s j , and s j+1 (see Fig. 1).
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Let the normal vector N(s) at s ∈ S be

N(s) =
p−1∑
j=0

ω jN j/

∥∥∥∥∥∥
p−1∑
j=0

ω jN j

∥∥∥∥∥∥ , (17)

where N j is the unit normal to Tj , ω j = ‖G j − s‖−2/
∑p−1

i=0 ‖Gi − s‖−2, and G j =
(s j + s j+1 + s)/3 [36,37]. We defined the discrete divergence ∇τ · X by

∇τ · X(s) = 1

D(s)

p−1∑
j=0

‖G j+1 − G j‖
6

(
2〈X(G j ), n(G j )〉 + 2

〈
X(G j+1), n(G j+1)

〉

+ 〈
X(G j ), n(G j+1)

〉 + 〈
X(G j+1), n(G j )

〉 )
,

where D(s) = ∑p−1
i=0 |T̂i | and |T̂i | is the area of T̂i , which is a triangle with s j ,G j , andG j+1.

The vectors n(G j ) and n(G j+1) are defined as

n(G j ) = (G j+1 − G j ) × N j

‖(G j+1 − G j ) × N j‖ and n(G j+1) = (G j+1 − G j ) × N j+1

‖(G j+1 − G j ) × N j+1‖ .

We approximate the Laplace–Beltrami operator by a second-order discretization [38]:

�τφ(s) ≈ ∇τ · [∇hφ(s)]

= 1

D(s)

p−1∑
j=0

‖G j+1 − G j‖
6

(
2

〈∇hφ(G) j , n(G j )
〉 + 2

〈∇hφ(G) j+1, n(G j+1)
〉

+ 〈∇hφ(G) j , n(G j+1)
〉 + 〈∇hφ(G) j+1, n(G j )

〉 )
. (18)

To compute the gradient of φ(G j ) to second-order accuracy, we employ an efficient
method that is second-order accurate. A similar method can be found in our previous work
[39]. Because ∇hφ(G j ), s j −G j , and s j+1 −G j are in the same plane, we can assume that
∇hφ(G j ) has the following form:

∇hφ(G j ) = α j (s j − G j ) + β j (s j+1 − G j ), (19)

where α j and β j are defined as
⎛
⎝α j

β j

γ j

⎞
⎠ = B−1

j

⎛
⎝ φ(s) − φ(G j )

φ(s j ) − φ(G j )

φ(s j+1) − φ(G j )

⎞
⎠ , (20)

Bj =
⎛
⎝

〈
s j − G j , s − G j

〉 〈
s j+1 − G j , s − G j

〉 ‖s − G j‖2〈
s j − G j , s j − G j

〉 〈
s j+1 − G j , s j − G j

〉 ‖s j − G j‖2〈
s j − G j , s j+1 − G j

〉 〈
s j+1 − G j , s j+1 − G j

〉 ‖s j+1 − G j‖2

⎞
⎠ . (21)

From Eqs. (18)–(21), �τφ(s) at the vertex s can be defined as

�τφ(si ) ≈ Li ·

⎛
⎜⎜⎜⎝

φ(s1)
φ(s2)

...

φ(sNS )

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎝

�τφ(s1)
�τφ(s2)

...

�τφ(sNS )

⎞
⎟⎟⎟⎠ ≈

⎛
⎜⎜⎜⎝

L1

L2
...

LNV

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

φ(s1)
φ(s2)

...

φ(sNs )

⎞
⎟⎟⎟⎠ ,
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where Li is an 1 × Ns matrix, for i = 1, 2, . . . , Ns , using Eqs. (18)–(21). The Ns × Ns

matrix L = (L1, L2, . . . , LNV )
′
is defined as the Laplace matrix of the surface.

3.2 Proposed Scheme

Let T be the final time and Nt be the total number of time steps. Then, at the vertex si let φn
i

be the approximation of φ(si , n�t) , where �t = T/Nt . To obtain a high-order numerical
solution, we apply a linearly extrapolated scheme based on the Crank–Nicolson scheme to
Eqs. (15) and (16). Then, the resulting discrete system of equations is

φn+1 − φn

�t
+ 3φn − φn−1

2
Vν

n+ 1
2
Hn + Hn+1

2

+∇τ ·
(
3φn − φn−1

2
V
n+ 1

2
τ

)
= �τμ

n+ 1
2 , (22)

μn+ 1
2 = 3

2
(F ′(φn) − λφn) − 1

2
(F ′(φn−1) − λφn−1)

+λ

2
(φn+1 + φn) − ε2

2
(�τφ

n+1 + �τφ
n). (23)

Here, λ is a positive stabilizing parameter. Because the velocity field V(s, t) is known, the
positions of the surface points can be updated as follows:

sn+1 − sn

�t
= Vn+ 1

2 . (24)

The discrete system (22)–(24) is formally of second-order accuracy in space and time.
Although we have not given a detailed proof of the accuracy of the proposed form, the
computational experiments in Sect. 4.2 demonstrate that the proposed scheme is of second-
order accuracy in space and time. We describe the preprocessing step by rewriting Eqs. (22)
and (23) as follows:

( I �tL
−λ/2I + ε2/2L I

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φn+1
1
...

φn+1
NV

μ
n+ 1

2
1
...

μ
n+ 1

2
NV

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (
0 −ε2/2L )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φn
1
...

φn
NV

φn
1
...

φn
NV

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φn
1 − �t

3φn
1−φn−1

1
2 Vν1

n+ 1
2
Hn
1 +Hn+1

1
2 − �t∇τ · (

3φn
1−φn−1

1
2 Vτ

n+ 1
2

1 )
...

φn
NV

− �t
3φn

NV
−φn−1

NV
2 VνNV

n+ 1
2
Hn
NV

+Hn+1
NV

2 − �t∇τ · (
3φn

NV
−φn−1

NV
2 Vτ

n+ 1
2

NV
)

3
2 (F

′(φn
1 ) − λφn

1 ) − 1
2 (F

′(φn−1
1 ) − λφn−1

1 ) + λ
2φn

1
...

3
2 (F

′(φn
NV

) − λφn
NV

) − 1
2 (F

′(φn−1
NV

) − λφn−1
NV

) + λ
2φn

NV

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

123



J Sci Comput

To solve the resulting discrete linear system (25), we employ a biconjugate gradient stabilized
method [40]. For additional details regarding the solver of discrete system, we refer the reader
to our previous work [39]. The biconjugate gradient method is performed until the iterative
error is smaller than 1.0E−8. Note that if V(s, t) is unknown, then in order to maintain a
second-order accuracy we can interpolate Vn+ 1

2 using information from the n − 1 and n

levels, such as Vn+ 1
2 = (3Vn − Vn−1)/2. The main steps of our algorithm are summarized

as follows:

Initializing s0, F , φ0, and V0.
Setting φ−1 = φ0 and V−1 = V0.
Computing N0, Vν

0, V0
τ , and H0 by using Eqs. (17), (2), (3), (12), respectively.

for ( n=1; n ≤ Nt ; n++)
Updating sn+1 by solving Eq. (24).
Computing Nn+1, Vν

n+1, Vn+1
τ , and Hn+1 by using Eqs. (17), (2), (3), (12), respectively.

Updating φn+1 by solving Eqs. (22) and (23).
end for

Because the vertices of triangles evolve according to the velocity field, some triangles
may be compressed or stretched in an undesirable manner. To investigate the effect of the
mesh quality on the computation of the Laplace–Beltrami operator in Eq. (18), we evaluate
�τψ on the uniform, 10% non-uniform, and 20% non-uniform surface meshes, which are
illustrated in Fig. 2a. Here, the edge of each triangle on the uniform surfacemesh is almost the
same. The 10 and 20% non-uniform surface meshes are obtained by introducing 10 and 20%
random noises to the uniform mesh. Here, ψ(sx , sy, sz) = 0.1 cos(πsx ) cos(πsy) cos(πsz)
is defined on the unit spherical surface. Figure 2b shows the plots of �τψ for different mesh
structures. The agreement between results obtained from the uniform and 10% non-uniform
surface meshes is clear. These results also suggest that the Laplace–Beltrami operator in Eq.
(18) works effectively on a moderately non-uniform surface mesh. However, if a strongly
non-uniform surface mesh is used, then the numerical solution is not accurate.

To maintain a high-quality triangulation, we employ the remeshing technique described
in [41,42]. A brief description of the remeshing algorithm is summarized here. First, we
construct a signed distance function in the whole domain using the surface mesh. Then, we
calculate the net force for each surface point, and move each point under the computed net
force. Here, the net forces work in the following manner. If the distance between two points
on a triangular mesh is smaller than a given value, then the forces push the points away from
each other. Otherwise, they attract the points towards each other. Moved surface points may
not be on the original surface, in which case we project them back onto the original surface
by using the signed distance function. This procedure is repeated until the mesh distribution
is almost uniform. As shown in Fig. 2, the result of using our method guarantees a mesh-
independent solution with 10% random noise. We adopt the remeshing procedure after every
twelve time steps.

4 Numerical Results

In this section, we present some computational experiments to demonstrate the performance
of our proposed algorithm. Unless otherwise specified, we take ε = 0.1 and λ = 2.
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Fig. 2 a Surface mesh structures. From left to right, these are uniform, 10% non-uniform, and 20% non-
uniform surface meshes, respectively. b �τ ψ on different surface mesh structures. Here, ψ(sx , sy , sz) =
0.1 cos(πsx ) cos(πsy) cos(πsz) is defined on the unit spherical surface

4.1 Spinodal Decomposition on Translate Surfaces

To compare the spinodal decomposition results for a binary mixture on moving and
fixed surfaces, we consider the passive advection of a unit sphere by a constant veloc-
ity, V = (0.2, 0, 0). Spinodal decomposition is a mechanism by which a mixture
separates into different phases [1]. The initial condition is set as φ(sx , sy, sz, 0) =
0.1 cos(πsx ) cos(πsy) cos(πsz) on the surface of the unit sphere. Here sx , sy , and sz are
the components in the x-, y-, and z-directions, respectively. The edge of each triangle on
the surface is almost the same as h = 0.05. The computation is run up to T = 10, with
�t = 0.01. Figure 3a, b show the spinodal decomposition of a binary mixture on a fixed
surface and amoving surface, respectively, andwe can observe the effect of the given velocity
field.

4.2 Convergence Test

We carry out numerical experiments to test the spatial and temporal convergence of our
proposed method. All parameters and initial conditions are the same as in Sect. 4.1. All
numerical solutions are computed up to time T = 0.02. Because there is no analytical
solution for the problem, we use a numerical reference solution φref , which is computed with
a very small space step or a very small time step. To obtain the spatial convergence rate,
we run a number of simulations with h = 0.2, 0.1 and 0.05. Here, the time step is fixed as
�t = 0.0001. The numerical reference solution is obtained with a very small space grid with
h = 0.025. We define the error as the l2-norm of the difference with the weighted average of
the reference solution: ehi := φhi−(ζiφ

ref
p +ηiφ

ref
q +θiφ

ref
r ). Here, p, q , and r are appropriate
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Fig. 3 Spinodal decomposition of a binary mixture on a fixed surface (a) and a moving surface (b). The
computational times of (a) and (b) are at t = 0, 0.1, 0.3, 1, 10 and t = 0, 3, 5, 7, 10, respectively, from
left to right

Table 1 Error and convergence results with various mesh grids

h 0.2 0.1 0.05

Uniform: l2-error 1.428E−3 3.974E−4 9.797E−5

Uniform: Rate 1.85 2.02

Non-uniform: l2-error 7.650E−3 2.133E−3 5.218E−4

Non-uniform: Rate 1.84 2.03

Here, �t = 0.0001 is fixed. The numerical reference solution is obtained with a very small space grid with
h = 0.025

fine reference grid indexes in a triangle, and ζi , ηi , and θi satisfy shi = ζi srefp +ηi srefq +θi srefr .
Table 1 lists the errors and the convergence rates log2(‖eh‖2/‖e h

2
‖2). To assess the effect

of the mesh grid structure, we use a uniform mesh grid structure, in which the edge of each
triangle is almost the same (see the first column of Fig. 2a). Here, we also consider a non-
uniformmeshgrid structure (see the second columnofFig. 2a),which is obtainedby randomly
changing the edges on the uniform mesh grid structure with 10% random amplitude. The
results in Table 1 confirm that the numerical solution with the uniform mesh grid structure
is better than that obtained with the non-uniform mesh grid. The results also suggest that
the schemes with two mesh grid structures are indeed second-order accurate with respect to
space.

To test the convergence rate for time discretization, we set the space step size to h =
0.05 and choose time steps �t = 1.250E−3, 6.250E−4, 3.125E−4, and 1.563E−4. The
numerical reference solution is computed with a very small time size of �t = 7.813E−5.
The convergence rate is defined as log2(‖e�t‖2/‖e�t

2
‖2). Table 2 lists the errors and rates of

convergence with uniform and non-uniform mesh structures. A second-order accuracy with
respect to time is observed.
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Table 2 Error and convergence results with various time steps

�t 2.500E−3 1.250E−3 6.250E−4 3.125E−4

Uniform: l2-error 5.712E−4 1.528E−4 3.953E−5 9.320E−6

Uniform: Rate 1.91 1.95 2.08

Non-uniform: l2-error 2.918E−3 7.934E−4 2.015E−4 4.823E−5

Non-uniform: Rate 1.88 1.98 2.06

Here, h = 0.05 is fixed. The reference numerical solution is obtained with a very small temporal grid with
�t = 7.813E−5

Fig. 4 Spinodal decomposition of a binary mixture with rotational motion. a–d Results on a moving surface.
e Result on a fixed surface with the same initial condition as shown in (a). The computational times are listed
below each figure. The initial surface is the surface of a unit sphere

4.3 Spinodal Decomposition Associated with Rotational Motion

We consider the passive advection of a unit sphere by a given velocity field,V(s) = (0.5πsy,
−0.5πsx , 0). If the sphere is assumed to be centered at (0, 0, 0), then the normal velocity
Vν(s, t)N(s, t) is zero, owing to the rotational velocity field. Therefore, the shape of the sphere
should not change as a result of the rotation. The initial condition is a random perturbation,
φ(s, 0) = 0.1rand(s), where rand(s) is a random number between −1 and 1.

Figure 4 illustrates the evolution of the phase separation by the background velocity flow.
The simulations are computed up to time T = 10 with �t = 0.01. We can observe the
alignment in the case of the velocity flow.

4.4 Spinodal Decomposition Under Mean Curvature Flow

Mean curvature flow is the geometric flow of a hypersurface, which has been applied to image
processing [43,44] and surface reconstruction [45]. A surface evolves under mean curvature
flow, in which the normal velocity of a moving hypersurface is equal to the negative mean
curvature:

ds(t)
dt

= −εH(s)N(s, t).

Here, ε is a positive constant. Under the mean curvature flow, convex points move inward,
while concave points move outward. We consider the CH equation under a mean curvature
flow. The initial surface of a box of length eight on each side satisfies the following equation:

3 + cos

⎛
⎝4 cos−1

⎛
⎝ sz√

s2x + s2y + s2z

⎞
⎠

⎞
⎠ −

√
s2x + s2y + s2z = 0. (26)
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Fig. 5 Spinodal decomposition of a binary mixture under mean curvature flow. a t = 4, b t = 8, c t = 12,
and d t = 16. The results in (a) are obtained on the fixed surface by using the CH equation with a random
perturbation. (b–d) are computed with a moving surface under the mean curvature flow
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Fig. 6 Evolution of the total mass under the mean curvature flow

First, we fix the initial surface and run the CH equation with a random initial condition up
to time t = 4. Then, we let the surface evolve under the mean curvature flow. Here, we
setε = 0.1 and �t = 0.001.

The evolution is illustrated in Fig. 5. The computational times are listed below each figure.
It can be observed that the surface shrinks inward under themean curvature flow. Furthermore,
at earlier stages, the CH equation coarsens a solution that is already phase separated, and
in the later stages the separated phases are mixed together. The reason for this is that in
the earlier stages HN is small, which implies that the CH equation is dominant. Hoever,
as the surface moves HN becomes increasingly large, which implies that the moving phase
becomes dominant as a result of the mixing of the separated phases.

Figure 6 illustrates the evolution of the total mass under the mean curvature flow. Note
that we normalized the total mass by the total mass at the initial time. We observe that our
proposed method clearly maintains the total conservation of mass.
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Fig. 7 A family of controlled surfaces in which the numbers of vertices and triangles are the same for each
triangular surface

4.5 Spinodal Decomposition on a Family of Controlled Surfaces

Surface correspondence is a fundamental notion in computer vision and related fields. Given
two triangulatedmesh surfaces, a correspondence is a mapping from any point on one surface
to a corresponding point on the other (see Fig. 7). Here, the numbers of vertices and triangles
in the triangular surfaces are the same.

In this section, we will consider the CH equation on a family of controlled surfaces. By
(S p, F p), denote the pth triangular surfacemesh. Let the time evolution be t̂ p from (S p, F p)

to (S p+1, F p+1). Using a linear interpolation, we can assume that the evolving velocity Vp
j

of each vertex s j is constant, and can be defined as

Vp
j = sp+1

j − spj
t̂ p

. (27)

Therefore, using the evolving velocityVp we can enforce that the pth triangular surfacemesh
becomes the (p + 1)th triangular surface mesh after time t̂ p . Figure 8a shows the results of
the CH equation at a time of 2 on a fixed horse-shaped surface with a random perturbation.
Then beginning with results as shown in Fig. 8a, we evolve the surfaces from Fig. 8 a–c.
Here, the settings t̂1 = t̂2 = 2 are used. The results suggest that our algorithm performs well
on a family of controlled surfaces.

4.6 Spinodal Decomposition on Evolving Cell Surfaces

The growth and division of cells are fundamental phenomena that create and maintain life. In
[42], Li et al. proposed a mathematical equation for cell growth and division, and simulated
the governing equation using the immersed boundary method (IBM) in 3D, which extended
the work of Li et al. [46]. In this section, we will consider the CH equation on an evolving
cell surface by combining an immersed boundary method with a mathematical model for the
growth and division. Let s(t) denote the cell boundary, and let Y1(t) and Y2(t) be the cell
nuclei at time t . The governing equations for the cell growth and division are

∂u(x, t)
∂t

+ u(x, t) · ∇u(x, t) = −∇ p(x, t) + 1

Re
�u(x, t) + 1

Se
∇S(x, t)

+ 1

We
SF(x, t) + 1

De
DF(x, t), (28)

∇ · u(x, t) = ς S(x, t), (29)
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Fig. 8 Spinodal decomposition of a binary mixture on a family of controlled surfaces. From top to bottom,
these are results from the front and back views, respectively with a t = 0, b t = 2, and c t = 4. Note that
the result in (a) is obtained at time 2 on a fixed horse-shaped surface with a random perturbation. The initial
surface is in a box of size (0, 1) × (0, 3) × (0, 3)

where

S(x, t) =
2∑

m=1

(1 − Ĥ(t − t0))δc(x − Ym(t)), (30)

SF(x, t) =
∫

Γ

f1(s)δc(x − s(A, t))dA, (31)

f1(s) = H(s)N(s), (32)

DF(x, t) =
∫

Γ

f2(s(A, t0))δc(x − s(A, t))dA, (33)

f2(X(A, t0)) = Ĥ(t − t0)ndiv(s(A, t))

η(s(A, t0))
, (34)

η(s(A, t0)) =
∣∣|s(A, t0) − Y1(t0)| − |s(A, t0) − Y2(t0)|

∣∣
ε|Y1(t0) − Y2(t0)| + 1, (35)

ndiv(s(A, t)) = (Y1(t0) − s(A, t)) + (Y2(t0) − s(A, t))

|(Y1(t0) − s(A, t)) + (Y2(t0) − s(A, t))| . (36)

Lagrangian cell surface points move according to the following:

∂s
∂t

= U(s), (37)

U(s) =
∫

Ω

u(x)δc(x − s)dx, (38)
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Fig. 9 Spinodal decomposition of a binary mixture on evolving cell surfaces. The initial shape of the cell is
a unit sphere on the computational domain Ω = (−2, 2) × (−2, 2) × (−2, 2)

∂Ym

∂t
= U(Ym), for m = 1, 2, (39)

U(Ym) =
∫

Ω

u(x, t)δc(x − Ym(t))dx. (40)

The CH equation on the evolving cell surface is combined as follows:

∂φ

∂t
+ φVνH + ∇τ · (φVτ ) = M�τμ (41)

μ(s, t) = F ′(φ(s, t)) − ε2�τφ(s, t). (42)

Equations (28) and (29) constitute the Navier–Stokes equations, p is the pressure and
u = (u, v, w) is the fluid velocity. The non-dimensional parameters are the Reynolds number
Re, Weber number We, and new parameter numbers De and Se. In Eq. (30), S(x, t) is the
time-dependent source, which is only positive around cell nuclei when a cell grows. When
the cell volume is doubled, the sources are deactivated. Furthermore, Ĥ(t) is the Heaviside
function, which satisfies Ĥ(t) = 1 when t ≥ 0 and Ĥ(t) = 0 otherwise; and δc(x) is the
smoothed Dirac delta function. Here, t0 denotes the specific time at which the mass of the
cell becomes double the size of its mother cell. For more details concerning the mathematical
model for growth and division, we refer the reader to [42].

The initial shape of a cell is a unit sphere on the computational domain Ω = (−2, 2) ×
(−2, 2) × (−2, 2) and the initial condition for φ is a random perturbation. A mesh grid of
size 128× 128× 128 is used. The astral centers are Y1 = (0,−0.2, 0) and Y2 = (0, 0.2, 0).
We set Re = 0.5, We = 1, De = 2E-3,η = 0.05, and M = 4. The simulation is run until
time T = 1.5 with �t = 5E−5. Figure 9a–c show that two point sources inside the cell
cause it to grow. Figure 9d–e show that the cell is divided into two cells by a division force.

123



J Sci Comput

The computational times are listed below each figure. On the evolving cell surface, it can be
seen that spinodal decomposition of a binary mixture is performed effectively. Furthermore,
the framework presented here, which combines the immersed boundary method and our
mathematical approach on evolving surfaces, is not limited to the CH equation. It can be
extended to study diverse biological phenomena occurring on biological membranes.

5 Conclusions

In this paper, we proposed a second-order time-accurate scheme for the CH equation on
an evolving surface. We derived a model of the CH equation on an evolving surface. The
discretization is performed via a surface mesh, which consists of piecewise triangles. The
proposed scheme is based on a Crank–Nicolson-type scheme, and is second-order accurate
in time. The resulting numerical system of discrete equations is computed using a bicon-
jugate gradient stabilized method. We performed several numerical tests, such as spinodal
decomposition on translated surfaces, time and space convergence, spinodal decomposition
associated with rotational motion, and spinodal decomposition under a mean curvature flow.
These numerical experiments demonstrated the efficiency of our proposed algorithm. In par-
ticular, to demonstrate the extension of our proposed method to phenomena on evolving
surfaces, we presented two applications: spinodal decompositions on a family of controlled
surfaces and on evolving cell surfaces.
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