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• We perform a comparison study on dynamics between the AC and CH equations.
• Linear stability analysis shows that growing and decaying modes are the same.
• The growth rates are monotonically decreasing for the AC equation.
• The growth rates for the CH equation are non-monotonic.
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a b s t r a c t

We perform a comparison study on the different dynamics between the Allen–Cahn (AC)
and the Cahn–Hilliard (CH) equations. The AC equation describes the evolution of a non-
conserved order field during anti-phase domain coarsening. The CH equation describes
the process of phase separation of a conserved order field. The AC and the CH equations
are second-order and fourth-order nonlinear parabolic partial differential equations, re-
spectively. Linear stability analysis shows that growing and decaying modes for both the
equations are the same.While the growth rates are monotonically decreasing with respect
to the modes for the AC equation, the growth rates for the CH equation are increasing and
then decreasing with respect to the modes. We perform various numerical tests using the
Fourier spectral method to highlight the different evolutionary dynamics between the AC
and the CH equations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The Allen–Cahn (AC) equation [1], which is a second-order nonlinear parabolic partial differential equation, describes the
evolution of a non-conserved order field during anti-phase domain coarsening:

∂φ(x, t)
∂t

= −
F ′(φ(x, t))

ϵ2 + ∆φ(x, t), x ∈ Ω, t > 0, (1)

where Ω ⊂ Rd (d = 1, 2, 3) is a domain. Here, φ(x, t) is an order parameter, F (φ) = 0.25(φ2
− 1)2 is the free energy per

unit volume, and the small constant ϵ is the gradient energy coefficient related to the interfacial energy. At the boundary,
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Fig. 1. Snapshots of phase separation by (a) the AC and (b) the CH equations.

we apply the periodic boundary condition. The AC equation is the L2-gradient flow of the following total free energy

EAC(φ) :=

∫
Ω

(
F (φ)
ϵ2 +

1
2
|∇φ|

2
)
dx. (2)

Differentiating EAC(φ) with respect to time, we obtain:

d
dt

EAC(φ) =

∫
Ω

(
F ′(φ)
ϵ2 φt + ∇φ · ∇φt

)
dx

=

∫
Ω

(
F ′(φ)
ϵ2 − ∆φ

)
φtdx = −

∫
Ω

(φt )2dx ≤ 0.

Therefore, the total energy is non-increasing in time. The AC equation has been widely used to describe many important
problems such as image inpainting [2], two-phase incompressible fluids [3], complex dynamics of dendritic growth [4,5],
mean curvature flows [6–8], and image segmentation [9,10].

The Cahn–Hilliard (CH) equation [11], which is a fourth-order nonlinear parabolic partial differential equation, describes
the process of phase separation of a conserved order field as follows.

∂φ(x, t)
∂t

= ∆
[
F ′(φ(x, t)) − ϵ2∆φ(x, t)

]
, x ∈ Ω, t > 0. (3)

Here, the periodic boundary condition is considered. The CH equation is the mass-constrained gradient flow in H−1 of the
total free energy,

ECH(φ) :=

∫
Ω

(
F (φ) +

ϵ2

2
|∇φ|

2
)
dx. (4)

We also obtain the following:

d
dt

∫
Ω

φ dx =

∫
Ω

φt dx =

∫
Ω

∆
[
F ′(φ) − ϵ2∆φ

]
dx = 0, (5)

d
dt

ECH(φ) =

∫
Ω

(
F ′(φ)φt + ϵ2

∇φ · ∇φt
)
dx (6)

=

∫
Ω

(
F ′(φ) − ϵ2∆φ

)
φtdx = −

∫
Ω

|∇
(
F ′(φ) − ϵ2∆φ

)
|
2
dx ≤ 0,

As shown in Eqs. (5) and (6), the total mass is conserved and the total energy is non-increasing in time. The CH equation
has been widely studied [12–15] and is widely used in applications such as topology optimization [16], multiphase
incompressible fluid flows [17–20], image inpainting [21], surface reconstruction [22], diblock copolymer [23], phase
separation [24], tumor growth simulation [25], and microstructures with elastic inhomogeneity [26].

In order to apply the two models to investigate interesting applications, we need to know their correct evolutionary
dynamics. Both equations have similar phase separation properties, however, their dynamics are different as shown in Fig. 1.
Therefore, the main purpose of this article is to investigate the different dynamics of the AC and the CH equations.
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This report is organized as follows: in Section 2, we describe a numerical solution based on the Fourier spectral method
for the AC and the CH equations. We present several numerical results and compare the two equations in Section 3. In
Section 4, conclusions are given.

2. Numerical solution

In this section, we present a numerical solution for the AC Eq. (1) and the CH Eq. (3) using the Fourier-spectral
method [27]. For the convenience of the explanation, we shall discretize the equation in two-dimensional space Ω =

(0, Lx) × (0, Ly). Let hx = Lx/Nx and hy = Ly/Ny be the spatial step sizes in the x- and y-directions, respectively. Here, Nx
and Ny are positive even integers. We denote cell-centered points as (xm, yn) = ((m − 0.5)hx, (n − 0.5)hy). Let φk

mn be an
approximation of φ(xm, yn, tk), where tk = k∆t and ∆t is the temporal step. For the given data {φk

mn|m = 1, . . . ,Nx and
n = 1, . . . ,Ny}, the discrete Fourier transform is defined as φ̂k

pq =
∑Nx

m=1
∑Ny

n=1 φk
mne

−i(ξpxm+ηqyn), where ξp = 2πp/Lx and
ηq = 2πq/Ly. The inverse discrete Fourier transform is given as:

φk
mn =

1
NxNy

Nx/2−1∑
p=−Nx/2

Ny/2−1∑
q=−Ny/2

φ̂k
pqe

i(ξpxm+ηqyn). (7)

Let φ(x, y, k∆t) =
1

NxNy

∑Nx/2−1
p=−Nx/2

∑Ny/2−1
q=−Ny/2 φ̂k

pqe
i(ξpx+ηqy). Then, we have

∆φ(x, y, k∆t) = −
1

NxNy

Nx/2−1∑
p=−Nx/2

Ny/2−1∑
q=−Ny/2

(
ξ 2
p + η2

q

)
φ̂k
pqe

i(ξpx+ηqy).

Now, we apply a linearly stabilized splitting scheme [28] to the AC Eq. (1) as follows.

φk+1
mn − φk

mn

∆t
= −2φk+1

mn /ϵ2
+ ∆φk+1

mn − f (φk
mn), (8)

where f (φ) = (φ3
− 3φ)/ϵ2. Thus, Eq. (8) can be transformed into the discrete Fourier space as:

φ̂k+1
pq − φ̂k

pq

∆t
= −2φ̂k+1

pq /ϵ2
−
(
ξ 2
p + η2

q

)
φ̂k+1
pq − f̂ kpq.

Therefore, we obtain the following discrete Fourier transform

φ̂k+1
pq =

φ̂k
pq − ∆t f̂ kpq

1 + ∆t[2/ϵ2 + (ξ 2
p + η2

q )2]
.

Then, the updated numerical solution φk+1
mn can be computed using Eq. (7).

Next, we also apply the linearly stabilized splitting scheme [29] to the CH Eq. (3) as follows:

φk+1
mn − φk

mn

∆t
= ∆

[
2φk+1

mn − ϵ2∆φk+1
mn + f (φk

mn)
]
, (9)

where f (φ) = φ3
− 3φ. Thus, Eq. (9) can be transformed into the discrete Fourier space as:

φ̂k+1
pq − φ̂k

pq

∆t
= −

(
ξ 2
p + η2

q

) [
2φ̂k+1

pq + ϵ2 (ξ 2
p + η2

q

)
φ̂k+1
pq + f̂ kpq

]
.

Therefore, we obtain the following discrete Fourier transform

φ̂k+1
pq =

φ̂k
pq − (ξ 2

p + η2
q )∆t f̂ kpq

1 + ∆t[2(ξ 2
p + η2

q ) + ϵ2(ξ 2
p + η2

q )2]
.

Finally, the updated numerical solution φk+1
mn can be computed using Eq. (7). In general, Eyre’s linearly stabilized convex

splitting scheme can be written as

φ3
− φ = f1(φ) − f2(φ), (10)

where f1(φ) = sφ and f2(φ) = −φ3
+ (s + 1)φ for some parameter s. We treat f1(φk+1) implicitly and f2(φk) explicitly.

Then, the scheme is unconditionally stable with s ≥ 2 under the condition, |φ| ≤ 1. The choice s = 2 gives a smaller local
truncation error [28].



314 Y. Li, D. Jeong, H. Kim et al. / Computers and Mathematics with Applications 77 (2019) 311–322

3. Numerical experiments

3.1. Linear stability analysis

For comparison,we first performa linear stability analysis around a spatially constant critical composition solutionφ ≡ 0.
Linearizing the AC Eq. (1) about φ ≡ 0 gives

φt =
φ

ϵ2 + ∆φ. (11)

Let φ(x, t) = α(t)
∏d

i=1 cos(kiπxi) for x ∈ Rd where α(t) is an amplitude. Then, from Eq. (11), we have

α′(t)
d∏

i=1

cos(kiπxi) =
α(t)
ϵ2

d∏
i=1

cos(kiπxi) −

d∑
i=1

(kiπ )2α(t)
d∏

i=1

cos(kiπxi). (12)

By dividing Eq. (12) by
∏d

i=1 cos(kiπxi), we obtain

α′(t) =

[
1
ϵ2 −

d∑
i=1

(kiπ )2
]

α(t). (13)

The solution of the ordinary differential equation (13) is given by

α(t) = α(0)eλACt , (14)

where λAC = 1/ϵ2
−
∑d

i=1(kiπ )2.
Next, linearizing the CH equation (3) about φ ≡ 0 gives

φt = ∆(−φ − ϵ2∆φ). (15)

From Eq. (15), we have

α′(t)
d∏

i=1

cos(kiπxi) =

d∑
i=1

(kiπ )2α(t)
d∏

i=1

cos(kiπxi) (16)

−ϵ2

(
d∑

i=1

(kiπ )2
)2

α(t)
d∏

i=1

cos(kiπxi).

By dividing Eq. (16) by
∏d

i=1 cos(kiπxi), we obtain

α′(t) =

d∑
i=1

(kiπ )2
[
1 − ϵ2

d∑
i=1

(kiπ )2
]

α(t). (17)

The solution of the ordinary differential equation (17) is given by

α(t) = α(0)eλCHt , (18)

where λCH =
∑d

i=1(kiπ )2[1 − ϵ2∑d
i=1(kiπ )2]. Now, we define the numerical growth rate as

λ̃ =
1
T
log
(

∥φNt ∥∞

α(0)

)
. (19)

We study linear stability analysis in one-, two- and three-dimensional spaces. In all numerical test, ϵ = ϵm =

mh/[2
√
2 tanh−1(0.9)] means that we have approximately mh transition layers across the interfacial transition layer [30].

Unless otherwise specified, we use N = Nx = Ny = Nz = 200, h = 1/N , ∆t = 0.01h2, and ϵ = ϵ16.

3.1.1. One-dimensional space
First, we perform a linear stability analysis on one-dimensional space Ω = (0, 1). The initial state is taken to be

φ(x, 0) = 0.01 cos(kπ (x − 0.5h)), where k is a positive even integer less than or equal to 20. Here, we shift the cosine
function by a half grid size so that we have the maximum value at the grid point. Let λ̃AC(circle marker), λAC(solid line) be
the numerical and analytic growth rates of the AC equation, respectively.

Let λ̃CH(square marker), λCH(dashed lines) be the numerical and analytic growth rates of the CH equation, respectively.
In Fig. 2, the numerical and analytic growth rate values for different wave numbers (k = 2, 4, . . . , 20) are shown and they
are in good agreement with each other. Here, T = 1000∆t and α(0) = 0.01 are used.
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Fig. 2. Numerical and analytic growth rates for different wave numbers (k = 2, 4, . . . , 20) in one-dimensional space.

Fig. 3. (a) Analytic growth rates for the linearized AC and the CH equations. (b) Numerical and analytic growth rates for different wave numbers
(k1 = k2 = 2, 4, . . . , 20). Numerical and exact growth rates for (c) the AC and (d) the CH equations . (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

3.1.2. Two-dimensional space
In the computational domain Ω = (0, 1) × (0, 1), we investigate the linear stability of the AC and CH equations. The

initial condition is set to φ(x, y, 0) = 0.01 cos(k1π (x− 0.5h)) cos(k2π (y− 0.5h)), where k1 and k2 are positive even integers
less than or equal to 20. Here, T = 1000∆t and α(0) = 0.01 are used.

In Fig. 3(a), the analytic growth rates derived from the linearized AC and the CH equations are represented by red and
blue surfaces, respectively. In Fig. 3(b), we show the analytic and numerical growth rates for the AC and the CH equations
when k1 = k2 = 2, 4, . . . , 20, respectively. Additionally, we can observe the growth rates of the numerical solutions by
the AC (circle marker) and the CH (square marker) equations in Fig. 3(c) and (d), respectively. Similar to the results for the
one-dimensional space, numerical and analytic results for both the AC and the CH equations are in good agreement with
each other.
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Fig. 4. Numerical and analytic growth rates for different wave numbers (k = k1 = k2 = k3 = 2, 4, . . . , 20) for three-dimensional space.

Fig. 5. Temporal evolution of (a) the AC and (b) the CH equations when the initial condition is set to φ(x, 0) = 0.01 cos(2πx) and φ(x, 0) = 0.01 cos(12πx).

3.1.3. Three-dimensional space
For three-dimensional space Ω = (0, 1) × (0, 1) × (0, 1), we implement the linear stability test with φ(x, y, z, 0) =

0.01 cos(k1π (x − 0.5h)) cos(k2π (y − 0.5h)) cos(k3π (z − 0.5h)), where k1, k2 and k3 are positive integers less than or equal
to 20. Here, T = 100∆t and α(0) = 0.01 are used.

To compare the growth rates for the AC and the CH equations, we illustrate the analytic and numerical growth rates and
their relative absolute error when the initial mode k1, k2, and k3 are the same as k. Here, we define the relative absolute error
E = |(λ̃ − λ)/λ|, where λ and λ̃ represents the analytic and numerical values, respectively. As shown in Table 1, the fastest
growth modes of the AC and the CH equations are k = 2 and k = 6, respectively.
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Fig. 6. Temporal evolution of (a) the AC and (b) the CH equations with the initial condition φ(x, 0) = 0.01[cos(2πx) + cos(12πx)].

Fig. 7. Temporal evolution of (a) the AC and (b) the CH equations with the initial condition φ(x, 0) = 0.05rand(x). Here, rand(x) denotes the random
number between −1 and 1.

Table 1
Comparison of analytic, numerical growth rates, and their relative absolute error of the AC and the CH equations in three-
dimensional space.

k λAC λ̃AC EAC λCH λ̃CH ECH
2 2585.9 2590.9 0.00191 113.2 113.3 0.00409
4 2231.2 2235.5 0.00195 390.6 390.9 0.00070
6 1640.0 1643.4 0.00203 645.8 646.6 0.00110
8 812.5 814.3 0.00223 568.6 569.6 0.00176

10 −251.2 −251.6 0.00141 −274.5 −275.0 0.00161
12 −1551.0 −1554.4 0.00215 −2437.7 −2446.2 0.00344
14 −3086.6 −3094.0 0.00239 −6593.4 −6627.5 0.00514
16 −4857.8 −4870.6 0.00262 −13526.7 −13626.5 0.00733
18 −6864.1 −6884.0 0.00288 −24128.3 −24375.3 0.01013
20 −9105.4 −9134.2 0.00316 −39383.8 −39929.9 0.01368

Fig. 4 shows the numerical and analytic growth rates for different wave numbers k = k1 = k2 = k3 = 2, 4, · · · , 20.
Similar to the previous tests, it can be observed that numerical and analytic results for both the AC and the CH equations are
in good agreement with each other.

The fastest growth rates of the AC equation for 1D, 2D, and 3D are the same, whereas those of the CH equation are
different. The growth rates of the AC equation are λAC = 1/ϵ2

−
∑d

i=1(kiπ )2 for d = 1, 2, and 3, which are monotonically
decreasing for all dimensions. Therefore, the maximum is 1/ϵ2 for all dimensions. Whereas, those of the CH equations
are λCH =

∑d
i=1(kiπ )2[1 − ϵ2∑d

i=1(kiπ )2] for d = 1, 2, and 3, which have different minimum values depending on the
dimensions.
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Fig. 8. Temporal evolution of (b) theAC and (c) the CHequationswith (a) the initial conditionφ(x, y, 0) = 0.05 cos(2πx) cos(2πy)+0.05 cos(8πx) cos(8πy).

3.2. Comparison of temporal evolutions

In this section, we compare the numerical results of the AC and the CH equations with respect to initial frequency mode.

3.2.1. One-dimensional space
Based on the linear stability test in one-dimensional space Ω = (0, 1), we know that the AC and the CH equations have

the fastest growth modes when k = 2 and k = 12, respectively (see Fig. 2).
First, we implement two experiments with the initial conditions (circle marker) set to low and high frequency modes. In

Fig. 5, (a) and (b) represent the temporal evolution of the AC and the CH equations, respectively. Also, the first and second
columns show the numerical results when φ(x, 0) = 0.01 cos(2πx) and φ(x, 0) = 0.01 cos(12πx), respectively. Here, we
use the total time T = 10000∆t and T = 40000∆t for the AC and the CH equations, respectively. Based on the numerical
results, we can observe that the numerical solution of the AC equation grows quickly when k = 2, while the CH equation
grows when k = 12.

To investigate the outcome of combining the initial condition with low and highmodes, we perform two numerical tests.
We first consider the initial condition as φ(x, 0) = 0.01[cos(2πx)+cos(12πx)]. Fig. 6(a) shows the temporal evolution of the
AC equation until T = 8000∆t . The numerical solution leaves only k = 2mode and the high mode (k = 12) disappears over
time. On the other hand, the CH equation has a different behavior to the AC equation as shown in Fig. 6(b). Since the fastest
mode of the CH equation is k = 12, the numerical solution of this equation only has a high mode without low-frequency
modes.

Fig. 7 shows the temporal evolution of the AC and the CH equations with φ(x, 0) = 0.05rand(x). Here, rand(x) denotes
a random number between −1 and 1. As expected, the numerical result of the AC equation forms relatively few frequency
modes compared to the CH equation.

3.2.2. Two-dimensional space
In two-dimensional space Ω = (0, 1) × (0, 1), we simulate the numerical test with the initial condition φ(x, y, 0) =

0.05 cos(2πx) cos(2πy) + 0.05 cos(8πx) cos(8πy) as shown in Fig. 8(a). Here, k = 2 and k = 8 are the fastest growth modes
of the AC and the CH equations in two-dimensional space, respectively. Similar to the one-dimensional test, the numerical
solution of the AC equation grows faster than that of the CH equation, leaving only a low frequency mode.
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Fig. 9. Temporal evolution of (b) the AC and (c) the CH equationswith (a) the initial conditionφ(x, y, 0) = 0.05rand(x, y). Here, rand(x, y) denotes a random
number between −1 and 1.

Next, we consider the initial condition with random perturbation as φ(x, y, 0) = 0.05rand(x, y). Here, rand(x, y) denotes
the random number between −1 and 1. As shown in Fig. 9, the AC equation has a low frequency mode over time unlike the
CH equation.

3.2.3. Three-dimensional space
Now, we examine the same tests in three-dimensional space Ω = (0, 1) × (0, 1) × (0, 1). Fig. 10 represents the

isosurface of the numerical solution at the zero level for the AC and the CH equationswith the initial condition φ(x, y, z, 0) =

0.1 cos(2πx) cos(2πy) cos(2πz) + 0.1 cos(6πx) cos(6πy) cos(6πz).
With the progression of time, the numerical solutions of the AC and CH equations exhibit low and high frequency modes,

respectively.
In Fig. 11, we can compare the AC and the CH equations with the random perturbed initial condition as φ(x, y, z, 0) =

0.05rand(x, y, z). Here, rand(x, y, z) denotes a randomnumber between−1 and 1. Similarly, the isosurfaces of two equations
at the zero level show the same results as the previous tests.

Interestingly, we found a similar dynamics between the two equations for the relaxation of the curved interface. The
initial condition is set to

φ(x, y, 0) = tanh
(
y − a
√
2ϵ

)
+ tanh

(
b − y
√
2ϵ

)
− 1, (20)

where a = 0.25+0.2 cos(4πx) and b = 0.75+0.2 cos(4πx). Aswe observe in Fig. 12, it is possible to determine the dynamics
of the interface that are almost identical. Note that in Fig. 12, we plot the filled contours, i.e., the phase-field is positive for
the shaded region and is negative in the other region. The symbols are at the interface. Therefore, the vertical axis is not
φ but the y-axis. In this numerical experiment, we do not consider the growth of the phase-field, but instead consider the
interface relaxation dynamics. It can be seen in Fig. 12 that there is a time difference. This is due to the fact that the interface
in the AC equation moves according to the motion by mean curvature [1,7,8] and the interface in the CH equation moves
according to the Mullins–Sekerka evolution, see [31] and references therein for more details.
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Fig. 10. (a) Initial condition φ(x, y, z, 0) = 0.1 cos(2πx) cos(2πy) cos(2πz) + 0.1 cos(6πx) cos(6πy) cos(6πz) and numerical solution of (b) the AC and
(c) the CH equations at T = 10000∆t .

Fig. 11. (a) Initial condition φ(x, y, z, 0) = 0.05rand(x, y, z) and numerical solution of (b) the AC and (c) the CH equations at T = 10000∆t . Here,
rand(x, y, z) denotes a random number between −1 and 1.

Fig. 12. Temporal evolution of the AC and the CH equations with the initial condition (20) in two-dimensional space Ω = (0, 1) × (0, 1).
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Fig. 13. Column (a) is the step initial condition. Columns (b) and (c) are snapshots of the numerical solutions of the AC and the CH equations at time t . The
times are shown below each figure.

3.2.4. Numerical experiment of the AC and the CH equations with step initial conditions
Finally, we perform a numerical experiment of the AC and the CH equations with step initial conditions. The initial

conditions are given as:

φ(x, 0) =

{
0.7 if ∥x − 0.5∥∞ ≤ 0.25,
−0.7 otherwise,

where x ∈ Rd and d = 1, 2, and 3. Here, the maximum norm is defined as ∥x∥∞ = max1≤i≤d |xi|.
Fig. 13(a), (b), and (c) show the step initial conditions, snapshots of the numerical solutions of the AC and the CH equations

at time t , respectively. In the case of the AC equation, the phase-field in the flat region approaches the equilibrium values,
i.e., ±1. However, in the case of the CH equation, the evolutionary dynamics is different. The phase-field is undergoing
separation in the neighborhood of the interface, i.e., zero level set, while the phase-field is not changed in the middle of the
flat region at early times. This behavior is partly due to the conservation property of the CH equation.
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4. Conclusions

We performed a comparison study on the different dynamics between the AC and the CH equations. Linear stability
analysis and numerical simulations demonstrated that while the growth rates are monotonically decreasing with respect
to the modes for the AC equation, the growth rates for the CH equation increase and then decrease with respect to the
modes. The dynamics of the two equations is different. Therefore, the appropriate equation must be used when a particular
phenomenon is modeled.
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