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We present a new method using the modified Cahn-Hilliard (CH) equation for smoothing piecewise linear shapes of two- and
three-dimensional objects. The CH equation has good smoothing dynamics and it is coupled with a fidelity term which keeps the
original given data; that is, it does not produce significant shrinkage.Themodified CH equation is discretized using a linearly stable
splitting scheme in time and the resulting scheme is solved by using a Fourier spectral method. We present computational results
for both curve and surface smoothing problems. The computational results demonstrate that the proposed algorithm is fast and
efficient.

1. Introduction

For many computational purposes such as visualization
of scientific data and registration of multimodal medical
data, smooth curves and surfaces must be approximated
by polygonal curves and polyhedral surfaces, respectively.
However, these approximation algorithms generate faceted
curves and surfaces [1]. In medical applications, Vollmer
et al. [2] presented an improved Laplacian technique for
smoothing polygonal surface meshes that avoids the well-
known problem of deformation and shrinkage caused by
many smoothingmethods as shown in Figure 1. Using Bezier-
smoothed boundary representation, Anflor and Marczak [3]
studied topological optimization of anisotropic heat conduct-
ing devices.

To prevent the mesh from shrinking, Liu et al. [4]
proposed a volume-constrained smoothing algorithm for
triangular meshes, which preserves exactly the mesh volume
during the smoothing process. Wei et al. [5] proposed
an effective mesh smoothing algorithm which preserves
morphology on polygonized isosurfaces of inhomogeneous
binary volumes. Recently, various smoothing methods have
been developed [6, 7].

In this paper, we propose a newmethod using a modified
Cahn-Hilliard (CH) equation for smoothing piecewise linear

shapes of two- and three-dimensional objects. Let 𝜓(x) be a
given mosaic binary data, that is, either plus one or minus
one. Here, x = (𝑥, 𝑦) or x = (𝑥, 𝑦, 𝑧). We want to construct
smooth contour line or isosurface from the mosaic binary
data by using the modified CH equation:

𝜙𝑡 (x, 𝑡) = Δ [𝐹 (𝜙 (x, 𝑡)) − 𝜀2Δ𝜙 (x, 𝑡)]
+ 𝜆 (𝜓 (x) − 𝜙 (x, 𝑡)) , (1)

where 𝜆 is the fidelity parameter and 𝐹(𝜙) = 0.25(𝜙2 − 1)2.
When 𝜆 = 0, then (1) becomes the CH equation which
was originally proposed by Cahn and Hilliard [8, 9] as a phe-
nomenological model of phase separation in a binary alloy.
See [10] and the references therein for physical,mathematical,
and numerical derivations of the CH equation. The various
applications of the CH equation can be seen in [11]. Equation
(1) was used in image inpainting with a space-dependent 𝜆(x)
[12].

This paper is organized as follows. In Section 2, the
discrete equations for the governing equations are presented.
In Section 3, we present various computational examples.
Finally, in Section 4, conclusions are drawn.
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Figure 1: (a)–(e) Origin, noisy mesh, three iterations of the algorithm in [2]. Reprinted from Vollmer et al. [2] with permission from the
Wiley Online Library.

2. Algorithm

We use an unconditionally stable Fourier spectral method
for the modified CH equation (1) in two-dimensional spaceΩ = (𝑎, 𝑏) × (𝑐, 𝑑). Fourier spectral method has been applied
inmany studies [13, 14].The three-dimensional discretization
is defined analogously. Let ℎ = (𝑏 − 𝑎)/𝑁𝑥 = (𝑑 − 𝑐)/𝑁𝑦
be the spatial step size, where 𝑁𝑥 and 𝑁𝑦 are positive even
integers. Let 𝜙𝑘𝑚𝑛 and 𝜇𝑘𝑚𝑛 be approximations of 𝜙(𝑥𝑚, 𝑦𝑛, 𝑡𝑘)
and 𝜇(𝑥𝑚, 𝑦𝑛, 𝑡𝑘), respectively, where (𝑥𝑚, 𝑦𝑛) = (𝑎 + (𝑚 −0.5)ℎ, 𝑏 + (𝑛 − 0.5)ℎ) and 𝑡𝑘 = 𝑘Δ𝑡 with Δ𝑡 the temporal step.
Let 𝜙𝑘𝑝𝑞 = ∑𝑁𝑥𝑚=1∑𝑁𝑦𝑛=1 𝜙𝑘𝑚𝑛𝑒−𝑖(𝜉𝑝𝑥𝑚+𝜂𝑞𝑦𝑛) be the discrete Fourier
transform with a given data {𝜙𝑘𝑚𝑛 | 𝑚 = 1, . . . , 𝑁𝑥 and 𝑛 =1, . . . , 𝑁𝑦}, where 𝜉𝑝 = 2𝜋𝑝/(𝑏 − 𝑎) and 𝜂𝑞 = 2𝜋𝑞/(𝑑 − 𝑐).The
inverse discrete Fourier transform is

𝜙𝑘𝑚𝑛 = 1𝑁𝑥𝑁𝑦
𝑁𝑥/2−1∑
𝑝=−𝑁𝑥/2

𝑁𝑦/2−1∑
𝑞=−𝑁𝑦/2

𝜙𝑘𝑝𝑞𝑒𝑖(𝜉𝑝𝑥𝑚+𝜂𝑞𝑦𝑛). (2)

Let 𝜙(𝑥, 𝑦, 𝑘Δ𝑡) = (1/𝑁𝑥𝑁𝑦) ∑𝑁𝑥/2−1𝑝=−𝑁𝑥/2
∑𝑁𝑦/2−1𝑞=−𝑁𝑦/2𝜙𝑘𝑝𝑞𝑒𝑖(𝜉𝑝𝑥+𝜂𝑞𝑦). Then, we have

Δ𝜙 (𝑥, 𝑦, 𝑘Δ𝑡)
= − 1𝑁𝑥𝑁𝑦

𝑁𝑥/2−1∑
𝑝=−𝑁𝑥/2

𝑁𝑦/2−1∑
𝑞=−𝑁𝑦/2

(𝜉2𝑝 + 𝜂2𝑞) 𝜙𝑘𝑝𝑞𝑒𝑖(𝜉𝑝𝑥+𝜂𝑞𝑦). (3)

By using the linearly stabilized splitting scheme [15] to (1),
we have

𝜙𝑘+1𝑚𝑛 − 𝜙𝑘𝑚𝑛Δ𝑡 = Δ (2𝜙𝑘+1𝑚𝑛 − 𝜀2Δ𝜙𝑘+1𝑚𝑛 + 𝑓 (𝜙𝑘𝑚𝑛))
+ 𝜆 (𝜓𝑚𝑛 − 𝜙𝑘+1𝑚𝑛 ) ,

(4)

where 𝑓(𝜙) = 𝜙3 − 3𝜙. Thus, (4) can be transformed into the
discrete Fourier space as follows:

𝜙𝑘+1𝑝𝑞 − 𝜙𝑘𝑝𝑞Δ𝑡
= − (𝜉2𝑝 + 𝜂2𝑞) (2𝜙𝑘+1𝑝𝑞 + 𝜀2 (𝜉2𝑝 + 𝜂2𝑞) 𝜙𝑘+1𝑝𝑞 + 𝑓𝑘𝑝𝑞)
+ 𝜆 (�̂�𝑝𝑞 − 𝜙𝑘+1𝑝𝑞 ) .

(5)

Therefore, we obtain the following discrete Fourier trans-
form:

𝜙𝑘+1𝑝𝑞 = 𝜙𝑘𝑝𝑞 − (𝜉2𝑝 + 𝜂2𝑞) Δ𝑡𝑓𝑘𝑝𝑞 + 𝜆�̂�𝑝𝑞
1 + Δ𝑡 [𝜆 + 2 (𝜉2𝑝 + 𝜂2𝑞) + 𝜀2 (𝜉2𝑝 + 𝜂2𝑞)2] . (6)

Then, using (2), we get the updated numerical solution𝜙𝑘+1𝑚𝑛 as
𝜙𝑘+1𝑚𝑛 = 1𝑁𝑥𝑁𝑦

𝑁𝑥/2−1∑
𝑝=−𝑁𝑥/2

𝑁𝑦/2−1∑
𝑞=−𝑁𝑦/2

𝜙𝑘+1𝑝𝑞 𝑒𝑖(𝜉𝑝𝑥𝑚+𝜂𝑞𝑦𝑛). (7)

Standard fast Fourier transform (FFT) has been used to
speed up the computations [16].

3. Computational Results and Discussion

3.1. Circular Mosaic Shape. In this test problem, we will show
the smoothing effect of our proposed method. Therefore, we
choose a coarse mesh grid 20 × 20 on the computational
domainΩ = (−1, 1) × (−1, 1). The initial configuration is

𝜙 (𝑥, 𝑦, 0) = {{{
1 if √𝑥2 + 𝑦2 ≤ 0.6,
−1 otherwise, (8)

which represents a circular mosaic shape. The numerical
parameters ℎ = 0.1, 𝜀 = ℎ, Δ𝑡 = 0.1, and 𝜆 = 1000 are
used.
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Figure 2: (a) Initial circular mosaic shape. (b)-(c) Numerical results after 1 and 10 iterations by the proposed method, respectively. (d)–(f)
Values of 𝜙(𝑥, 𝑦) at the red box.
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Figure 3: Effect of 𝜆 on the smoothing dynamics. (a) Initial condition and numerical results at 𝑇 = 20Δ𝑡 with (b) 𝜆 = 106, (c) 𝜆 = 104, and
(d) 𝜆 = 102.

Figure 2 shows the temporal evolution at 𝑡 = 0, Δ𝑡, and10Δ𝑡. Here, the shaded area is the filled contour with 𝜙 ≥ 0.
Figures 2(d)–2(f) show the values of 𝜙(𝑥, 𝑦) at the part of the
red box in Figures 2(a)–2(c). As shown in Figure 2(c), we can
see the smooth interface after 10 iterations.

3.2. Effect of 𝜆. Next, we investigate the effect of parameter 𝜆
on the smoothing dynamics. On the computational domainΩ = (−1, 1) × (−1, 1), the initial configuration is given as

𝜙 (𝑥, 𝑦, 0) = {{{
1 if√𝑥2 + 𝑦2 + 0.3 cos (6𝜃) ≤ 0.5,
−1 otherwise, (9)

where 𝜃 = tan−1(𝑦/𝑥) if 𝑥 > 0; 𝜃 = 𝜋+tan−1(𝑦/𝑥) otherwise.
We use the following parameters: ℎ = 2/30, 𝜀 = ℎ, and Δ𝑡 =0.1. With the initial configuration as shown in Figure 3(a), we
obtain the various numerical results (see Figures 3(b)–3(d)) at
time 𝑇 = 20Δ𝑡 with respect to different 𝜆. In this test, we use
three different𝜆 = 106, 104, and 102. As𝜆 is large,𝜙(𝑥, 𝑦)does
not evolve and is close to the initial mosaic profile. However,
if 𝜆 is too small, then the CH dynamics dominates and the
profile becomes a circular shape which has the minimum
interfacial length.

3.3. Effect of 𝜀. In our proposed model, parameter 𝜀 deter-
mines the thickness of the interface of two phases, that is,
interfacial region of transition profile. Therefore, it is one of
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Figure 4: Effect of 𝜀 on the smoothing dynamics. (a) Initial condition and numerical results at 𝑇 = 20Δ𝑡 with (b) 𝜀 = 4ℎ, (c) 𝜀 = ℎ, and (d)𝜀 = ℎ/4.
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Figure 5: (a) Three initial configurations. (b) Corresponding smooth results after 10 iterations.

the important factors on the smoothing process. Now, we
study the effect of 𝜀 on the smoothing dynamics.

On the computational domain Ω = (−1, 1) × (−1, 1),
we use the initial condition (9); see Figure 4(a). The other
parameters are used as ℎ = 2/30, Δ𝑡 = 0.1, and 𝜆 = 10000.

Figures 4(b)–4(d) represent the numerical configurations
at𝑇 = 20Δ𝑡with 𝜀 = 4ℎ, 𝜀 = ℎ, and 𝜀 = ℎ/4, respectively. As
shown in Figure 4(b), large value of 𝜀 causes wide transition
layer. Therefore, it overly smooths the curve. On the other
hand, if 𝜀 is too small, then the phase-field has abrupt
transition and the profile becomes mosaic.

3.4. 2D Various Shapes. To demonstrate the robustness of
the proposed algorithm, we consider various complex shapes
on two-dimensional space Ω = (−1, 1) × (−1, 1). For the
numerical test, we use 𝑁 = 30, ℎ = 2/𝑁, 𝜀 = ℎ,𝜆 = 10000, and Δ𝑡 = 0.1. The initial configurations are
represented in Figure 5(a) and its corresponding smooth
results in Figure 5(b). Through these results, we can see
that our proposed algorithm is a good strategy to remove
staircases while preserving the initial feature.

3.5. 3D Various Shapes. In this section, we consider various
morphologies on the three-dimensional space.



Mathematical Problems in Engineering 5

−1
0

12 0 −2

−1

0

1

(a)

2 0

−1
0

1
−2

−1

0

1

(b)

−1
0

12 0 −2

−1

0

1

(c)

Figure 6: (a) Initial condition. Numerical results after (b) 1 and (c) 10 iterations.

3.6. Ellipsoidal Shape. We consider an ellipsoidal shape on
the computational domain Ω = (−3, 3) × (−1.5, 1.5) ×(−1.5, 1.5). The initial condition is set to

𝜙 (𝑥, 𝑦, 𝑧, 0) = {{{{{
1 if √𝑥24 + 𝑦2 + 𝑧2 ≤ 1,
−1 otherwise.

(10)

In the test problem, we use ℎ = 0.075, 𝜀 = 5ℎ, Δ𝑡 =0.1, and 𝜆 = 1000 on an 80 × 40 × 40mesh grid. Figures
6(a)–6(c) show the temporal evolutions of the surface at 𝑇 =0, Δ𝑡, and 10Δ𝑡. As shown in Figure 6, the proposedmethod
leads to a smooth ellipsoidal surface.

3.7. Volume Preservation. Laplacian smoothing is a well-
known algorithm to smooth a polygonal mesh. However,
this method can cause volume shrinkage or shape distortion
[5]. However, our proposed method is a feature-preserving
approach without severe volume changes. In this section,
we demonstrate that our smoothing approach preserves the
initial volume. We first define the volume of an object using
triangles on the surface. For 𝑠 = 1, 2, . . . ,𝑀, let Tri𝑠 =(X𝑙,X𝑚,X𝑛) = ((𝑋𝑙, 𝑌𝑙, 𝑍𝑙), (𝑋𝑚, 𝑌𝑚, 𝑍𝑚), (𝑋𝑛, 𝑌𝑛, 𝑍𝑛)) be a
triangle consisting of three points on a triangularmesh. Here,

𝑀 is the number of triangles. We have the following formula
for the volume of the polyhedron as

𝑉 (X) = 16
𝑁∑
𝑠=1

[𝑋𝑛 (𝑌𝑙𝑍𝑚 − 𝑌𝑚𝑍𝑙)
− 𝑌𝑛 (𝑋𝑙𝑍𝑚 − 𝑋𝑚𝑍𝑙) + 𝑍𝑛 (𝑋𝑙𝑌𝑚 − 𝑋𝑚𝑌𝑙)] .

(11)

See [17] for more detailed explanation about the polyhe-
dron volume. Also, we define the percent of relative error of
volume 𝑉(X) with the initial volume 𝑉(X0) as

𝑉err (X) = 𝑉 (X) − 𝑉 (X0)
𝑉 (X0) × 100 (%) . (12)

Now, we consider three-dimensional morphologies such
as to holed tetrahedron, many spheres, and holed sphere onΩ = (−1, 1) × (−1, 1) × (−1, 1); see Figure 7(a). On a 40 × 40 ×40mesh grid, we perform the numerical test with ℎ = 0.1,𝜀 = ℎ, Δ𝑡 = 0.1, and 𝜆 = 5000. We obtain smooth results
after 10 iteration steps by our proposed method as shown in
Figure 7(b). Also, to show the effectiveness of ourmethod, we
compute the temporal evolutions of the relative percent error;
see Figure 7(c).

Next, to show the robustness of the proposed method, we
perform surface smoothing problem with noise in Figure 8.
The initial conditions are the same as in Figure 7 with 30
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Figure 7: (a) Three different initial conditions. (b) Smoothed results after 10 iterations by the proposed method. (c) Percentage of relative
error of volume against iteration steps.

percent noise. The other parameters are the same as the
previous test. Figure 8 also shows the smooth numerical
results. Even with noise, our smoothing approach has robust
and effective results.

3.7.1. Complex 3D Morphology. As the final test, we take
Armadillo, Stanford bunny, and happy Buddha models as
the initial conditions. For all tests, the parameters 𝜆 = 104,Δ𝑡 = 0.01, and 𝜀 = ℎ are used.The others are stated in Table 1.
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Figure 8: (a) Three different initial condition with 30% noise. (b) Smoothed results after 10 iterations by the proposed method.

Table 1: Domain size, mesh grid points, and spatial step size used in Armadillo, stanford bunny, and happy buddha models.

Case (a) Armadillo (b) Stanford bunny (c) Happy buddha
Domain size (0, 2) × (0, 2.4) × (0, 2) (0, 1) × (0, 1) × (0, 1) (0, 1) × (0, 2.2) × (0, 1)
Mesh grid points 50 × 60 × 50 60 × 60 × 50 100 × 220 × 100
Spatial step size ℎ = 0.04 ℎ = 0.0167 ℎ = 0.01

The columns in Figure 9 represent the initial condition
and numerical results after 1 and 3 iterations. As we expected,
the numerical results are smooth and preserve the initial
feature.

To show the effectiveness of the proposed smoothing
approach, we compare results in [5] with those from our
proposed method. Figure 10 illustrates CPU time in seconds
against the total number of vertices of a model. As shown
in Figure 10, under the similar number of vertex points, our
proposedmethod gets smooth results and a reduction of over
two orders of magnitude in CPU time.

Also, in Figure 11, we represent the percent of the
relative error of volume (𝑉err(X)) which is stated in (12).
Through these results, we can see that the proposed method
implements the smoothing procedure almost without total
volume loss.

4. Conclusion

In this paper, we have introduced a novel method using the
modified CH equation for smoothing piecewise linear shapes
of two- and three-dimensional objects without producing
significant shrinkage. The main advantages of the proposed
method are very fast and easy to implement because we use a
fast Fourier transform. Various computational experiments
for both curve and surface smoothing problems were pre-
sented. The results demonstrate that the proposed algorithm
is effective and efficient for smoothing curves and surfaces.
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Figure 9: Smoothing morphologies at 𝑇 = 0 (first column), 𝑇 = Δ𝑡 (second column), and 𝑇 = 3Δ𝑡 (third column). Here, (a) Armadillo, (b)
Stanford bunny, and (c) happy Buddha models are used.



Mathematical Problems in Engineering 9

Figure 9(a)

Figure 9(b)

Figure 9(c)

Pancreas

Portal vein

Bone Liver

performance
gap

Reference [5]
Proposed method

10
−1

10
0

10
1

10
2

10
3

CP
U

 ti
m

e (
se

c.)

10
5

10
4

Total number of vertices 

Figure 10: Total number of vertices versus CPU time.

10

Figure 9(a)
Figure 9(b)
Figure 9(c)

1 2 30
steps

−10

−5

0

5

V
？Ｌ
Ｌ
(X

)

Figure 11: Temporal percent of relative error of volume with initial
volume of Figure 9.

Acknowledgments

The first author (Y. Choi) was supported by the BK21
PLUS program. The corresponding author (J. S. Kim) was
supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Education (NRF-2016R1D1A1B03933243).

References

[1] G. Taubin, “Curve and surface smoothing without shrinkage,”
in Proceedings of the 5th International Conference on Computer
Vision, pp. 852–857, June 1995.

[2] J. Vollmer, R. Mencl, and H. Muller, “Improved Laplacian
Smoothing of Noisy Surface Meshes,” Computer Graphics
Forum, vol. 18, no. 3, pp. 131–138, 1999.

[3] C. T. M. Anflor and R. J. Marczak, “Topological optimization
of anisotropic heat conducting devices using bezier-smoothed
boundary representation,” CMES: Computer Modeling in Engi-
neering & Sciences, vol. 78, no. 3-4, pp. 151–168, 2011.

[4] X. Liu, H. Bao, H.-Y. Shum, and Q. Peng, “A novel volume
constrained smoothing method for meshes,” Graphical Models,
vol. 64, no. 3-4, pp. 169–182, 2002.

[5] M.Wei, L. Zhu, J. Yu et al., “Morphology-preserving smoothing
on polygonized isosurfaces of inhomogeneous binary volumes,”
Computer-Aided Design, vol. 58, pp. 92–98, 2015.

[6] X. Zhang, X. Chen, Y. Liu, B. Han, T. Zhuang, and W. Zuo, “An
Effective Approach of Teeth Segmentation within the 3D Cone
Beam Computed Tomography Image Based on Deformable
Surface Model,” Mathematical Problems in Engineering, vol.
2016, Article ID 9505217, 2016.

[7] H. Sima, A. Mi, Z. Wang, and Y. Zou, “Objectness Supervised
Merging Algorithm for Color Image Segmentation,”Mathemat-
ical Problems in Engineering, vol. 2016, Article ID 3180357, 2016.

[8] J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform sys-
tem. I. Interfacial free energy,”The Journal of Chemical Physics,
vol. 28, no. 2, pp. 258–267, 1958.

[9] J. W. Cahn, “Free energy of a nonuniform system. II. Thermo-
dynamic basis,” The Journal of Chemical Physics, vol. 30, no. 5,
pp. 1121–1124, 1959.

[10] D. Lee, J.-Y.Huh, D. Jeong, J. Shin, A. Yun, and J. Kim, “Physical,
mathematical, and numerical derivations of the Cahn-Hilliard
equation,”ComputationalMaterials Science, vol. 81, pp. 216–225,
2014.

[11] J. Kim, S. Lee, Y. Choi, S.-M. Lee, and D. Jeong, “Basic princi-
ples and practical applications of the Cahn-Hilliard equation,”
Mathematical Problems in Engineering, Article ID 9532608, Art.
ID 9532608, 11 pages, 2016.

[12] A. L. Bertozzi, S. Esedoglu, andA.Gillette, “Inpainting of binary
images using theCahn-Hilliard equation,” IEEETransactions on
Image Processing, vol. 16, no. 1, pp. 285–291, 2007.

[13] C.-M. Chang and H.-D. Yeh, “Variability quantification of
excess pressure head in heterogeneous deformable aquifers,”
Applied Mathematical Modelling: Simulation and Computation
for Engineering and Environmental Systems, vol. 40, no. 19-20,
pp. 8580–8591, 2016.

[14] S. Zhai, Z. Weng, and X. Feng, “Fast explicit operator splitting
method and time-step adaptivity for fractional non-local Allen-
Cahn model,” Applied Mathematical Modelling: Simulation and
Computation for Engineering and Environmental Systems, vol.
40, no. 2, pp. 1315–1324, 2016.

[15] D. J. Eyre, “An unconditionally stable one-step scheme for
gradient systems,” Unpublished Article.

[16] J. Shen, T. Tang, and L. Wang, Spectral Methods: Algorithms,
Analysis and Applications, vol. 41 of Springer Series in Compu-
tational Mathematics, Springer, New York, NY, USA, 2011.

[17] Y. Li, A. Yun, D. Lee, J. Shin, D. Jeong, and J. Kim, “Three-
dimensional volume-conserving immersed boundary model
for two-phase fluid flows,” Computer Methods Applied Mechan-
ics and Engineering, vol. 257, pp. 36–46, 2013.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


