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a b s t r a c t 

In this paper, we propose an unconditionally energy-stable second-order time-accurate 

scheme for the Cahn–Hilliard equation on surfaces. The discretization is performed via a 

surface mesh consisting of piecewise triangles and its dual-surface polygonal tessellation. 

The proposed scheme, which combines a Crank–Nicolson-type scheme with a linearly sta- 

bilized splitting scheme, is second-order accurate in time. The discrete system is shown to 

be conservative and unconditionally energy-stable. The resulting system of discrete equa- 

tions is simple to implement, and can be solved using a biconjugate gradient stabilized 

method. We demonstrate the performance of our proposed algorithm through several nu- 

merical experiments. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

In this paper, our goal is to develop a second-order accurate, unconditionally energy-stable scheme for the Cahn–Hilliard

equation (CH) [1] defined on a general surface S (see Fig. 1 ): 

∂φ( s , t) 

∂t 
= M�s μ(s , t) , s ∈ S, 0 < t ≤ T , (1)

μ(s , t) = F ′ (φ(s , t)) − ε2 �s φ(s , t) , (2)

with the initial condition 

φ(s , 0) = φ0 (s ) , s ∈ S, (3)

where φ( s , t ) is the order parameter, which denotes the concentration of one component of a binary mixture. μ( s , t ) is

chemical potential. M > 0 is mobility. �s and ∇ s denote the tangential (surface) Laplacian and gradient operators, respec-

tively. F (φ) = 0 . 25(φ2 − 1) 2 is a free energy density function and ε is a positive constant related to interfacial thickness. For

simplicity of presentation, we assume herein that surface S is closed. It is equivalent to consider the periodic boundary con-

dition for both the order parameter and chemical potential. Note that our method can also be extended to cases involving

Dirichlet and Neumann boundary conditions. 
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Fig. 1. Phase separation on the surface of a bunny shown as (a) bunny geometry, (b) the triangular mesh of the bunny surface, (c) the initial random phase 

mixture on the bunny surface, and (d) separated phases obtained by the Cahn–Hilliard equation. Note that for better visualization, the mesh points and 

triangles in (b) are displayed more sparsely than their actual densities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eqs. (1) and (2) are derived from a constrained gradient flow in the H 

−1 Hilbert space of the Helmholtz free energy

functional: 

E(φ) = 

∫ 
S 

(
F (φ) + 

ε2 

2 

|∇ s φ| 2 
)

ds . (4) 

The properties of the CH equation are such that the total mass 
∫ 
� φ ds is conserved and the total energy E(φ) decreases

with time. That is, 

d 

dt 

∫ 
S 

φ ds = 

∫ 
S 

φt ds = M 

∫ 
S 

�s μ ds = M 

∫ 
∂S 

n · ∇ s μ dτ = 0 , (5) 

d 

dt 
E(t) = 

∫ 
S 

(F ′ (φ) φt + ε2 ∇ s φ · ∇ s φt ) ds = 

∫ 
S 

μφt ds + 

∫ 
∂S 

φt ε
2 n · ∇ s φdτ (6) 

= M 

∫ 
S 

μ�s μds = M 

∫ 
∂S 

μn · ∇ s μdτ − M 

∫ 
S 

∇ s μ · ∇ s μds = −M 

∫ 
S 

|∇ s μ| 2 ds ≤ 0 . 

Here, ∂S is the boundary of S and n is the outward normal vector at the boundary. The solution φ( s , t ) is assumed to be

smooth. Thus, Eqs. (5) and (6) can be guaranteed to hold by the boundary condition and divergence theorem. The CH equa-

tion, which describes phase separations, has been widely used in many fields such as the physical and materials sciences

[2–4] , multi-phase fluid dynamics [5–7] , biology simulations [8,9] , image inpainting processing [10] , and surface/volume

reconstruction [11] . Various experimental studies have shown that interesting phase separations could occur on static or dy-

namic surfaces; specific works include investigations of phase separation on lipid bilayer membranes [12] , crystal growth on

curved surfaces [13] , phase separation patterns for diblock copolymers on surfaces [14,15] and phase separations within thin

films [16] . The simulation of phase separation kinetics on surfaces constitutes a difficult problem. First, when solving the CH

equation on a curved surface, it is difficult to compute the Laplace–Beltrami operator. Another difficulty lies in obtaining an

accurate and efficient numerical scheme on surfaces that have high-order accuracy and strong numerical stability because

the CH equation involves fourth-order spatial derivatives and a nonlinear term. 

1.1. Definition of Laplacian on an arbitrary surface 

Existing methods for estimating the Laplacian operator and solving partial differential equations on an arbitrary surface

can be classified into two types: embedded narrow-band methods and direct methods. The former extends the partial differ-

ential equations to a higher-dimensional domain, then choose a narrow band around the surface and modify the differential

operators so that the solution is confined to the curved surface (e.g., [17–29] ). The latter methods use coordinates that are

intrinsic to the surface and a surface-based mesh to discretize the differential operators, (e.g., [30–37] ). 

Osher and Sethian [22] and Bertalmio et al. [23] introduced a level set method for performing diffusion calculations on

implicit surfaces. A surface is defined as the zero-level set of a higher-dimensional function; this surface is extended to a

narrow-band domain embedding the surface. The Laplace–Beltrami operator is replaced by the standard Laplace operator,

which can be discretized using an Eulerian formulation and simply computed by the finite difference formulas. It is not

difficult to show the second-order convergence of the discretization. Another popular embedded narrow-band approach

is the closed point method [24–27] , which is applicable to many surface geometries and is easy to program using well-

known standard numerical methods on a Cartesian grid. This method is based on a closest point function and supports

open surfaces with boundary conditions. Recently, methods using radial functions have also been introduced [28,29] . 

Note that all embedded narrow-band methods require additional computational cost for arbitrary hypersurfaces with 

complicated topological or geometrical structures. Direct methods can reduce the additional computational cost because 
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the resulting discretization scheme depends only on the dimension of the continuous problem. It is well known that the

Laplace–Beltrami operator is closely related to the mean curvature normal, which plays a key role in the study of geometric

properties. Therefore, many methods [30–37] have been proposed for studying the Laplace–Beltrami operator on triangu-

lar or polygonal meshes because the use of such meshes is very popular in the processing of three-dimensional models.

For example, Xu [31] investigated the convergence properties of several popular discretizations and proved that his two

proposed methods satisfy a convergence property under certain restrictive conditions. In [33,34] , Belkin et al. proposed a

simple method for approximating integrals over a surface using a mesh and analyzed the proposed algorithm for approx-

imating Laplace–Beltrami operator on a surface with a pointwise convergence guarantee for arbitrary meshes. Using the

intrinsic geometric local tangential lifting method, Chen and Wu [36] proposed an intrinsic simple method for estimating

the gradient, divergence, and the Laplace–Beltrami operator of a function on a regular surface. The authors also proved that

the proposed method satisfies the conservation law and convergence property. Subsequently, the same authors [37] pro-

posed a new simple discrete approximation employing the concept of local dual meshes. 

The finite element technique [38,39] is another popular numerical method for solving partial differential equations [40–

42] . Here, the Laplace–Beltrami operator is usually represented in terms of the tangential gradient by projecting the space

function gradient in three-dimensional space onto a surface mesh consisting of a piecewise planar triangular tangent plane.

However, approaches based on the finite element method are not easy to implement. 

In this study, we modify the direct method described in [37] because its discretization method has the convergence

property and is simple to implement. There is no requirement for the mesh to be well-centered; however mesh vertices

should admit a one-ring neighborhood, because the direct method uses information from a one-ring of neighboring vertices.

It should be noted that direct methods are limited by the quality of the surface mesh. In general, to obtain a good solution,

a high quality mesh is required for direct methods and a finer mesh grid for embedded narrow-band methods. Owing to

work in [43–46] , mesh quality has been significantly improved. 

1.2. Numerical scheme for the CH equation on surface 

Many studies have been published regarding numerical methods for the CH equation on a flat surface [47–56] . Regarding

time discretization, most of the schemes referenced above have used explicit, implicit–explicit, Crank–Nicolson, or Adams–

Bashforth methods. Because the CH equation involves fourth-order spatial derivatives and a nonlinear term, explicit time

schemes lead to severe time-step restrictions for stability. For a fully implicit approach, a larger time step can be employed.

However, this only has first-order accuracy in time, and therefore requires small time steps to guarantee its accuracy. To

obtain a high-order accurate numerical solution, the Crank–Nicolson and Adams–Bashforth methods are better choices. Be-

cause of the nonlinear term F ′ ( φ), the usual second-order Crank–Nicolson or Adams–Bashforth schemes do not satisfy an

energy law. Therefore, care should be taken to obtain a high-order time-accurate scheme with strong energy stability. 

To this point, a few studies of the CH equation on a surface have presented detailed numerical algorithms. In [41] , Du

et al. demonstrated the well-posedness and convergence of a fully discrete finite element approximation scheme for the

CH equation defined on a general surface. The proposed method has second-order accuracy, however involves time-step

restrictions. A method for solving the CH equation over discrete surfaces was recently presented by Chen and Wu [36] , but

that paper only described the Laplace–Betltrami operator and described neither the details of the model nor the numerical

algorithm for the CH equation. These details are presented in this paper, in which we also propose a simple high-order

method for estimating the gradient operator. Furthermore, we believe these to be the first results concerning unconditionally

stable second-order time discretizations of the CH equation on a surface. 

The main objective of this study is to propose an unconditionally energy-stable second-order time-accurate scheme for

the CH equation on surfaces. We demonstrate that our scheme has second-order accuracy in time and space. The discrete

system can satisfy mass conservation and can use large time steps owing to its unconditional energy stability. We solve the

resulting system of discrete equations using a biconjugate gradient stabilized method [57] . We demonstrate the performance

of our proposed algorithm in several numerical experiments. 

This paper is organized as follows. In Section 2 , we present our numerical solution. Section 3 details our numerical

experiments. Finally, conclusions are drawn in Section 4 . 

2. Numerical solution 

Here, we briefly review a method of defining the discrete gradient, divergence, and Laplace–Beltrami operator on func-

tions on a triangular mesh and propose our new high-order method. To prepare for our description, we first introduce

some basic notations. Here, we closely follow the framework introduced in [36] . Let S = (V, F ) be a triangular surface

mesh, where V = { v i | 1 ≤ i ≤ N V } and F = { T k | 1 ≤ k ≤ N F } are lists of vertices and triangles, respectively. N V and N F are

the numbers of vertices and triangles. For a vertex v ∈ V , let v j denote neighboring vertices of v for j = 0 , 1 , . . . , n and

v 0 = v n . Vertices v j are labeled in a counterclockwise manner. Let T j be the triangle with vertices v, v j , and v j+1 (see

Fig. 2 ). Let N (v ) = 

∑ n −1 
j=0 ω j N j / ‖ ∑ n −1 

j=0 ω j N j ‖ be the normal vector at v ∈ V , where N j is the unit normal to triangle T j ,

ω j = ‖ G j − v ‖ −2 / 
∑ n −1 

i =0 ‖ G i − v ‖ −2 , and G j = (v j + v j+1 + v ) / 3 . Let P ( v ) be the local tangential polygon of v , formed by ver-

tices { 0 , ̃  v 0 , ̃  v 1 , . . . , ̃  v n −1 } , where ˜ v j = v j − v −
〈
v j − v , N(v ) 

〉
N(v ) , for j = 0 , . . . , n − 1 . 
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Fig. 2. A vortex v with several neighboring points for evaluating the gradient, divergence, and Laplace–Beltrami operators. 

 

 

 

 

 

 

2.1. Discretizations of the gradient, divergence, and Laplace–Beltrami operators 

We now describe the discretizations of the gradient, divergence, and Laplace–Beltrami operators of a function φ defined

on the set of vertices V . Let ˜ φv be a locally lifted function of φ on the vertices in P ( v ), i.e., ˜ φv ( ̃ v j ) = φ(v j ) and 

˜ φv (0 ) = φ(v ) .

Let ˜ T j be the lifted triangle with vertices 0 , ˜ v j , and 

˜ v j+1 . For p = a ̃ v j + b ̃ v j+1 ∈ 

˜ T j , we define ˜ φv (p ) = a ̃  φv ( ̃ v j ) + b ̃  φv ( ̃ v j+1 ) +
(1 − a − b) ̃  φv (0 ) . To obtain the discrete gradient of φ on S at v , we use the weighted combination method: 

∇ d φ(v ) = ∇ d 
˜ φv (0 ) = 

n −1 ∑ 

j=1 

˜ ω j ∇ d 
˜ φv j (0 ) , (7) 

where ˜ ω j = ‖ ̃ v j + ̃

 v j+1 ‖ −2 / 
∑ n −1 

i =0 ‖ ̃ v i + ̃

 v i +1 ‖ −2 is the weighting value. The gradient of φ( v ) at triangle T j is defined as

∇ d 
˜ φv j (0 ) = α ˜ v j + β ˜ v j+1 , where (

α
β

)
= 

( 〈
˜ v j , ̃  v j 

〉 〈
˜ v j , ̃  v j+1 

〉〈
˜ v j , ̃  v j+1 

〉 〈
˜ v j+1 , ̃  v j+1 

〉)−1 (
˜ φv ( ̃ v j ) − ˜ φv (0 ) 

˜ φv ( ̃ v j+1 ) − ˜ φv (0 ) 

)
. 

Let ˆ T j be a triangle with v j , G j , and G j+1 . The discrete divergence ∇ d · X of a vector field X at v is defined by 

∇ d · X (v ) = 

1 

D (v ) 

n −1 ∑ 

j=0 

‖ G j+1 − G j ‖ 

6 

(
2 

〈
X (G j ) , n (G j ) 

〉
+ 2 

〈
X (G j+1 ) , n (G j+1 ) 

〉
+ 

〈
X (G j ) , n (G j+1 ) 

〉
+ 

〈
X (G j+1 ) , n (G j ) 

〉)
, 

where D (v ) = 

∑ n −1 
i =0 | ̂  T i | , | ̂  T i | is the area of ˆ T i , X (G j ) = (X (v ) + X (v j ) + X (v j+1 )) / 3 , 

n (G j ) = 

(G j+1 − G j ) × N j 

‖ (G j+1 − G j ) × N j ‖ 

, and n (G j+1 ) = 

(G j+1 − G j ) × N j+1 

‖ (G j+1 − G j ) × N j+1 ‖ 

. 

Finally, we have the approximating Laplace–Beltrami operator 

�d φ(v ) = ∇ d · [ ∇ d φ(v )] 

= 

1 

D (v ) 

n −1 ∑ 

j=0 

‖ G j+1 − G j ‖ 

6 

(
2 

〈∇ d φ(G ) j , n (G j ) 
〉
+ 2 

〈∇ d φ(G ) j+1 , n (G j+1 ) 
〉

+ 

〈∇ d φ(G ) j , n (G j+1 ) 
〉
+ 

〈∇ d φ(G ) j+1 , n (G j ) 
〉)

. (8) 

The definition of the Laplace–Beltrami operator in Eq. (8) , requires the gradient of φ( G j ) at the centroid G j of each trian-

gle, i.e., ∇ d φ( G j ). The gradient of φ( G j ) can be computed as ∇ d φ(G j ) = (∇ d φ(v ) + ∇ d φ(v j ) + ∇ d φ(v j+1 )) / 3 . However, in
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this case ∇ d φ( G ) only has first-order accuracy. An alternative method for computing gradient ˜ ∇ d φ(G ) with second-order

accuracy was proposed by Chen and Wu [36] , a detailed description of which can be found in [37] : 

˜ ∇ d φ(G j ) = A 

−1 
j 

(
α1 (φ(v ) − φ(G j )) + α2 (φ(v j ) − φ(G j )) + α3 (φ(v j+1 ) − φ(G j )) 
β1 (φ(v ) − φ(G j )) + β2 (φ(v j ) − φ(G j )) + β3 (φ(v j+1 ) − φ(G j )) 

)
, 

where A j = 

(
α1 x 1 + α2 x 2 + α3 x 3 α1 y 1 + α2 y 2 + α3 y 3 
β1 x 1 + β2 x 2 + β3 x 3 β1 y 1 + β2 y 2 + β3 y 3 

)
. 

Here, φ(G j ) = (φ(v ) + φ(v j ) + φ(v j+1 )) / 3 and ( x 1 , y 1 ) are the orthonormal coordinates for vectors v − G j , i.e., v − G j =
x 1 e 1 + y 1 e 2 . Here, e 1 and e 2 form an orthonormal basis for the triangle plane T j , which contains the three vertexes v, v j , and

v j+1 . In addition, ( x 2 , y 2 ) and ( x 3 , y 3 ) are the orthonormal coordinates for the vectors v j − G j and v j+1 − G j , respectively, and

can be computed in the same manner. Furthermore, α1 , α2 , α3 , β1 , β2 , and β3 satisfy the following relations: ( 

x 1 y 1 x 2 y 2 x 3 y 3 
x 2 1 x 2 2 x 2 3 

y 2 1 y 2 2 y 2 3 

) ( 

α1 

α2 

α3 

) 

= 

( 

0 

0 

0 

) 

and 

( 

x 1 y 1 x 2 y 2 x 3 y 3 
x 2 1 x 2 2 x 2 3 

y 2 1 y 2 2 y 2 3 

) ( 

β1 

β2 

β3 

) 

= 

( 

0 

0 

0 

) 

. 

In this manner, ˜ ∇ d φ(G j ) is computed with second-order accuracy. For further details, we refer the reader to Chen and Wu

[36] , 37 ]. However, the computation of ˜ ∇ d φ(G j ) is not simple. The solutions of the above equation are not unique; thus,

care should be taken to choose suitable values of α1 , α2 , α3 , β1 , β2 , and β3 to ensure that matrix A j has full rank. To

remove this difficulty and compute the gradient of φ( G j ) with high accuracy, we propose a second-order-accurate method.

Starting with a Taylor expansion, we can obtain the following: ⎧ ⎨ 

⎩ 

φ(v ) − φ(G j ) = 

〈∇ d φ(G j ) , v − G j 

〉
+ 0 . 5�d φ(G j ) ‖ v − G j ‖ 

2 + O (‖ v − G j ‖ 

2 ) , 

φ(v j ) − φ(G j ) = 

〈∇ d φ(G j ) , v j − G j 

〉
+ 0 . 5�d φ(G j ) ‖ v j − G j ‖ 

2 + O (‖ v j − G j ‖ 

2 ) , 

φ(v j+1 ) − φ(G j ) = 

〈∇ d φ(G j ) , v j+1 − G j 

〉
+ 0 . 5�d φ(G j ) ‖ v j+1 − G j ‖ 

2 + O (‖ v j+1 − G j ‖ 

2 ) . 

(9)

The Taylor expansion theorem used in Eq. (9) can also be similarly found in [37] . Because ∇ d φ( G j ), v j − G j , and v j+1 − G j

are in the same triangle plane, we can assume that ∇ d φ( G j ) takes the following form 

∇ d φ(G j ) = α j (v j − G j ) + β j (v j+1 − G j ) , (10)

where αj and β j are constants. Then, plugging Eq. (10) into Eq. (9) and combining the six relations together, we arrive at ( 

α j 

β j 

0 . 5�d φ(G j ) 

) 

= B 

−1 
j 

( 

φ(v ) − φ(G j ) 
φ(v j ) − φ(G j ) 

φ(v j+1 ) − φ(G j ) 

) 

, (11)

where B j = 

⎛ 

⎝ 

〈
v j − G j , v − G j 

〉 〈
v j+1 − G j , v − G j 

〉 ‖ v − G j ‖ 

2 〈
v j − G j , v j − G j 

〉 〈
v j+1 − G j , v j − G j 

〉 ‖ v j − G j ‖ 

2 〈
v j − G j , v j+1 − G j 

〉 〈
v j+1 − G j , v j+1 − G j 

〉 ‖ v j+1 − G j ‖ 

2 

⎞ 

⎠ . (12)

After calculating αj and β j and substituting them into Eq. (10) , we can compute ∇ d φ( G j ). Note that it is not difficult to prove

that matrix B j has full rank; therefore, B −1 
j 

exists. Furthermore, it follows from Eq. (11) that �d φ( G j ) is zero. The proof is not

presented here. Thus, using Eqs. (10) –(12) , we find that ∇ d φ( G j ) has second-order accuracy in space. Then, we obtain vector

field ∇ d φ( G j ) defined on all triangle centroids, which allows us to define the approximating Laplace–Beltrami operator (8) .

Furthermore, by observing Eqs. (8) and (10) –(12) , we can rewrite the Laplace–Beltrami operator �d φ( v ) at vertex v as 

�d φ(v i ) = L i 

⎛ 

⎜ ⎜ ⎝ 

φ(v 1 ) 
φ(v 2 ) 

. . . 
φ(v N V ) 

⎞ 

⎟ ⎟ ⎠ 

and 

⎛ 

⎜ ⎜ ⎝ 

�d φ(v 1 ) 
�d φ(v 2 ) 

. . . 
�d φ(v N V ) 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

L 1 

L 2 

. . . 
L N V 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

φ(v 1 ) 
φ(v 2 ) 

. . . 
φ(v N V ) 

⎞ 

⎟ ⎟ ⎠ 

, 

where L i is a 1 × N v matrix for i = 1 , 2 , . . . , N v , which can be obtained by Eqs. (8) , and (10) –(12) . Let L =
(L 1 , L 2 , · · · , L N V 

) T be an N V × N V matrix, which is called the Laplace matrix of surface S in this paper. 

2.2. Proposed scheme 

For the sake of convenience, let M = 1 . Let φn 
i 

be the approximation of φ( v i , n �t ) at vertex v i , where �t = T /N t is the

time step, T is the final time, and N t is the total number of time steps. To obtain a high-order numerical solution, we apply

a Crank–Nicolson discretization to Eqs. (1) and (2) . Then, we have the following discrete system of equations: 

φn +1 − φn 

�t 
= �d μ

n + 1 2 , (13)
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μn + 1 2 = 

1 

2 

(F ′ (φn +1 ) + F ′ (φn )) − ε2 

2 

(�d φ
n +1 + �d φ

n ) . (14) 

It is well known that owing to the nonlinear term F ′ ( φ), the usual second-order Crank–Nicolson scheme does not satisfy an

energy law. To construct a second-order scheme that does satisfy an energy law, we divide the nonlinear terms F ′ (φn +1 )

into F ′ (φn +1 ) − λφn +1 and λφn +1 and then linearize F ′ (φn +1 ) − λφn +1 using information from the n − 1 and n levels, i.e.,

F ′ (φn +1 ) − λφn +1 = 2(F ′ (φn ) − λφn ) − (F ′ (φn −1 ) − λφn −1 ) . Here, λ is a positive stabilizing parameter. Thus, we obtain the

following equations: 

φn +1 − φn 

�t 
= �d μ

n + 1 2 , (15) 

μn + 1 2 = 

3 

2 

(F ′ (φn ) − λφn ) − 1 

2 

(F ′ (φn −1 ) − λφn −1 ) + 

λ

2 

(φn +1 + φn ) − ε2 

2 

(�d φ
n +1 + �d φ

n ) . (16) 

The above scheme is of second-order accuracy. A detailed proof of the stability of the above scheme will be presented in

Section 2.3 . Note that a similar fully implicit and second-order accurate scheme can be found in [58] , where the authors di-

rectly solved the nonlinear term F ′ (φn +1 ) using a Newton-type iterative method. To solve the linear discrete system (15) and

(16) at the implicit time level, we use a biconjugate gradient stabilized method [57] . To condense this discussion, we only

describe the preprocessing step by rewriting Eqs. (15) and (16) as follows: 

(
I �tL 

−λ/ 2 I + ε2 / 2 L I 

)
⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

φn +1 
1 
. . . 

φn +1 
N V 

μ
n + 1 2 

1 
. . . 

μ
n + 1 2 

N V 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

φn 
1 
. . . 

φn 
N V 

3 
2 
(F ′ (φn 

1 ) − λφn 
1 ) − 1 

2 
(F ′ (φn −1 

1 
) − λφn −1 

1 
) + 

λ
2 
φn 

1 
. . . 

3 
2 
(F ′ (φn 

N V 
) −λφn 

N V 
) − 1 

2 
(F ′ (φn −1 

N V 
) −λφn −1 

N V 
) + 

λ
2 
φn 

N V 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

+ 

(
0 −ε2 / 2 L 

)
⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

φn 
1 
. . . 

φn 
N V 

φn 
1 
. . . 

φn 
N V 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(17) 

Here, I and 0 are the N V × N V identity matrix and zero matrix, respectively. If the triangular surface mesh is without a

boundary, we can directly obtain the solution for φ by solving Eq. (17) using a biconjugate gradient stabilized method. If the

surface is open with a Neumann boundary condition, then we split the total collection of vertices into two groups: those

in the surface boundary and those that are not. Following rearrangements, we assume that v i , i = 1 , 2 , . . . , m is the surface

mesh and v i , i = m, m + 1 , . . . , N V is in the boundary of the surface. Then, the boundary points satisfy n · ∇ d φ(v i ) = 0 . Here,

we can compute �d φ(v ) = ∇ d · (∇ d φ(v )) = n · ∇ d φ(v i ) = 0 on the surface boundary instead of solving the original equation.

Therefore, to consider the Neumann boundary condition of the CH equation, we can write Eqs. (15) and (16) as 

(
I ∗ �tL 

−λ/ 2 I ∗ + ε2 / 2 L 

I I ∗

)

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
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+ 

(
0 −ε2 / 2 L 

)
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. 

(18) 

Here, 

I ∗ = 

(
I I 0 

0 0 

)
is an N V × N V identity matrix and I I is an m × m identity matrix. Finally, we summarize our process as follows: (i) If the

triangle surface is without a boundary, then we use Eq. (17) . (ii) If the triangle surface has a Neumann boundary condition,
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then we use Eq. (18) . Note that our method can be extended to cases with Dirichlet and periodic boundary conditions as

well. 

2.3. Unconditional energy stability 

Before we proceed, we must define inner products and provide summation-by-parts formulas for deriving and analyzing

the proposed numerical schemes. Define the discrete l 2 inner product at the vertex and centroid of the triangle face by 

(φ, ψ) d = 

N V ∑ 

i 

φi ψ i D i and (∇ d φ, ∇ d ψ) d = 

N V ∑ 

i 

[ 

D i 

n −1 ∑ 

j=0 

∇ d φ(G i j ) · ∇ d ψ(G i j ) 

] 

. 

Here, D i = D (v i ) for i = 1 , 2 , . . . , N V . We can also define the discrete norm as ‖ φ‖ 2 
d 

= (φ, φ) d and ‖∇ d φ‖ 2 
d 

= (∇ d φ, ∇ d φ) d .

As in the semi-discrete case, we define the discrete total energy functional by 

E d (φn ) = (F (φn ) , 1 ) d + 

ε2 

2 

(∇ d φ
n , ∇ d φ

n ) d . (19)

Here, 1 is a vector with all entries equal to 1. Furthermore, we define the discrete pseudo energy as 

Ē d (φn +1 , φn ) = E d (φn +1 ) + 

1 

4 

(λ + 1 + 3( ̂  ϕ 

n ) 2 − 6( ˆ ψ 

n +1 ) 2 ) ‖ φn +1 − φn ‖ 

2 
d . (20)

Here, ˆ ψ 

n +1 and ˆ ϕ 

n are constants satisfying (
F ′ (φn ) , φn +1 − φn 

)
d 

= 

(
F (φn +1 ) − F (φn ) , 1 

)
d 

− 1 

2 

F ′′ ( ˆ ψ 

n +1 ) ‖ φn +1 − φn ) ‖ 

2 
d , (21)

(
1 

2 

F ′ (φn ) − 1 

2 

F ′ (φn −1 ) , φn +1 − φn 
)

d 
= 

1 

2 

F ′′ ( ˆ ψ 

n ) 
(
φn − φn −1 , φn +1 − φn 

)
d 
. (22)

In this work, we restrict our attention to the order parameter φ which is bounded. That is, there exists a constant M ≥ 1

such that | φ| ≤ M . We note that this condition can be satisfied by many physically relevant potentials by restricting the

growth of F ( φ) to quadratic for | φ| ≥ M [59] . However, because the CH equation does not satisfy the maximum principle

[60] and F ( φ) exhibits quartic growth at infinity, it is very difficult to analytically prove that the solution for the CH equation

is bounded. In [59,61] , the maximum norm of the solution for the CH equation was proved to be bounded with a truncated

potential. We refer the interested reader to Shen and Yang [59] and Condette et al. [61] . Furthermore, it should be noted that

if the maximum norm of initial condition φ0 is bounded by 1, then the solution for the CH equation with original double-

well potential is also bounded based on our numerical experiments. Now, we prove the unconditional energy stability of

these schemes under the condition λ ≥ 6 M 

2 − 1 . First, we state Lemma 1 without proof, which can be obtained simply by

summation-by-parts formulas and the discrete first and second Green’s identities. We refer the interested reader to Gilbarg

and Trudinger [62] for a similar proof for Lemma 1 . 

Lemma 1. Let φ and ψ be defined on surface S, which is assumed to be closed. Then, (φ, �d ψ) d = (ψ, �d φ) d =
−(∇ d ψ, ∇ d φ) d . 

Lemma 2. Under the condition that λ ≥ 6 M 

2 − 1 , three solutions ( φn +1 , φn , φn −1 ) of the conservative scheme (15) and (16) sat-

isfy: 

E d (φn +1 ) ≤ Ē d (φn +1 , φn ) . (23)

Proof. By Eqs. (19) and (20) , we can show that 

E d (φn +1 ) − Ē d (φn +1 , φn ) = −1 

4 

(λ + 1 + 3( ̂  ϕ 

n ) 2 − 6( ˆ ψ 

n +1 ) 2 ) ‖ φn +1 − φn ‖ 

2 
d ≤ 0 . (24)

which proves Lemma 2 . �

Theorem 1. If φn +1 , φn , and φn −1 are the solutions of Eqs. (15) and (16) , then under the condition λ ≥ 6 M 

2 − 1 , the following

energy law holds for any time step �t: 

Ē d (φn +1 , φn ) ≤ Ē d (φn , φn −1 ) . (25)

Proof. By multiplying Eq. (15) by μn + 1 
2 and summing by parts, we obtain 

(φn +1 − φn , μn + 1 2 ) d = �t(�d μ
n + 1 2 , μn + 1 2 ) d = −�t‖∇ d μ

n + 1 2 ‖ 

2 
d . 

By multiplying Eq. (16) by φn +1 − φn and summing by parts, we have (
ε2 

2 

�d φ
n +1 + 

ε2 

2 

�d φ
n , φn +1 − φn 

)
d 

= −ε2 

2 

‖∇ d φ
n +1 ‖ 

2 
d + 

ε2 

2 

‖∇ d φ
n ‖ 

2 
d , (26)
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λ
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(
φn +1 − 2 φn + φn −1 , φn +1 − φn 

)
d 

= 

λ

2 

(‖ φn +1 − φn ‖ 

2 
d − ‖ φn − φn −1 ‖ 

2 
d + ‖ φn +1 − 2 φn + φn −1 ‖ 

2 
d 

)
, (27) 

(
F ′ (φn ) , φn +1 − φn 

)
d 

= 

(
F (φn +1 ) − F (φn ) , 1 

)
d 

−
(

1 

2 

F ′′ (ψ 

n +1 )(φn +1 − φn ) , φn +1 − φn 
)

d 

= 

(
F (φn +1 ) − F (φn ) , 1 

)
d 

− 1 

2 

F ′′ ( ˆ ψ 

n +1 ) ‖ φn +1 − φn ‖ 

2 
d . (28) 

Here, we have used the Taylor expansion and mean value theorem for definite integrals in Eq. (28) . Note that a set of

constant values ψ 

n +1 and 

ˆ ψ 

n +1 exist because of the Taylor expansion and the mean value theorem, respectively. Similarly,

we can also find that (
1 

2 

F ′ (φn ) − 1 

2 

F ′ (φn −1 ) , φn +1 − φn 
)

d 
= 

(
1 

2 

F ′′ (ψ 

n )(φn − φn −1 ) , φn +1 − φn 
)

d 

= 

(
1 

2 

F ′′ (ψ 

n )(φn − φn −1 ) , φn − φn −1 
)

d 
+ 

(
1 

2 

F ′′ (ψ 

n )(φn +1 − 2 φn + φn −1 ) , φn − φn −1 
)

d 

= 

1 

2 

F ′′ ( ˆ ψ 

n ) 
(
φn − φn −1 , φn − φn −1 

)
d 

+ 

1 

2 

F ′′ ( ̂  ϕ 

n ) 
(
φn +1 − 2 φn + φn −1 , φn − φn −1 

)
d 

= 

1 

2 

F ′′ ( ˆ ψ 

n ) ‖ φn − φn −1 ‖ 

2 
d −

F ′′ ( ̂  ϕ 

n ) 

4 

(‖ φn +1 − φn ‖ 

2 
d − ‖ φn − φn −1 ‖ 

2 
d − ‖ φn +1 − 2 φn + φn −1 ‖ 

2 
d 

)
(29) 

Here, ψ 

n is constant for the Taylor expansion and ˆ ϕ 

n is constant for the mean value theorem. 

1 

2 

F ′′ ( ˆ ψ 

n +1 ) ‖ φn +1 − φn ‖ 

2 
d −

1 

2 

F ′′ ( ˆ ψ 

n ) ‖ φn − φn −1 ‖ 

2 
d −

F ′′ ( ̂  ϕ 

n ) 

4 

(‖ φn +1 − φn ‖ 

2 
d − ‖ φn − φn −1 ‖ 

2 
d 

−‖ φn +1 − 2 φn + φn −1 ‖ 

2 
d ) −

λ

4 

(‖ φn +1 − φn ‖ 

2 
d − ‖ φn − φn −1 ‖ 

2 
d + ‖ φn +1 − 2 φn + φn −1 ‖ 

2 
d 

)
= 

λ + 1 − 3( ̂  ϕ 

n ) 2 

4 

‖ φn +1 − 2 φn + φn −1 ‖ 

2 
d 

+ 

λ + 1 + 3( ̂  ϕ 

n ) 2 − 6( ˆ ψ 

n +1 ) 2 

4 

‖ φn +1 − φn ‖ 

2 
d −

λ + 1 + 3( ̂  ϕ 

n ) 2 − 6( ˆ ψ 

n ) 2 

4 

‖ φn − φn −1 ‖ 

2 
d 

By combining the above relations and using the definition of energy (19) , we have that 

Ē d (φn +1 , φn ) − Ē d (φn , φn −1 ) = 

ε2 

2 

‖∇ d φ
n +1 ‖ 

2 
d −

ε2 

2 

‖∇ d φ
n ‖ 

2 
d + 

(
F (φn +1 ) − F (φn ) , 1 

)
d 

+ 

λ + 1 + 3( ̂  ϕ 

n ) 2 − 6( ˆ ψ 

n +1 ) 2 

4 

‖ φn +1 − φn ‖ 

2 
d −

λ + 1 + 3( ̂  ϕ 

n ) 2 − 6( ˆ ψ 

n ) 2 

4 

‖ φn − φn −1 ‖ 

2 
d 

= −�t‖∇ d μ
n + 1 2 ‖ 

2 
d −

λ + 1 − 3( ̂  ϕ 

n ) 2 

4 

‖ φn +1 − 2 φn + φn −1 ‖ 

2 
d ≤ 0 . (30) 

Here, we have used the conditions that λ ≥ 6 M 

2 − 1 and λ ≥ 3( ̂  ϕ 

n ) 2 − 1 . �

Theorem 2. Suppose that { φn , μn − 1 
2 } N 

n =1 
is a sequence of solution pairs for the conservative scheme (15) and (16) with the initial

values φ0 and φ−1 , where φ0 = φ−1 ∈ [ −1 , 1] . If λ ≥ 6 M 

2 − 1 , then we have that 

E d (φn +1 ) ≤ Ē d (φn +1 , φn ) ≤ E d (φ0 ) . (31) 

Proof. By the last Theorem 1 and φ0 = φ−1 ∈ [ −1 , 1] , we have a chain of inequalities, 

E d (φn +1 ) ≤ Ē d (φn +1 , φn ) ≤ Ē d (φn , φn −1 ) ≤ · · · ≤ Ē d (φ0 , φ−1 ) = E d (φ0 ) . 

Thus, the discrete version of the original energy is bounded and non-increasing in time, which follows from the above by the

energy of the initial condition. Therefore, our proposed method is unconditionally energy-stable with a suitable stabilizing

parameter λ. 

The following points should be noted: (1) Our proposed scheme (15) and (16) is a three-level scheme that requires setting

initial step φ−1 to guarantee second-order accuracy for every time step. In this study, φ−1 = φ0 is simple, and lowers the

accuracy in the first time step. However, for later calculations our scheme is indeed second-order accurate. Therefore, for a

lengthy simulation, second-order accuracy with respect to time and space can be observed. (2) We can easily design a fully

Crank–Nicolson scheme that is a second-order two-level scheme and has better stability. However, this requires solving a

nonlinear equation at each time step. Compared to the fully Crank–Nicolson scheme, only an elliptic equation with constant

coefficients is solved at each time step in our scheme, which makes it easy to implement. (3) In our proof, stabilizing

parameter λ is chosen to be λ ≥ 6 M 

2 − 1 to make the energy strictly non-increasing. However, in practical simulation λ
may only need to be set to λ = 3 M 

2 − 1 or even λ = 2 for the initial condition φ0 ∈ [ −1 , 1] because the absolute values of
ˆ n +1 ˆ n n 
ψ , ψ , and ˆ ϕ may be much smaller than M in Eqs. (24) and (30) . �
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Fig. 3. The non-increasing discrete energy and mass conservation for our proposed method. The inset small figures represent the morphology of the phase 

field at the indicated times. Note that we have normalized the total energy by the total energy at the initial time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Mass conservation 

The total mass conservation is an important property of the CH equation. Here, we prove that our proposed method satis-

fies the mass conservation property, i.e., (φn +1 , 1 ) d = (φn , 1 ) d . By combining Eq. (15) and the discrete version of integration

by parts, we can obtain that 

(φn +1 , 1 ) d − (φn , 1 ) d = �t(�d μ
n + 1 2 , 1 ) d = �t(∇ d μ

n + 1 2 , ∇ d 1 ) d = 0 , 

where we have used the Neumann boundary conditions for chemical potential and telescoping cancelation. Thus, our pro-

posed method satisfies total mass conservation. 

3. Numerical results 

In this section, we perform the following numerical experiments to test the non-increasing discrete energy and mass

conservation, the stability of the proposed scheme, its relation between time and space, spinodal decomposition on a poor-

quality surface mesh, spinodal decomposition on an open surface with various boundary conditions, and microphase sepa-

ration patterns on surfaces, and we perform a convergence test for time and space. Unless otherwise specified, ε = 0 . 1 and

λ = 5 . To generate an oriented triangular mesh connecting with the surface points, we employ the distmesh algorithm [43] .

3.1. Non-increasing discrete energy and mass conservation 

We start with a numerical simulation to demonstrate the non-increasing discrete energy and mass conservation of our

proposed method. The initial condition is set to φ(x, y, z, 0) = rand (x, y, z) on a unit sphere surface, where rand( x, y, z ) is

a random number between −1 and 1. The edge of every triangle on the sphere surface is almost the same as h = 0 . 05 .

The calculation is run until t = 10 with time step �t = 0 . 01 . The CH equation not only models phase separation, but also

coarsening an already phase-separated solution, as shown in Fig. 3 . From Fig. 3 , we also observe that the total discrete

energy is non-increasing and the average mass concentration of the numerical solution remains constant. 

3.2. Stability of the proposed scheme 

Because the CH equation contains fourth-order spatial derivatives and a nonlinear term, an explicit time scheme leads

to severe time-step restrictions for stability. To demonstrate the stability of our proposed scheme (15) and (16) , we perform

a numerical experiment using a large time step, �t = 10 0 0 0 . The initial condition and parameters are set as in Section 3.1 .

The calculations are run until time T = 10 0 0 0 0 and the numerical solutions are presented in Fig. 4 . Fig. 4 also shows the

mass and total energy evolutions, which suggest that our proposed scheme is indeed unconditionally stable. Note that the

much larger time step causes the solver of the biconjugate gradient stabilized method to stagnate, thus the order parameter

is always zero, i.e., φ ≡ 0. Therefore, in this test we use the biconjugate gradient method to force the numerical error to

converge to the desired tolerance. As mentioned above, our proposed scheme is unconditionally stable and allows the use

of large time steps. However, large time steps may cause less accurate results, since our scheme has second-order accuracy

in time and space. Meanwhile, a smaller time step results in higher computational costs. To choose the best time step for
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Fig. 4. Stability of the proposed scheme. The inset small figures show the morphology of the phase field at the indicated times. Note that we have 

normalized the total energy by the total energy at the initial time. 

Fig. 5. Plots of φ at time t = 0 . 8 with different time steps and space. From top to bottom, these are the results with h = 0 . 025 , h = 0 . 05 , and h = 0 . 1 . 

(a–c) and (d–f) are for initial conditions φ(x, y, z, 0) = sin (2 πx ) sin (2 πy ) sin (2 πz) and φ(x, y, z, 0) = rand (x, y, z) , respectively. (a) and (d) correspond to 

�t = 0 . 01 h, (b) and (e) to �t = 0 . 1 h, (c) and (f) to �t = 0 . 5 h. 

 

 

 

 

 

 

 

 

 

 

 

a given space, we use a set of time steps �t = 0 . 01 h, �t = 0 . 1 h, and �t = 0 . 5 h for h = 0 . 025 , h = 0 . 05 , and h = 0 . 1 ,

respectively. In this test, two initial conditions are φ(x, y, z, 0) = sin (2 πx ) sin (2 πy ) sin (2 πz) and φ(x, y, z, 0) = rand (x, y, z) .

All simulations are performed until T = 0 . 8 , with the results presented in Fig. 5 . We find that the results with �t = 0 . 1 h

are in good agreement with the results for the smaller time step �t = 0 . 01 h. However, these differ from the results for

the larger time step �t = 0 . 5 h. Therefore, to maintain our proposed scheme’s accuracy and reduce computational costs,

an appropriate value for �t is 0 . 1 h min . Here, h min represents the smallest edge of the triangle. It should be noted that as

shown in Section 3.1 , the temporal evolution of CH equation has multiple time scales. For phase separation simulation, an

initial random perturbation evolves on a fast time scale, and later coarsening evolves on a very slow time scale. Therefore,

we can use a small time step to capture the fast dynamics, and then use a large time step to reduce the computational

time. An adaptive time step method, which was proposed in our previous papers [63,64] , can be straightforwardly applied

to simulate the Cahn–Hilliard equation on surfaces, since our proposed scheme is unconditionally stable and allows the use

of large time steps. 
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Fig. 6. Convergence of numerical results with refined temporal grids. The results, from left to right, were obtained with �t = 1.563E −3 , 7.813E −4 , 

3.906E −4 , 1.953E −4 , and �t = 2 . 441 E −5 . (a) Plots of φ at time T = 0 . 0125 . (b) Plots of the difference between that grid and the reference solution cell, 

i.e., φ − φref at time T = 0 . 0125 . 

Table 1 

Error and convergence results with various time steps. Here h = 0 . 05 is fixed. The numerical reference 

solution is obtained with a very fine temporal grid �t = 2 . 441 E −5 at time T = 0 . 0125 . 

�t 1.563E −3 7.813E −4 3.906E −4 1.953E −4 

Sphere surface: l 2 -error 2.058E −4 4.862E −4 1.206E −5 2.980E −5 

Sphere surface: Rate 2.08 2.01 2.02 

Bunny surface: l 2 −error 1.078E −2 2.791E −3 7.074E −4 1.673E −4 

Bunny surface: Rate 1.95 1.97 2.08 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Convergence test 

In this test, we want to verify the convergence predicted by our proposed method. To assess the effects of the geometry

and structure of the mesh grid, we employ the surface of a sphere as a test geometry, and generate a set of high-quality

mesh grids using the mesh generator. Here, we refer to a mesh grid as high-quality if the edge of every triangle is almost

the same. Note that our method has few requirements on the mesh quality. To demonstrate this, we perform a test in

Section 3.4 . To obtain the convergence rate for temporal discretization, we choose a set of decreasing time steps �t =
1.563E −3, 7.813E −4, 3.906E −4, and 1.953E −4 and compare the solutions at the same time T . Here, the space step size

h = 0 . 05 is fixed. Because there is no closed-form analytical solution for this problem, we consider a numerical reference

solution, φref , which is obtained with a very fine time step �t = 2 . 441 E −5. Numerical solutions are computed until time

T = 0 . 0125 with initial condition φ(x, y, z, 0) = sin (2 πx ) sin (2 πy ) sin (2 πz) on a unit sphere surface and a bunny surface. In

Fig. 6 (a), we show the solutions on the bunny surface at time T = 0 . 0125 . For better visualization, we show the difference

between that grid and the reference solution cell, i.e., φ − φref at time T = 0 . 0125 in Fig. 6 (b). As shown in Fig. 6 , the

convergence of the results under temporal refinements is evident. 

We also define the error of a grid as the discrete l 2 -norm of the difference between that grid and the reference solution

cell. The rate of convergence is defined as the ratio of successive errors: log 2 ( ‖ e �t ‖ 2 / ‖ e �t 
2 

‖ 2 ) . The errors and rates of con-

vergence obtained using these definitions are presented in Table 1 . Second-order accuracy with respect to time is observed,

as expected from the discretization. 

We define the error of a grid as the discrete l 2 -norm of the difference between that grid and the average of the reference

solution cells neighboring it as follows: e h i := φd i − (ζi φ
ref 
p + ηi φ

ref 
q + θi φ

ref 
r ) . Here, p, q , and r are fine reference grid indexes

in a triangle. Furthermore, ζ i , ηi , and θ i satisfy v d i = ζi v 
ref 
p + ηi v 

ref 
q + θi v 

ref 
r . The rate of convergence is defined as the ratio of

successive errors: log 2 ( ‖ e h ‖ 2 / ‖ e h 
2 

‖ 2 ) . The errors and rates of convergence obtained using these definitions are presented in

Table 2 . Here, all simulations are performed until T = 0 . 0125 with fixed time step �t = 9 . 766 E-5. In addition, the numerical

reference solution at time T = 0 . 0125 is obtained using a very fine space grid h = 0 . 025 . Second-order accuracy with respect

to space is observed in Table 2 . 

3.4. Spinodal decomposition on a poor-quality surface mesh 

In general, a poor-quality mesh causes the discrete Laplace–Beltrami operator over triangular surfaces to become non-

convergent. Furthermore, the non-convergent Laplace–Beltrami operator results in the unstable solution of the CH equation.
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Table 2 

Error and convergence results with various mesh grids. Here, �t = 9 . 766 E −5 is 

fixed. The numerical reference solution is obtained using a very fine space grid 

h = 0 . 025 at time T = 0 . 0125 . 

h 0.2 0.1 0.05 

Sphere surface: l 2 -error 6.063E −2 1.604E −2 3.767E −3 

Sphere surface: Rate 1.92 2.09 

Bunny surface: l 2 -error 8.553E −2 2.467E −2 6.563E −3 

Bunny surface: Rate 1.79 1.91 

Fig. 7. Comparisons of (a) high-quality, (b) 10% poor-quality and (c) 20% poor-quality surface meshes. From left to right, these show the surface mesh 

structure and the plots of φ at time t = 0 . 2 , t = 0 . 4 , and t = 1 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To investigate the efficiency of our proposed method, we perform this simulation on high-quality, 10% poor-quality, and 20%

poor-quality surface meshes, which are illustrated in Fig. 7 (a–c), respectively. Here, the 10% poor-quality surface mesh is ob-

tained by introducing 10% random noise to the high-quality mesh. The 20% poor-quality surface mesh is defined in a similar

fashion. Here, �t = 0 . 01 is used in Fig. 7 (a) and (b). To assess the effects of the time-step size in Fig. 7 (c), we have used

�t = 0 . 001 . From left to right in Fig. 7 , we illustrate the structure of the surface mesh, and the plots of φ at time t = 0 . 2 ,

t = 0 . 4 , and t = 1 , respectively. The agreement between results obtained from the poor- and high-quality surface meshes

over a short time is clear. These results also suggest that our proposed method can perform well on poor-quality surface

meshes. Furthermore, with 10% random noise, the result using our method guarantees a mesh-independent solution. From

this test, we also conclude that our approach can be applied straightforwardly to an adaptive mesh refinement framework. 

3.5. Spinodal decomposition on an open surface 

Spinodal decomposition is a mechanism by which a solution of two or more components separates into different phases

[1] . Here, we consider this problem for the CH equation using the Neumann boundary and a plus-one Dirichlet boundary,

i.e., φ(x , t) = 1 on the boundary of Costa’s minimal surface. The initial condition is set to φ(x, y, z, 0) = 0 . 5 rand( x, y, z) . Note

that to obtain a comparison in the same scaling, we normalize the length of the spatial domain of Costa’s minimal surface to

2. Unless otherwise specified, we perform the same operation on the other surfaces throughout the remainder of this paper.

Simulations are run until time T = 2 , with time step �t = 0 . 01 . Here, we set ε = 0 . 05 . Fig. 8 (a) and (b) illustrate the evo-

lutions of spinodal decomposition with the Neumann and Dirichlet boundary conditions, respectively. These results suggest

that our proposed method can handle an open surface and perform well with various boundary conditions. Furthermore,

compared with the Neumann boundary condition, the plus-one Dirichlet boundary condition results in the phases gathering

more quickly. 
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Fig. 8. Evolutions with (a) Neumann and (b) Dirichlet boundary conditions on Costa’s minimal surface. From left to right, the plots show φ at time t = 0 , 

0.1, 0.4, and 2. 

Fig. 9. Microphase separation patterns on a bunny surface with different initial conditions. (a) φ(x, y, z, 0) = 0 . 5 rand (x, y, z) and (b) φ(x, y, z, 0) = −0 . 3 + 

0 . 5 rand (x, y, z) . From left to right, these are the results at time t = 0 , 0 . 4 , and , 2 . 

 

 

 

 

 

 

 

3.6. Microphase separation patterns on surfaces 

The directed self-assembly of block copolymers in thin films is an emerging technology for nanoscale patterning (see

[65] and the references therein). A diblock copolymer consists of two blocks, each formed of a different type of monomer,

which are chemically joined [66] . When the temperature is lowered below a critical point, the two sequences become

incompatible, and the copolymer melt undergoes phase separation. This results in the occurrence of periodic structures

such as lamellae, spheres, cylinders, and gyroids [67,68] . The following nonlocal Cahn–Hilliard equation has been proposed

for studying microphase separation patterns in diblock copolymers on curved surfaces [15] : 

∂φ

∂t 
(s , t) = �s μ(s , t) − α(φ(s , t) − φ̄) , (32)

μ(s , t) = F ′ (φ(s , t)) − ε2 �s φ(s , t) , (33)
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where α is inversely proportional to the square of the total chain length of the copolymer and φ̄ is the spatial mean value

of the order parameter. Our proposed scheme can be extended to discretize Eqs. (32) and (33) as follows: 

φn +1 − φn 

�t 
= �d μ

n + 1 2 − α

(
φn +1 + φn 

2 

− φ̄

)
, (34) 

μn + 1 2 = 

3 

2 

(F ′ (φn ) − λφn ) − 1 

2 

(F ′ (φn −1 ) − λφn −1 ) + 

λ

2 

(φn +1 + φn ) − ε2 

2 

(�d φ
n +1 + �d φ

n ) . (35) 

Fig. 9 (a) and (b) present the results of microphase separation patterns on a bunny surface with the initial conditions:

φ(x, y, z, 0) = 0 . 5 rand (x, y, z) and φ(x, y, z, 0) = −0 . 3 + 0 . 5 rand (x, y, z) , respectively. From left to right, these are the results

at time t = 0 , 0 . 4 , and 2 . Here, we employ the time step �t = 0 . 01 , ε = 0 . 05 , and α = 50 . Lamellar and hexagonal patterns

can be observed. The results suggest that our algorithm performs well and results in high visual quality. 

4. Conclusions 

In this paper, we have proposed an unconditionally energy-stable second-order time-accurate scheme for the Cahn–

Hilliard equation on surfaces. Discretization is performed via a surface mesh consisting of piecewise triangles and its

dual-surface polygonal tessellation. The proposed scheme, which combines Crank–Nicolson and linearly stabilized splitting 

schemes, is second-order accurate in time. We have proven that the discrete system satisfies mass conservation and uncon-

ditional energy stability. The resulting system of discrete equations is solved using a biconjugate gradient stabilized method.

We performed several numerical experiments, testing the non-increasing of discrete energy and mass conservation, the sta-

bility of the proposed scheme, time and space convergence, the relation between time and space in the proposed scheme,

spinodal decomposition on a poor-quality surface mesh, spinodal decomposition on an open surface with different bound-

ary conditions, and microphase separation patterns on surfaces. All these numerical experiments demonstrated that our

proposed algorithm is efficient. 
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