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We review physical, mathematical, and numerical derivations of the binary Cahn–Hilliard equation (after
John W. Cahn and John E. Hilliard). The phase separation is described by the equation whereby a binary
mixture spontaneously separates into two domains rich in individual components. First, we describe the
physical derivation from the basic thermodynamics. The free energy of the volume X of an isotropic sys-
tem is given by NV

R
X½FðcÞ þ 0:5�2jrcj2�dx, where NV, c, F(c), �, and rc represent the number of molecules

per unit volume, composition, free energy per molecule of a homogenous system, gradient energy coef-
ficient related to the interfacial energy, and composition gradient, respectively. We define the chemical
potential as the variational derivative of the total energy, and its flux as the minus gradient of the poten-
tial. Using the usual continuity equation, we obtain the Cahn–Hilliard equation. Second, we outline the
mathematical derivation of the Cahn–Hilliard equation. The approach originates from the free energy
functional and its justification of the functional in the Hilbert space. After calculating the gradient, we
obtain the Cahn–Hilliard equation as a gradient flow. Third, various aspects are introduced using numer-
ical methods such as the finite difference, finite element, and spectral methods. We also provide a short
MATLAB program code for the Cahn–Hilliard equation using a pseudospectral method.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we review physical, mathematical, and numerical
derivations for the binary Cahn–Hilliard (CH) equation, and we
provide a short MATLAB program code for the equation using a
pseudospectral method. The CH equation describes the temporal
evolution of a conserved field that is a continuous, sufficiently dif-
ferentiable function of position. The evolution of the phase separa-
tion is due to the non-Fickian diffusion driven by gradients in
chemical potential. It was originally proposed to model the spinod-
al decomposition of a binary A–B system at a fixed temperature, for
which an initially homogeneous system with a uniform composi-
tion of c, the mole fraction of component B, spontaneously decom-
poses into two phases with the same crystal structure, but with
different compositions. In this case, the spatial distribution of the
two phases during decomposition could be described by the com-
position field, c(x, t), which is a continuous, differentiable function
of position (x) and time (t) [1]. The temporal evolution of the spin-
odal decomposition in the system is governed by the CH equation
[2]:
@c
@t
¼ r � ðMrlÞ ¼ MDl; ð1Þ

where M is the constant mobility. In general, M is the tensor-valued
variable mobility [3]. Here l is the local chemical potential defined
as

l ¼ F 0ðcÞ � jDc: ð2Þ

In Eq. (2), F(c) is the Helmholtz free energy density per molecule
of the homogeneous system with composition c, and j is a positive
constant often called the gradient energy coefficient (j = �2), which
is related to the interfacial energy.

The essential concept underlying the CH equation is that the
interface between two phases, say a and b phases, is not sharp,
but has a finite thickness in which the composition c changes grad-
ually. For instance, when the binary system approaches near the
equilibrium state composed of a phase with c ¼ ceq

a and b phase
with c ¼ ceq

b > ceq
a , the domains where cðx; tÞ ¼ ceq

a and cðx; tÞ ¼ ceq
b

correspond to the a and b phases, respectively, whereas the region
where c(x, t) varies gradually from ceq

a to ceq
b represents the inter-

face between the a and b phases, as shown in Fig. 1.
One of the most striking advantages of using the CH equation

for simulating microstructural evolution is the avoidance of expli-
cit tracking of the interface. This concept of a diffuse interface has
been adopted to model various physical phenomena involving

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2013.08.027&domain=pdf
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Fig. 1. Two phase microstructure with order parameter c.

Fig. 2. Free energy of mixing. Before mixing: F0 ¼ cAF0
A þ cBF0

B , after mixing:
Fmix = F0 + DFmix.
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moving interfaces, in which the order parameter, or phase field /
(x, t), instead of the composition field c(x, t), is introduced to de-
scribe the spatial distribution of the entire microstructure of a sys-
tem. If the overall phase fraction in the system is conserved during
evolution, as in the coarsening phenomenon of a precipitate phase
in a matrix phase, the governing equation for the temporal equa-
tion of /(x, t) is given by a CH-type equation similar to Eq. (1).

Some examples of applications of the CH equation are the phase
separation of binary and ternary liquid mixture [4,5], multi-phase
fluid flows [6–9], Taylor flow in mini/microchannels [10], two-layer
flow in channels with sharp topographical features [11], spinodal
decomposition with composition-dependent heat conductivities
[12], phase decomposition and coarsening in solder balls [13],
the thermal-induced phase separation phenomenon [14], the evo-
lution of arbitrary morphologies and complex microstructures
such as solidification, solid-state structural phase transformations
[15–18], meta-stable chemical composition modulations in the
spinodal region [19], modeling of martensitic phase transformation
[20], grain growth [21], pore migration in a temperature gradient
[22], image inpainting [23,24], and tumor growth [25,26].

The remainder of this paper is organized as follows. Section 2
describes a detailed physical derivation of the CH equation using
basic thermodynamics. Section 3 reviews a mathematical deriva-
tion of the CH equation as a gradient flow and mathematical anal-
ysis of the equation. Section 4 presents several numerical methods
up to now for solving the CH equation. Finally, Section 5 states the
conclusions.
Fig. 3. Variation in the free energy F0 before mixing with alloy composition c.
2. Physical derivation

In this section, the CH equation is derived along the lines of
some previous studies [1,27,28] by using basic thermodynamics.
Considering a binary, regular solid solution at constant tempera-
ture, we first derive the form of the Helmholtz free energy density,
F(c), for a homogeneous system. Then, we derive the local free en-
ergy density for a compositionally inhomogeneous system, so as to
obtain the total free energy of an inhomogeneous system having
volume V, with F as a functional of c(x, t). The local chemical poten-
tial, l, which must be uniform throughout the system in equilib-
rium, is defined as the variational derivative of F and the mass
flux J is proportional to the minus gradient of l. Finally, the CH
equation is obtained by substituting the constitutive equation be-
tween J and l into the continuity equation for mass conservation.
We denote the free energy of a domain bounded by X in
Rd ðd ¼ 1;2;3Þ, as NV

R
X½FðcÞ þ 0:5�2jrcj2�dx. Using the usual con-

tinuity equation, we obtain the CH equation. A detailed descrip-
tions is provided below. The following derivations have been
obtained in previous studies [1,27,28]. First, we derive the form
of F(c), the free energy per molecule of a homogenous system.
2.1. Free energy of a homogeneous system

For a simple and closed system to be in equilibrium at fixed
temperature (T) and volume (V), its Helmholtz free energy F must
be minimized. By definition, the Helmholtz free energy of a system,
F, is given by F = E � TS, where E and S are the internal energy and
entropy of the system, respectively. In general, the thermodynamic
properties of a solid solution will include a combination of its con-
figurational, vibrational, electronic, and magnetic properties. For
example, consider the process for preparing a binary A–B solid
solution by mixing pure A and B at a fixed temperature. This mix-
ing process will, in principle, result in not only configurational and
vibrational changes, but also electronic and magnetic changes in
each atom. For simplicity, by assuming that pure A and B have an
equal molar volume and exhibit no changes in molar volume when
mixed, only the configurational contributions will be taken into ac-
count for investigating the changes in thermodynamic properties
during the mixing process.

Consider one mole of a binary solid system composed of NA

atoms of A and NB atoms of B. The overall composition of the sys-
tem is given by the mole fraction of component B, c, defined as
c = NB/(NA + NB) = NB/Na, where Na is Avogadro’s number
(6.023 � 1023). When the NA atoms of A and NB atoms of B are ran-
domly mixed at a fixed temperature T, the binary solid mixture is a
homogenous solid solution with a uniform composition c. Thus, we
consider the homogenous solid solution as a regular solution,
assuming random mixing of components A and B while accounting
for the difference in the chemical affinity between A and B from
those between atoms of the same type. In order to obtain the molar
Helmholtz free energy of the regular solution, as shown in Fig. 2,
consider the isothermal mixing process of 1 � c moles of pure A
and c moles of pure B. The molar Helmholtz free energy of the sys-
tem before mixing, F0, is the weighted sum of those of the pure
components, F0

A and F0
B, and is given by

F0 ¼ E0 � TS0 ¼ ð1� cÞF0
A þ cF0

B, as shown in Fig. 3. The mixing pro-
cess alters the atomic configuration of A and B in the system, lead-
ing to changes in the internal energy and entropy, i.e., DEmix and



Fig. 4. Plots of lnN! and N lnN � N.

Fig. 5. Free energy as a function of the order parameter for different values of
temperature.
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DSmix, respectively. Therefore, the molar Helmholtz free energy of
the system after mixing, Fmix, can be expressed as

Fmix ¼ F0 þ DFmix; ð3Þ

where DFmix = DEmix � TDSmix is the molar Helmholtz free energy of
mixing.

The mixing or configurational entropy, DSmix, can be obtained
from the Boltzmann equation

DSmix ¼ k ln
Wmix

W0 ; ð4Þ

where k is Boltzmann’s constant, W0 and Wmix are the numbers of
ways in which the NA atoms of A and NB atoms of B can be arranged
before and after mixing, respectively. Since atoms of a given type
are indistinguishable, W0 = 1, and in the case of random mixing,
Wmix = Na!/(NA!NB!). Therefore, the molar entropy change due to
random mixing of pure A and B is given by DSmix = k ln[Na!/
(NA!NB!)].

Applying Stirling’s approximation (lnN! � N lnN � N for large N,
also see Fig. 4), the molar entropy change in the formation of a
homogeneous solution with composition c is obtained as

DSmix ¼ kðNa ln Na � NA ln NA � NB ln NBÞ
¼ �R½ð1� cÞ lnð1� cÞ þ c ln c�;

where R = kNa is the universal gas constant. It is noted that DSmix

becomes zero when c = 0 (pure A) or c = 1 (pure B), and is positive
otherwise. For the internal energy change DEmix associated with
the configurational change due to mixing, we again consider a ran-
domly mixed solution of the NA atoms of A and NB atoms of B; then,
we calculate its internal energy Emix as the pairwise sum of inter-
atomic potentials for each atom in the solution. Although the inter-
actions among atoms over solids can occur in a long range, for
simplicity, only the pairwise interaction among the nearest neigh-
boring atoms will be taken into account herein. Let �AA, �BB, and
�AB be the interaction potentials of A–A, B–B, and A–B bonds, respec-
tively. By taking the relative zero of potential as that when two
atoms are infinitely far apart, the pairwise potentials �AA, �BB, and
�AB are negative quantities. Then, E can be expressed as

E ¼ PAA�AA þ PBB�BB þ PAB�AB; ð5Þ

where PAA, PBB, and PAB represent the numbers of A–A, B–B, and A–B
bonds in the system, respectively. If each atom in the solid system
has z nearest neighbors, the numbers of pairwise bonds associated
with the NA atoms of A and NB atoms of B are related to PAA, PBB, and
PAB as NAz = PAB + 2PAA and NBz = PAB + 2PBB, respectively. Therefore,
PAA and PBB can be expressed, respectively, as

PAA ¼
NAz

2
� PAB

2
and PBB ¼

NBz
2
� PAB

2
: ð6Þ

Substituting Eq. (6) into Eq. (5) gives
E ¼ NAz
2
�AA þ

NBz
2
�BB

� �
þ PAB �AB �

1
2
ð�AA þ �BBÞ

� �
: ð7Þ

It is easily seen that the first term, i.e., the leading square brack-
et on the right-hand side of Eq. (7), corresponds to the internal
energies of pure A and B before mixing. Therefore, the second term
on the right-hand side of Eq. (7) represents the change in internal
energy due to mixing, DEmix.

Now, consider PAB in the case of random mixing where the prob-
abilities for a lattice site to be occupied by A and B are 1 � c and c,
respectively. There are Naz/2 pairwise bonds in one mole of the so-
lid solution, and the probability for each bond to be an A–B bond is
2c(1 � c), leading to PAB = z Nac(1 � c). Therefore, in the case of ran-
dom mixing, the molar internal energy change of mixing is given
by

DEmix ¼ zNacð1� cÞ �AB �
1
2
ð�AA þ �BBÞ

� �
¼ Xcð1� cÞ; ð8Þ

where X = z Na[�AB � (�AA + �BB)/2] is often called the regular solu-
tion constant, assuming the pairwise interaction potentials to be
independent of temperature. When c = 0 or c = 1, DEmix becomes
zero as expected. Otherwise, DEmix is either positive or negative
depending on the sign of X. For instance, if j�ABj < j�AA + �BBj/2, X
is positive, and thus, DEmix becomes positive.

Using Eqs. (5) and (8), the molar Helmholtz free energy of mix-
ing, DFmix in Eq. (3), is expressed as a function of T and c:

DFmixðT; cÞ ¼ Xcð1� cÞ þ RT½ð1� cÞ lnð1� cÞ þ c ln c�: ð9Þ

Since the thermodynamics is primarily concerned with changes
in thermodynamic properties and not their absolute values,
DFmix(T, c) expressed by Eq. (9) can equivalently be used as the mo-
lar Helmholtz free energy of the regular solution, F(T, c), which is
measured with respect to the reference F0(T, c). Therefore, the
Helmholtz free energy density per atom (or molecule) of a binary
regular solution can be expressed as

FðT; cÞ ¼ DFmix

Na

¼ 1
Na
fXcð1� cÞ þ RT½ð1� cÞ lnð1� cÞ þ c ln c�g: ð10Þ

Fig. 5 shows the plots of DFmix(T, c) depicted as a function of c at
various temperatures in the case of X > 0. When temperature is
greater than the critical temperature Tc = X/2R, free energy curve
is plotted as a convex-downward function of c, implying that a
homogeneous solution in the entire range of composition is stable
against any compositional separation. However, when T < Tc, the
free energy curve becomes convex upward in a certain composi-
tion range about c = 0.5. When the free energy of a homogeneous
solution is located in the convex-upward part of the free energy
curve, any small fluctuation in composition lowers the free energy
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and, thus, the homogeneous solution spontaneously evolves to-
ward an a + b two-phase mixture with a and b phases having com-
position of ceq

a and ceq
b , respectively. The equilibrium compositions

of a and b phases, c ¼ ceq
a and c ¼ ceq

b , correspond to the composi-
tions that give the local minima of the free energy, as shown in
Fig. 5. If the simple, closed system is subjected to fixed tempera-
ture (T) and pressure (P) as more often encountered in practice,
the free energy to be minimized for equilibrium of the system is
the Gibbs free energy G, rather than the Helmholtz free energy F,
of the system. Herein, G � F � PV is also measured relative to the
unmixed components as for F. When the mixing process does not
involve a volume change as stipulated in the derivation of Eq.
(10), G is equivalent to F. In general, when a simple system consist-
ing of condensed phases such as liquids or solids is concerned, G of
the system under ambient pressures can practically be treated as
being equivalent to F of the system because the contribution of
the PV term is negligible due to small molar volumes of condensed
phases.

2.2. Free energy of a heterogeneous system

Next, we derive the general equation for the free energy of a
nonuniform system having spatial variation in composition.
Henceforth, let F(c) = DFmix/Na. The total free energy of the volume
X of an isotropic system with nonuniform composition is given by

EðcÞ ¼ NV

Z
X

FðcÞ þ �
2

2
rcj j2

� �
dx; ð11Þ

where NV is the number of molecules per unit volume, rc is the
composition gradient, F is the free energy per molecule of the
homogeneous system, and � is a parameter that is constant for a
regular solution [1]. Let us review the derivation of the total free en-
ergy functional (11). First, we write the total free energy functional
as

EðcÞ ¼ NV

Z
X

f dx; ð12Þ

where the local free energy per molecule, f, in a region of nonuni-
form composition is given by f(c, rc, r2c, . . .). We expand f in a
multivariable Taylor series about c0 = (c, 0, 0, . . .). Then, we ignore
the terms higher than second-order derivative terms.

f ðc; c1; c2; c3; c11; c22; c33; c12; c23; c31; . . .Þ

¼ FðcÞ þ
X

i

@f ðc0Þ
@ci

ci þ
X3

i;j¼1

@f ðc0Þ
@cij

cij þ
1
2

X3

i;j¼1

@2f ðc0Þ
@ci@cj

cicj

þ 1
2

X3

i;j;k¼1

@2f ðc0Þ
@ck@cij

ckcij þ
1
2

X3

i;j;k;l¼1

@2f ðc0Þ
@cij@ckl

cijckl þ � � � ;

where c1 and c12 denote the partial derivative by @c
@x1

and @2c
@x1@x2

,

respectively. For an isotropic medium, the free energy must be
invariant to all rotations and reflections. Thus, the system is invari-
ant to reflection xi ? �xi and permutation xi ? xj or xk operations,
and hence,

@f ðc0Þ
@ci

¼ 0;
@f ðc0Þ
@cii

¼ j1;
@2f ðc0Þ
@c2

i

¼ j2 for i ¼ 1;2;3;

@f ðc0Þ
@cij

¼ @
2f ðc0Þ
@ci@cj

¼ 0 for i – j:

That is, the free energy must be invariant to changes in the sign of
the coordinate x. Then, we have

f ðc; c1; c2; c3; c11; c22; c33; . . .Þ ¼ FðcÞ þ j1Dc þ j2

2
jrcj2 þ � � � :
We then integrate over the volume V of the solution to obtain
the total free energy F of this volume:

EðcÞ ¼ NV

Z
X

f dx ¼ NV

Z
X

FðcÞ þ j1Dc þ j2

2
jrcj2 þ � � �

h i
dx: ð13Þ

Integrating the second term on the right-hand side by parts and
assuming the term @c/@n vanishes at the boundary, we haveZ

X
j1Dc dx ¼

Z
@X

j1
@c
@n

ds�
Z

X
rj1 � rc dx ¼ �

Z
X

X3

i¼1

@j1

@xi

@c
@xi

dx

¼ �
Z

X

X3

i¼1

@j1

@c
@c
@xi

� �2

dx ¼ �
Z

X

@j1

@c
jrcj2 dx:

Thus, we can get

EðcÞ ¼ NV

Z
X

f dx ¼ NV

Z
X

FðcÞ þ j2

2
� @j1

@c

� �
jrcj2 þ � � �

� �
dx

¼ NV

Z
X

FðcÞ þ �
2

2
jrcj2 þ � � �

� �
dx; ð14Þ

where �2 = j2 � 2@j1/@c. Eq. (14) is the central equation for the
treatment. It reveals that through the first approximation, the free
energy of a small volume of nonuniform solution can be expressed
as the sum of two contributions, one being the free energy that this
volume would have in a homogeneous solution, and the other, a
gradient energy that is a function of the local composition. Thus,
the CH equation is deduced from the Ginzburg–Landau free energy
theory in units of NV:

EðcÞ �
Z

X
FðcÞ þ �

2

2
jrcj2

� �
dx: ð15Þ

To obtain the CH equation with variable mobility, one intro-
duces a chemical potential l as the variational derivative of E,

l � dE
dc
¼ F0ðcÞ � �2Dc;

and defines the net flux of component B as J � �Mrl. Using a con-
tinuity equation, we have

@c
@t
¼ �r � J ;

which is the CH equation. The natural boundary condition and no-
flux boundary conditions are

rc � n ¼ 0 and J � n ¼ 0 on @X; ð16Þ

where n is the unit normal vector to @X. Then, we differentiate the
energy E and the total mass

R
X c dx to get

d
dt

EðtÞ ¼
Z

X
F 0ðcÞ @c

@t
þ �2rc � r @c

@t

� �
dx ¼

Z
X
l
@c
@t

dx

¼
Z

X
lr � ðMrlÞdx

¼
Z
@X

lMrl � n ds�
Z

X
rl � ðMrlÞdx

¼ �
Z

X
Mjrlj2 dx; ð17Þ

and

d
dt

Z
X

c dx ¼
Z

X

@c
@t

dx ¼
Z

X
MDl dx ¼

Z
@X

Mrl � n ds ¼ 0;

where we used the no-flux boundary condition (16). Therefore, the
total energy is non-increasing in time and the total mass is
conserved.

Nevertheless, the thermodynamically free energy potential is
given by (9), such a potential is often replaced with a polynomial
of degree four for convenience (see Fig. 6). This is typically used
for local minima such that



Fig. 6. A fourth polynomial is approximated to fit the positions of local minima of
the logarithmic potential energy as well as the same curvatures at the points.
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f ðcÞ ¼ aðc � bÞ2ðc � cÞ2; a > 0 and c > b > 0:

This form of the double well free energy polynomial may
approximate the one suggested by Cahn and Hilliard. We also note
that both polynomial forms lead to a diffuse interface and have
been studied from analytical, mathematical, and numerical view-
points in previous studies [29–32].
3. Mathematical derivation

There are a number of different ways to derive the Cahn–
Hilliard equation. For a gradient flow, this section is conceived in
such a way that giving an intuitive understanding of the existence
and uniqueness of the Cahn–Hilliard equation, and minimizing the
functional theory for readers from many different research areas.
We also mention several results of the equation with a brief histor-
ical survey of the field. Novick-Cohen and Segel [33] gave one of
the first analyses to construct finite-amplitude equilibrium solu-
tions in one dimensional space. Elliott and Songmu [30] proved
existence of global solution in an L2-setting for a constant mobility
and polynomial free energy. For the existence result in the whole
space, we refer to the work of Caffarelli and Muler [34]. The exis-
tence and uniqueness result for the double obstacle potential
was shown by Blowey and Elliott [35], for logarithmic potentials
with constant mobilities by Debussche and Dettori [36]. For a
microforce balance, Miranville [37] proved the existence and
uniqueness of solutions. The multicomponent equation for exis-
tence and uniqueness was also studied by Elliott and Luckhaus
[38]. For the degenerate case in one dimensional case, existence
theory was proved by Yin [39]. Later, Elliott and Garcke proved
the existence of solutions for arbitrary space dimensions with
degenerate mobility [40]. Based on asymptotic expansions, limiting
behavior was analyzed by Pego [41] heuristically, and by Alikakos,
Bates and Chen rigorously [42]. Further Otto [43] and Glasner [44]
(and references therein) have demonstrated the relationship be-
tween Mullins–Sekerka dynamics and Cahn–Hilliard model. The
logarithmically slow coarsening rate was investigated by Alikakos
et al. [45]. Kohn and Otto [46] considered the constant-mobility
and degenerate-mobility equations for coarsening rates. It should
be noted that the equation can also be regarded as the gradient
flow with the energy functional in Fife’s works [47,48]. As for
counting equilibria, Grinfeld and Novick-Cohen [49] proved in
one dimensional case. In [50], Rybka and Hoffmann proved that
solutions of the Cahn–Hilliard equation converge to equilibria in
dimensions d = 1, 2 and 3. In [51], Wei and Winter constructed a
boundary-spike-layer solution. Existence of solutions with loga-
rithmic potentials and dynamic boundary conditions was given
by Gilardi et al. [52], and asymptotic behavior with dynamic
boundary conditions was considered by Wu and Zheng [53]. Chill,
Fasangov, and Pruss showed that the convergence to steady states
with dynamic boundary conditions in [54]. Now, we review the
derivation of the CH equation as a gradient flow [48]. Let E be a
real-valued functional in which the function v should satisfyR

vðxÞdx ¼ 0. Then, the gradient flow is a dynamical system with
respect to the time t:

@c
@t
¼ �grad0EðcÞ:

The symbol ‘‘grad0’’ here represents the sense of the Gâteaux
derivative on the mass-conserving space, where the function v sat-
isfies the conditions (16). To find a constrained gradient flow of E,
we define an appropriate space. Thus, we have a Hilbert space H of
functions such that

d
dh

Eðc þ hvÞ
����
h¼0
¼ hgrad0EðcÞ;vi:

The next task is to determine what is meant by grad0EðcÞ. By
constraining the total mass such thatZ

X
cðx; tÞdx ¼ constant; ð18Þ

we can choose the Hilbert subspace _H as a zero average subspaceR
vðxÞdx ¼ 0 and its bounded linear mapping _H�1 on the zero aver-

age space. To obtain the equivalent inner product on a dense sub-
space of v1;v2 2 _H�1, we use L2 such that

ðv1; v2Þ _H�1 � ðr/v1
;r/v2

Þ
L2 ; ð19Þ

where /v1
;/v2

2 _H1 are the associates of v1, v2. Then, /v have the
Neumann boundary value problem such as

�D/v ¼ v in X;
@/v

@n
¼ 0 on @X; and

Z
X

/v dx ¼ 0: ð20Þ

To show the existence and uniqueness of solutions (20), we first
define the bilinear functional B on _H1, that is, B : _H1 � _H1 ! R, by

B½/v1
;/v2
� ¼

Z
X
r/v1

� r/v2
dx

� ðr/v1
;r/v2

Þ
L2 ; for any /v1

;/v2
2 _H1:

Then, we prove energy estimates for the bilinear form B½/v1
;/v2
�.

The boundedness of the bilinear functional can be shown by the
Hölder inequality, and for certain constants C > 0,

jB½/v1
;/v2
�j 6 kr/v1

kL2kr/v2
kL2 6 Ck/v1

k _H1k/v2
k _H1 :

Thus, the bilinear map is bounded.
Next, we see that B½/v1

;/v2
� is coercive. From the definition of

B½/v1
;/v2
�, we have

kr/v1
k2

L2 ¼ B½/v1
;/v1
� for any /v1

2 _H1: ð21Þ

In addition to Eq. (20) in which ð/v1
Þ
X
¼
R

X /v1
ðxÞdx=jXj, using

the Poincare inequality, we obtain

k/v1
k2

L2 ¼
Z

X
/2

v1
dx ¼

Z
X
ð/v1

� ð/v1
Þ
X
Þ2 6 C

Z
X
jr/v1

j2 dx

¼ CB½/v1
;/v1
�;

where C depends on X. Combining this with (21),

1
C þ 1

k/v1
k2

_H1 6 B½/v1
;/v1
�: ð22Þ

Further, we let /v2
2 _H1, and then define

Fð/v1
Þ ¼

Z
X

v/v1
dx for every v 2 _H�1:

Since the functional is linear bounded on _H1, we can now apply
the Lax–Milgram theorem to obtain a unique /v1

2 _H1 such that
B½/v1

;/v2
� ¼ Fð/v2

Þ for all /v2
2 _H1.
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Finally, we define grad0 in as follows: let c be sufficiently
smooth and satisfy @c/@n = @Dc/@n = 0 on @X. Then, we have the
following equations in the sense of the Gateaux differential for
all v 2 _C10 :

hgrad0EðcÞ;vi ¼
d

dh
Eðc þ hvÞ

����
h¼0
¼ lim

h!0

1
h
Eðc þ hvÞ � EðcÞ½ �

¼
Z

X
F 0ðcÞ � �2Dc
� �

v dx

¼ �
Z

X
½F 0ðcÞ � �2Dc�D/v dx

¼
Z

X
r½F 0ðcÞ � �2Dc� � r/v dx

¼ ðr½F 0ðcÞ � �2Dc�;r/vÞL2

¼ ð�r � r½F0ðcÞ � �2Dc�;�r � r/vÞ _H�1

¼ ð�D½F 0ðcÞ � �2Dc�;vÞ _H�1 : ð23Þ

Here, we put �D/v in place of the v term in Eq. (23) and inte-
grate it by parts. Thus, in the last equation, r/v has a zero normal
component on @X and zero flux condition (16). We identify

grad0EðcÞ � �D½F 0ðcÞ � �2Dc�; ð24Þ

and specify its domain as those functions in _H1 where the condition
is satisfied with Eq. (16). Finally, it yields the evolution equation
such that

@c
@t
¼ M½F 0ðcÞ � �2

Mc�; ð25Þ

which is known as the Cahn–Hilliard equation in the open and
bounded subset of R3 with a C1 boundary domain X.

4. Cahn–Hilliard solver

Since the CH equation is nonlinear, it is difficult to find a closed-
form solution. Therefore, for most cases we have to resort to
numerical approximations to the CH equation. The CH equation
is solved numerically by applying several methods such as the fi-
nite difference, finite element, and Fourier-spectral methods, and
their adaptations. Let us define an order parameter / as the relative
concentration difference / = cB � cA, where cA and cB denote the
compositions of components A and B, respectively, i.e., cA + cB = 1.
Using the previous notation, we have / = 2c � 1. Then, the CH
equation can be rewritten as

@/
@t
¼ M½F 0ð/Þ � �2

M/�; ð26Þ

with the new definition of F(/) = 0.25(/2 � 1)2. We note that in a
steady state, a closed-form solution is /ðxÞ ¼ tanh xffiffi

2
p
�


 �
in the

whole space domain (�1, 1).

4.1. Finite difference method

We now present numerical methods in finite difference
schemes. We shall first discretize the CH Eq. (26) in a two-dimen-
sional space, X = (a, b) � (c, d). One- and three-dimensional dis-
cretizations are analogously defined.

Let Nx and Ny be positive integers. For simplicity, we consider a
uniform mesh, i.e., the size of the spatial step is h = (b � a)/Nx =
(d � c)/Ny. Let a computational domain be partitioned in Cartesian
geometry into a uniform mesh with spatial step h. We denote
cell-centered points by (xi, yj) = (a + (i � 0.5)h, c + (j � 0.5)h). Let
/n

ij and ln
ij be approximations of /(xi, yj, tn) and l(xi, yj, tn),

respectively, where tn = nDt and Dt is the temporal step. We
first implement the zero Neumann boundary condition (16) by
requiring that
/0j ¼ /1j; /Nxþ1;j ¼ /Nx ;j; /i0 ¼ /i1; and /i;Nyþ1 ¼ /i;Ny
:

In most studies, for both / and l, Neumann boundary condi-
tions are used, which means that the interface is orthogonal to
the boundary and that there is no mass flux at the boundary. The
physical importance of the Dirichlet boundary problem is that it
governs the propagation of a solidification front into an ambient
medium that is at rest, relative to the front [55]. The periodic
boundary is used for simulation in order to mimic a large system
or to minimize the boundary effect. Du and Nicolaides [55] pro-
posed a finite element scheme and a finite difference scheme
whereby the total energy decreases with time under the Dirichlet
boundary conditions.

We define discrete energy as

Ehð/nÞ ¼
XNx

i¼1

XNy

j¼1

h2Fð/n
ijÞ þ

�2

2
ð/n

iþ1;j � /n
ijÞ

2 þ ð/n
i;jþ1 � /n

ijÞ
2

h i� �
:

A fully implicit scheme for the CH equation was adopted by
Chella and Viñals [56].

/nþ1
ij � /n

ij

Dt
¼ Dd F 0ð/nþ1

ij Þ � �2Dd/
nþ1
ij


 �
;

where Dd is the standard discrete Laplacian.
A conservative nonlinear multigrid method for the CH equation

with variable mobility was proposed in a previous study [57]. The
method uses the standard finite difference approximation in spa-
tial discretization and the Crank–Nicolson scheme in temporal
discretization:

/nþ1
ij � /n

ij

Dt
¼ rd � Mð/Þnþ

1
2

ij rdl
nþ1

2
ij

h i
; lnþ1

2
ij

¼ 1
2

F 0 /nþ1
ij


 �
þ F 0 /n

ij


 �
 �
� �

2

2
Dd /nþ1

ij þ /n
ij


 �
:

Discrete versions of mass conservation and energy dissipation
were proved.

Typically, one would prefer a temporal step restriction owing to
accuracy requirements and not stability limitations [58]. In the CH
equation, a discrete time-stepping algorithm is defined to be
unconditionally gradient stable if

Ehð/nþ1Þ 6 Ehð/nÞ for all n; ð27Þ

holds for any size of the temporal step Dt [58]. We show the point-
wise boundedness of the numerical solution under the condition
(27). Let /n be a numerical solution satisfying (27) for a discrete
CH equation. Let us assume that there does not exist a constant K
for all n such that

k/nk1 6 K: ð28Þ

Then, there is an integer nK dependent on K such that
k/nK k1 > K for each K, and an index i(1 6 i 6 Nx) such that

j/nK
i j > K. Let K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ehð/0Þ=h

qr
, then, we have

Ehð/0Þ ¼ hFðKÞ < hFðj/nK
i jÞ 6 Ehð/nK Þ 6 Ehð/0Þ. This contradiction

implies that Eq. (28) should be satisfied [9].
Numerical solutions for non-linearly stabilized splitting

schemes using a multigrid method can be found in a previous
study [59]. The resulting equations are as follows:

/nþ1
ij � /n

ij

Dt
¼ Ddmnþ1

ij � Dd/
n
ij; ð29Þ

mnþ1
ij ¼ F 0ð/nþ1

ij Þ þ /nþ1
ij � �2Dd/

nþ1
ij : ð30Þ

Bullard et al. [60] and Eyre [61] proved that the solutions of Eqs.
(29) and (30) satisfy the inequality (27). Another candidate is the
linearly stabilized splitting scheme. In this scheme, the nonlinear
term F

0
(/) is treated as a source term. Therefore, we solve a system

of linear equations as follows:
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/nþ1
ij � /n

ij

Dt
¼ Ddmnþ1

ij þ DdðF0ð/n
ijÞ � 2/n

ijÞ; mnþ1
ij ¼ 2/nþ1

ij � �2Dd/
nþ1
ij :

Vollmayr-Lee and Rutenberg [58] applied the von Neumann lin-
ear stability analysis [62] to a class of numerical schemes.

Furihata et al. [63] examined the boundedness of the solution of
a finite difference scheme [64] using a discretized Lyapunov func-
tional. Furihata [65] proposed a stable and conservative finite dif-
ference scheme that inherits the properties of mass conservation
and total energy decrease under a certain condition on Dt and h.

Many multiphase flow problems involve both small and large
scales. In order to effectively resolve multiple scales, we need to
consider adaptive grid refinement [66]. Krysl, Grinspun, and Sch-
roder proposed a local adaptive refinement method (CHARMS)
[67]. Another approach is adaptive mesh refinement (AMR) [68],
in which the computational mesh is locally refined in regions
where greater accuracy is desired (see Fig. 7 for an example of
the grid structure) [69]. To generate the adaptive mesh, we tag
cells that contain the interface. Using a clustering algorithm [70],
the tagged cells are grouped into rectangular patches. These rect-
angular patches are refined to form the grids at the next level.
We repeat this process until a specified maximum level is reached.

Ceniceros et al. [71] presented an efficient numerical methodol-
ogy for the 3D computation of incompressible multi-phase flows
described by conservative phase-field models. The numerical
method employs adaptive mesh refinement (AMR) in concert with
an efficient semi-implicit time discretization strategy and a linear
multi-level multigrid to relax high-order stability constraints and
to capture the flow’s disparate scales at optimal cost. Only five lin-
ear solvers are needed per time-step. Their formulation is based on
a new second-order accurate time integration algorithm. The fully
discrete formulation inherits the main characteristics of conserved
phase dynamics, namely, mass conservation and nonlinear stabil-
ity with respect to the free energy. They also proposed an adaptive
time-stepping version of the new time integration method.

4.2. Finite element method

For the Galerkin finite element method for the CH equation, re-
fer to previous studies [30,72,73]. It was noted that the numerical
implementation was based on the choice of the piecewise polyno-
mial spline space. The solution possessing asymptotic behavior and
spatial structure was also shown. On the other hand, solutions
were analyzed using an energy-based Lyapunov functional with a
second-order splitting method. Blowey and Elliott [74] carried
out numerical analysis of a parabolic variational problem arising
from a deep quench limit of a model for phase separation in a
Fig. 7. Block-structured local refinement. In this example, there are four levels.
binary mixture. In addition, a finite element approximation was
studied for two fully discrete schemes, and schemes possessing
Lyapunov functionals were verified [75]. To discretize for the finite
element method, the set of evolution equations are solved in a
weak form with a semi-implicit time scheme. Thus, the weak form
of the equations is given by

/nþ1 � /n;w
� 


L2ðXÞ þ Dt Mð/nÞrlnþ1;rw
� 


L2ðXÞ ¼ 0; 8w 2 H1ðXÞ;
ð31Þ

�2 r/nþ1;rw
� 


L2ðXÞ þ F0ð/nþ1Þ � /n � lnþ1;w
� 


L2ðXÞ ¼ 0; ð32Þ

where H1(X) is the standard Sobolev space of L2(X) functions with
the first derivative in L2(X), and ða; bÞL2ðXÞ is the L2(X) inner product.

Zhang and Wang [76] used a convexity-splitting scheme to dis-
cretize in the temporal variable and a nonconforming finite ele-
ment method to discretize in spatial variables. The scheme
preserved the mass conservation and energy dissipation properties
of the original problem. Fernandino and Dorao [77] used the least
squares spectral element method to solve the CH equation. Kay and
Welford [78] adopted adaptive mesh refinement for solving the CH
equation using the finite element method. They solved the equa-
tion by applying the non-linear Gauss–Seidel iteration and the
multigrid method.

4.3. Spectral method

Chen and Shen [79] introduced a semi-implicit Fourier-spectral
method for the CH equation with periodic boundary conditions.

@~/ðk; tÞ
@t

¼ �jkj~F 0ð/Þðk; tÞ � �2 ~/ðk; tÞ; ð33Þ

where k is a vector in the Fourier space, and ~/ðk; tÞ and ~F0ð/Þðk; tÞ
represent the Fourier transform of /(x, t) and F

0
(/)(x, t), respec-

tively. They treated the linear fourth-order operators implicitly
and the non-linear terms explicitly.

ð1þ Dt�2jkj4Þ~/nþ1ðkÞ ¼ ~/nðkÞ � Dtjkj2~F0ð/ÞðkÞ: ð34Þ

This scheme is first-order accurate in time. The accuracy in time
can be improved by using higher-order semi-implicit schemes
[79]. Zhu et al. [80] implemented a semi-implicit Fourier-spectral
method for the variable-mobility CH equation with periodic
boundary conditions. Liu and Shen [81] analyzed a semi-discrete
Fourier-spectral method for the numerical approximation of a
phase-field model for the mixture of two incompressible fluids
and implemented a semi-implicit scheme for time discretization.
To improve the effectiveness of a Fourier spectral method, many
researchers have attempted to solve the phase-field equation by
combining an adaptive moving mesh to construct a time-depen-
dent mapping from the computational domain to the physical do-
main [82,83]. Shen and Yang [84] developed a moving mesh
spectral method for the phase-field model of two phase flows with
non-periodic boundary conditions. The method is based on a vari-
ational moving mesh PDE for the phase function, coupled with effi-
cient semi-implicit treatments for advancing the mesh function,
the phase function and the velocity and pressure in a decoupled
manner.

Let us consider an unconditionally stable Fourier-spectral meth-
od for the following CH equation in two-dimensional space:

@/
@t
ðx; y; tÞ ¼ D /3ðx; y; tÞ � /ðx; y; tÞ

� 

� �2D2/ðx; y; tÞforðx; y; tÞ

2 ð0; LxÞ � ð0; LyÞ � ð0; TÞ: ð35Þ

The boundary condition is the homogeneous Neumann
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@/
@x
ð0; y; tÞ ¼ @/

@x
ðLx; y; tÞ ¼

@/
@y
ðx;0; tÞ ¼ @/

@y
ðx; Ly; tÞ ¼ 0:

For the given data f/k
mnjm ¼ 1; . . . ;M and n ¼ 1; . . . ;Ng, the dis-

crete cosine transform is defined [85,86].

/̂k
pq ¼ apbq

XM

m¼1

XN

n¼1

/k
mn cos

ð2m� 1Þðp� 1Þp
2M

cos
ð2n� 1Þðq� 1Þp

2N
;p

¼ 1; . . . ;M and q ¼ 1; . . . ;N;

where

ap ¼
ffiffiffiffiffiffiffiffiffiffi
1=M

p
; p ¼ 1ffiffiffiffiffiffiffiffiffiffi

2=M
p

; 2 6 p 6 M

(
and bq ¼

ffiffiffiffiffiffiffiffiffi
1=N

p
; q ¼ 1;ffiffiffiffiffiffiffiffiffi

2=N
p

; 2 6 q 6 N:

(

For simplicity, we denote some variables by

xm ¼
ð2m� 1ÞLx

2M
; yn ¼

ð2n� 1ÞLy

2N
; np ¼

p� 1
Lx

; gq ¼
q� 1

Ly
:

By using these variables, we obtain the discrete cosine
transform:

/̂k
pq ¼ apbq

XM

m¼1

XN

n¼1
/k

mn cosðxmpnpÞ cosðynpgqÞ:

The inverse discrete cosine transform is

/k
mn ¼

XM

p¼1

XN

q¼1
apbq/̂

k
pq cosðnppxmÞ cosðgqpynÞ: ð36Þ

Let us assume that

/ðx; y; kDtÞ ¼
XM

p¼1

XN

q¼1
apbq/̂

k
pq cosðnppxÞ cosðgqpyÞ:

The x and y second-order partial derivatives translate into ana-
lytical differentiation of the exponentials.

@2/
@x2 ðx; y; kDtÞ ¼ �

XM

p¼1

XN

q¼1

npp
� 
2apbq/̂

k
pq cosðnppxÞ cosðgqpyÞ;

@2/
@y2 ðx; y; kDtÞ ¼ �

XM

p¼1

XN

q¼1

gqp

 �2

apbq/̂
k
pq cosðnppxÞ cosðgqpyÞ:

Then, the Laplacian operator is defined as

D/ðx; y; kDtÞ ¼ �
XM

p¼1

XN

q¼1
npp
� 
2 þ gqp


 �2
� �

apbq/̂
k
pq cosðnppxÞ

� cosðgqpyÞ:

We apply the linearly stabilized splitting scheme [61] to Eq.
(35).

/kþ1
ij � /k

ij

Dt
¼ D 2/kþ1

ij � �2D/kþ1
ij þ f ð/k

ijÞ

 �

; ð37Þ

where f(/) = /3 � 3/. Thus, Eq. (37) can be transformed into the dis-
crete cosine space as follows:

/̂kþ1
pq � /̂k

pq

Dt
¼� npp

� 
2þ gqp

 �2

� �
2/̂kþ1

pq þ�2 npp
� 
2þ gqp


 �2
� �

/̂kþ1
pq þ f̂ k

pq

� �
:

Therefore, we obtain the following discrete cosine transform

/̂kþ1
pq ¼

/̂k
pq þ ApqDtf̂ k

pq

1� 2ApqDt þ �2A2
pqDt

; where Apq ¼ � ðnppÞ2 þ ðgqpÞ
2

n o
:

ð38Þ

The corresponding function /kþ1
mn can be computed using Eq.

(36). The following MATLAB script implements the scheme (37)
using a spectral method [87]. Note that the presented code
strongly follows the David Eyre’s implemented MATLAB code [88].
clear all;xright = 2;yright = 1;M = 200;N = 100;
x = linspace(0.5⁄xright/M,xright-0.5⁄xright/M,M);
y = linspace(0.5⁄yright/N, yright-0.5⁄yright/N,N); h = x(2)-

x(1);
[xx,yy]=meshgrid(x,y);dt = 0.1;maxiter = 500;epsilon = 4⁄h/

(2⁄sqrt(2)⁄atanh(0.9));
xp = linspace(0,(M-1)/xright,M)’; yq = linspace(0,(N-1)/

yright,N)’;
Leig=-((xp.̂2)⁄ones(1,N) + ones(M,1)⁄(yq’.̂2))⁄pi⁄pi;
CHeig = ones(M,N)- 2⁄dt⁄Leig + dt⁄epsilon̂2⁄Leig.̂2;
U = 0.001⁄(rand(M,N)-0.5); hat_U = dct2(real(U));
for it = 1:maxiter if rem(it,10)==0
subplot(2,1,1); surf(xx’,yy’,real(U))
shading interp; axis([0 xright 0 yright �1 1])
subplot(2,1,2); contourf(xx’,yy’,real(U), [-0.9 �0.45 0 0.35

0.9])
axis image, axis([0 xright 0 yright]); getframe(gcf)
end
fU = U.̂3 - 3⁄U; hat_rhs = hat_U + dt⁄Leig.⁄dct2(real(fU));
hat_U = hat_rhs./CHeig; U = idct2(hat_U);
end

Using the above MATLAB [89] code, we examine the evolution
of a random perturbation with small magnitude about a mean
composition. For this purpose, the initial condition is taken to be
u(x, y, 0) = 0.01 rand(x, y) in the computational domain
X = (0,1) � (0,1). Here rand(x, y) is a random number between
�1 and 1. We take the simulation parameters as � = 0.005,
h = 0.0026, and Dt = 0.01. Here, � is related to the interface thick-
ness, given by �m ¼ hm=½2

ffiffiffi
2
p

tanh�1ð0:9Þ� for the interface thick-
ness with m grid points from the approximated solutions [90]. In
Fig. 8, the four snapshots represent the temporal evolutions of
morphological patterns during spinodal decomposition.

Now we perform the accuracy and efficiency test of the spectral
method for the CH equation. Let us first analyze the accuracy of the
scheme. The computations are performed on a unit square domain
X up to time T = 0.001 with � = 0.01. Neumann boundary condi-
tions are used. The initial condition is given as

/ðx; y;0Þ ¼ 0:03 cosð2pxÞ cosð2pyÞ þ 0:01 cosðpxÞ cosð3pyÞ:

We take the spatial step size h = 1/2n, n = 5, 6, 7, 8, 9 and the tem-
poral step size Dt = 0.1024 � h2. We define the error as the discrete
l2-norm of the difference between that grid and the average of the
next finer grid cells:

eh=h
2ij ¼

def
/hij � /h

22i;2j þ /h
22i�1;2j þ /h

22i;2j�1 þ /h
22i�1;2j�1


 �.
4:

Then, the rate of convergence is defined as log2 keh=h
2
k=keh

2=
h
4
k


 �
. Ta-

ble 1 shows that the scheme is first order accurate in time and sec-
ond order accurate in space.

Next we present the efficiency test. Eq. (38) can be computed in
O(N lnN) operations with the 2D Fast Cosine Transform [89,91,92].
Here N is the number of unknowns. We take the same parameters
and initial condition in the above accuracy test except Dt = 0.001,
T = 1, and � ¼ 4h=ð2

ffiffiffi
2
p

tanh�1ð0:9ÞÞ. Fig. 9 shows the CPU time
against the number of unknowns. Numerical results (circled sym-
bols) are in good agreement with the best fit with O(N lnN) (solid
line).

Finally, we present a model problem that has been used for test-
ing the solvers. The problem is a phase separation test, which
shows mass conservation and total energy decrease. The initial
condition is /(x, y,0) = 0.1 + 0.1 rand(x, y) on the unit domain with
Dt = 0.1, h = 1/128, and � ¼ 4h=ð2

ffiffiffi
2
p

tanh�1ð0:9ÞÞ. Fig. 10 shows the
normalized discrete total energy E(t)/E(0) (solid line) and average



Fig. 8. Temporal morphological evolutions at different values of t.

Table 1
l2-Norm of the errors and convergence rates of the scheme.

Case 32–64 Rate 64–128 Rate 128–256 Rate 256–512

l2 2.18e�05 2.02 5.36e�06 2.01 1.33e�06 2.00 3.33e�07

Fig. 9. CPU times against grid points N.

Table 2
Previous studies for numerical methods.

� Galerkin finite element method [30,72]
� Second order splitting method [73]
� Nonconforming finite element method [93]
� Dirichlet boundary condition [55]
� Numerical analysis with a logarithmic free energy [29]
� Unconditionally gradient stable scheme [61]
� Semi-implicit Fourier-spectral method [79,94]
� With degenerate mobility [95]
� Stable and conservative finite difference scheme [65]
� Conservative multigrid method [96]
� Numerical solution with generic boundary condition [97]
� Discontinuous Galerkin method [98]
� Moving mesh [82]
� Adaptive mesh refinement [99]
� Local discontinuous Galerkin method [100]
� Large time-stepping method [101]
� Isogeometric analysis [102]
� Conservative scheme with contact angle boundary condition [103]
� Conservative scheme with Neumann bd. in complex domain [104]
� Conservative scheme with Dirichlet boundary in complex domain [105]
� Parallel multigrid method [106]
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concentration (dashed line), which demonstrate the total energy
dissipation and the mass conservation properties. The inscribed
small figures are the snapshots at the indicated times (see Table 2).

The main challenges for solving the CH equation are resolving
the relatively thick interfacial region and highly nonlinear equa-
tion. In real physics, the interfacial thickness is very small, i.e.,
1 nm [107]. This small resolution cannot be resolved by current
computational power. This small size limitation has been resolved
partially by adaptive mesh refinement and parallel algorithms. The
CH equation is a fourth-order nonlinear equation. Standard numer-
ical discretizations have limitations in stability and solvability.
These constraints have been solved by unconditionally stable
schemes. The remaining challenges in this area are efficient and
accurate parallel algorithms, unconditionally stable high-order
temporal discretization, dynamic boundary condition, and rigorous
Fig. 10. Non-increasing discrete total energy and conservation of mass
concentration.
validation of the morphology evolution from the CH equation with
that of experiment, to list a few.
5. Conclusions

In this article, we reviewed physical, mathematical, and numer-
ical derivations of the binary CH equation. First, we described the
physical derivation from the basic thermodynamics. We defined
the chemical potential as the variational derivative of the total en-
ergy and its flux as the minus gradient of the potential. Using the
usual continuity equation, we obtained the CH equation. Second,
we outlined the mathematical derivation of the CH equation. Third,
various numerical methods such as the finite difference, finite ele-
ment, and spectral methods were discussed. We also provided a
short MATLAB program code for the CH equation using a pseudo-
spectral method.
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