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Abstract

In this paper, we propose a robust and accurate numerical algorithm to recon-

struct a local volatility function using the Black–Scholes (BS) partial differential

equation (PDE). Using the BS PDE and given market data, option prices at

strike prices and expiry times, a time-dependent local volatility function is com-

puted. The proposed algorithm consists of the following steps: (1) The time-

dependent volatility function is computed using a recently developed method;

(2) A Monte Carlo simulation technique is used to find the effective region which

has a strong influence on option prices; and we partition the effective domain

into several sub-regions and define a local volatility function based on the time-

dependent volatility function on the sub-regions; and (3) Finally, we calibrate

the local volatility function using the fully implicit finite difference method and

the conjugate gradient optimization algorithm. We demonstrate the robustness

and accuracy of the proposed local volatility reconstruction algorithm using

manufactured volatility surface and real market data.
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1. Introduction

The Black–Scholes (BS) partial differential equation (PDE) is one of the

most widely used models in the field of option pricing [4]. In the standard BS

PDE, the volatility is constant. However, the constant volatility does not reflect

volatility skew or smile. To solve this problem, local volatility [15], stochastic5

volatility [21], implied volatility [17], and stochastic local volatility models [22]

were proposed. Among these models, local volatility has the advantage of being

well fitted to the market smile and arbitrage-free. The idea of local volatility was

first suggested by Dupire [11], and Derman and Kani [10]. They noted that there

is a unique diffusion process consistent with the risk neutral probability derived10

from the market prices. Dupire proposed local volatility as a continuous time

model. Derman and Kani also proposed local volatility model using binomial

tree approach. However, it is not easy to reconstruct accurate local volatility

using these models because there are not enough options traded in the real

market. A variety of local volatility models have been proposed in the literature15

[2, 8, 9, 12, 13, 18, 20]. Because the reconstruction of local volatility is an ill-

posed problem, it is difficult to calibrate local volatility accurately and robustly.

A number of studies have been conducted to calibrate local volatility. Geng

et al. [12] calibrated local volatility surface in a non-parametric approach us-

ing second-order Tikhonov regularization. They used second-order Tikhonov20

regularization to solve the ill-posed problem that occurs when we calibrate lo-

cal volatility. There are other researches investigating local volatility under a

Tikhonov regularization framework [1, 9, 18]. Coleman et al. [8] proposed lo-

cal volatility function based on kernel functions generating splines. Cho et al.

[7] developed a function space parameter estimation convergent approximation25

method for estimating local volatility. Ivan et al. [14] proposed a local volatility

calibration method using optimal transport theory. They formulated martin-

gale optimal transport problem, which seeks a martingale diffusion process and

minimizes cost function using augmented Lagrangian method and the alterna-

tive direction method of multipliers algorithm. The authors in [3] proposed a30
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robust and consistent algorithm of constructing local volatility surfaces under

the Bayesian paradigm. Most of the cited references found the local volatil-

ity surface in terms of strike prices and time to maturity. However, when we

solve the BS PDE we need the local volatility function in terms of underlying

asset prices and time to maturity. Therefore, the main goal of this study is35

to propose a robust and accurate numerical algorithm to reconstruct the local

volatility function of underlying asset and time using the BS PDE.

The proposed numerical algorithm consists of the following steps: (1) Com-

pute the time-dependent volatility function using a recently developed method

[16]; (2) Find the effective region which has a strong influence on option prices40

using a Monte Carlo simulation (MCS) technique; and partition the effective

domain into several sub-regions and define a local volatility function based on

the time-dependent volatility function on the sub-regions; and (3) Calibrate the

local volatility function using the fully implicit finite difference method (FDM)

and the conjugate gradient optimization algorithm [6], which is a well-known45

algorithm. The basic idea of the conjugate gradient method is to select an

appropriate search direction in each iteration so that the value of the cost func-

tion minimizes. The main advantages of the algorithm are the simplicity and

the low storage requirement. However, the convergence of the conjugate gra-

dient algorithm is slow. We may use faster optimization solvers such as the50

Levenberg–Marquardt method [19], however, the conjugate gradient algorithm

is enough for the current study because the proposed algorithm does not require

heavy computation.

The rest of this paper is structured as follows. In Section 2, a detailed numer-

ical solution algorithm for constructing the time-and underlying-dependent local55

volatility function is described. In Section 3, we demonstrate the robustness and

accuracy of proposed local volatility reconstruction algorithm by showing the

results of several numerical experiments. Conclusions are drawn in Section 4.
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2. Numerical solution algorithm

In this section, we describe a detailed numerical solution algorithm for con-60

structing the time-dependent local volatility function. We want to find the

time-dependent local volatility function σ(S, t) so that the option price solution

u(S, t) of the following BS PDE can yield accurate market prices.

∂u(S, t)

∂t
= −1

2
(σ(S, t)S)2

∂2u(S, t)

∂S2
− rS

∂u(S, t)

∂S
+ ru(S, t), (1)

for 0 ≤ S ≤ L, t ≥ 0,

where S is the underlying asset price, t is the time, and r is the risk neutral

interest rate [4]. We use a fully implicit FDM to find the numerical solutions to65

the BS PDE (1). Let τ = T − t be the time to expiry time T . Then, Eq. (1)

becomes

∂u(S, τ)

∂τ
=

1

2
(σ(S, τ)S)2

∂2u(S, τ)

∂S2
+ rS

∂u(S, τ)

∂S
− ru(S, τ). (2)

We use the following notations: h = L/(NS − 1) and ∆τ = T/Nτ , where NS is

the number of underlying asset steps and Nτ is the number of time steps. We

discretize Eq. (2) using the fully implicit FDM and solve it using the Thomas70

algorithm. More specific descriptions are in Appendix A.

As the first step of the proposed algorithm, we compute a time-dependent

volatility function. For completeness of the exposition, we briefly review the nu-

merical algorithm for constructing the time-varying volatility function proposed

in [16]. Let the payoff of European vanilla call option be given by

u(S, 0) = max(S −K, 0), (3)

where K is strike price. The local cost function is defined as follows:

Θα(σ) =
1

Mk

Mk
∑

β=1

[uKβ
(σ;S0, Tα)− ωα

β ]
2χα

β , (4)

where ωα
β is the option price with the expiry times Tα for α = 1, . . . ,Mt and

the strike price Kβ for β = 1, . . . ,Mk, and uKβ
(σ;S0, Tα) is numerical solution

of option price using FDM. S0 is spot price of underlying asset. Here, χα
β is
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characteristic function. If V α
β is available, then it is one and otherwise zero.75

Note that Θα is called “local cost function” defined for some α. The goal is

that find σ(t) which minimizes Eq. (4) using the conjugate gradient method.

Note that in this first step, σ(t) is only dependent on time variable, t. Figure 1

illustrates the procedure for time-dependent volatility function.

Let us describe the procedure in detail. First, it calibrates σ1(t) = η1 on

[0, T1] by optimizing Eq. (4). Second, we define a linear function in [0, T2] as

follows.

σ2(t) =
η2 − η1

T2 − 0.5T1

(t− T2) + η2, (5)

where η2 is volatility at T2. Equation (5) passes through points (T 2

1

, η1) and

(T2, η2). T b
a
means the middle between [Ta, Tb]. We find η2 by optimizing Eq.

(4) and obtain σ2(t). Third, we define linear volatility function

σ3(t) =
η3 − σ2(T 3

2

)

T3 − T 3

2

(t− T3) + η3. (6)

Equation (6) passes through points (T 3

2

, σ2(T 3

2

)) and (T3, η3). We find η3 and

σ3(t) by optimizing Eq. (4). Then, we define the piecewise linear volatility

function on [0, T3] as

σ(t) =











σ2(t) if ∈ [0, T 3

2

],

σ3(t) if ∈ [T 3

2

, T3].

(7)

After that, the third procedure is then repeated from α = 4 to α = Mt. The80

following piecewise linear volatility function is obtained:

σ(t) (8)

=































η2 − η1
T 3

2

− T 1

2

(

t− T 1

2

)

+ η1 if t ∈
[

0, T 3

2

]

,

ηα+1 − ηα
Tα+ 1

2

− Tα− 1

2

(

t− Tα− 1

2

)

+ ηα if t ∈
[

Tα− 1

2

, Tα+ 1

2

]

, α = 2, . . . ,Mt − 2,

ηMt
− ηMt−1

TMt−
1

2

− TMt−
3

2

(

t− TMt−
3

2

)

+ ηMt−1 if t ∈
[

TMt−
3

2

, TMt

]

.

For example, Fig. 2 shows reconstruction of time-dependent volatility for

European call option with a given volatility σ(t) = 0.3e−t. For more detailed

computation, refer to Ref. [16].
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Figure 1: Schematic of procedure for time-dependent volatility function. Reprinted from Jin

et al. [16] with permission from Hindawi Publishing Corporation.
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Figure 2: Reconstruction of time-dependent volatility for European call option with a given

volatility σ(t) = 0.3e−t.

The second step is to find the effective region. We compute the domain85

of influence on the solutions of the BS PDE. We use the time-dependent local

volatility function σ(t), Eq. (9), and MCS to generate the stock process.

S(t+∆t) = S(t) exp

[(

r − 1

2
σ(t)2

)

∆t+ σdW (t)

]

. (9)

We generate M sample stock processes. Then, for each time t, we partition the

underlying asset space [0,∞) into s0(t) = 0 < s1(t) < s2(t) < · · · < sN (t) = ∞
and define Ωi = ∪0≤t≤T [si−1(t), si(t)) for i = 1, . . . , N . We define pi as the90

ratio of the number of pathes less than si(t) to M . For example, Fig. 3 shows a

schematic illustration of a partition Ω1, . . . ,Ω6 with M = 106, N = 6, r = 0.015,

T = 1, σ(t) = 0.3e−t, and (p1, p2, p3, p4, p5, p6) = (0.1, 0.3, 0.5, 0.7, 0.9, 1.0).

For the third step, suppose that we have a set of market price of the options

V α
β with the expiry time Tα for α = 1, . . . , Nt and the strike price Kβ for95

β = 1, . . . , Nk. We define the following global cost function that is mean-square

error function.

Γα,β(a, b, c, d) =
1

NtNk

Nt
∑

α=1

Nk
∑

β=1

[

uTα,Kβ
(σ(S, t);S0, a, b, c, d)− V α

β

]2

χα
β , (10)

where uTα,Kβ
(σ;S0) is the numerical solution using the fully implicit FDM at

S = S0. Note that Γα,β is called “global cost function” defined for all α as

compared with Θα. By minimizing the cost function, the parameters a, b, c,100
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Figure 3: Schematic illustration of a partition Ω1, . . . ,Ω6.

and d are to be found. A detailed description of this is provided in next section.

In this paper, we propose the following time-dependent local volatility:

σ(S, t) (11)

=



















σ(t) + Ψ(s1(T )) if (S, t) ∈ Ω1,

σ(t) + Ψ(0.5(sα−1(T ) + sα(T ))) if (S, t) ∈ Ωα, α = 2, . . . , N − 1,

σ(t) + Ψ(sN−1(T )) if (S, t) ∈ ΩN ,

where s1(T ), . . . , sN−1(T ) are the boundary points of sub-domains at t = T as

shown in Fig. 3 and

Ψ(S) = a tanh2
(

S − α1b

α2c

)

− α3d. (12)

where α1, α2, and α3 are constant for scaling unknown parameters a, b, c, and105

d. Figures 4(a) and (b) show the schematic illustrations of Ψ(S) and σ(S, t),

respectively.

Prior to numerical tests, we show effect of the parameters a, b, c, d on Ψ(S).

We use the underlying asset space [0, 200], the coefficients α1 = 100, α2 = 50,
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Figure 4: Schematic illustrations of (a) Ψ(S) and (b) σ(S, t).

and α3 = 0.1, and the scaling unknown parameters a = b = c = d = 1 for a110

simple comparison. Figure 5(a) illustrates the result when all other values are

fixed and only a is changed. The effects of parameters b, c, and d are illustrated

in Figs. 5(b)–(d), respectively.

The conjugate gradient algorithm is used to find the parameter values of

a, b, c, and d which minimize the global cost function (10).115

3. Numerical experiment

In this section, we demonstrate the performance of the proposed local volatil-

ity function by numerical experiments with manufactured volatility surface func-

tion and real market data.

3.1. Construction local volatility surfaces from manufactured volatility surfaces120

We make a manufactured local volatility surface and then reconstruct the

surface using the proposed algorithm. First, let us define a manufactured volatil-
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Figure 5: Effects of parameters (a) a, (b) b, (c) c, and (d) d with fixed other parameters.
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ity surface function as

σM (S, t) =
(

10−5(S − 100)2 + 0.2
)

e−t, (0 ≤ S ≤ 300, 0 ≤ t ≤ 2), (13)

which is shown in Fig. 6(a).

(a) (b)

Figure 6: (a) Manufactured local volatility surface, σM (S, t) =
(

10−5(S − 100)2 + 0.2
)

e−t.

(b) Option values V α
β

using the manufactured local volatility surface (13).

Then, the option price V α
β is obtained by using this manufactured local125

volatility surface (13) and the fully implicit FDM (A.1). We use r = 0.015, ∆τ =

1/360, L = 300, h = 1, S0 = 100, the expiration times T = [T1, T2, T3, T4, T5] =

[0.25, 0.5, 1, 1.5, 2], and the strike prices K = [K1,K2,K3,K4,K5] = [90, 95, 100,

105, 110]. Figure 6(b) shows the option values V α
β using the manufactured local

volatility surface (13).130

Next, we find σopt(S, t) that minimizes Eq. (10) by using the proposed

algorithm. We useN = 6, (p1, p2, p3, p4, p5, p6) = (0.1, 0.3, 0.5, 0.7, 0.9, 1.0)

for the effective sub-regions. The initial values of a, b, c, and d are all set to 1.

Figure 7(a) is a local volatility function constructed with V α
β using our pro-

posed algorithm. The root mean square error (RMSE) in effective region be-135

tween σopt(S, t) and σM (S, t) is approximately 0.0018, see Fig. 7(b). Figure

7(c) shows V α
β using the manufactured local volatility surface, uTα,Kβ

using the

reconstructed local volatility surface, and difference between them. As shown

in Figs. 7(a)–(c), the proposed algorithm can reconstruct the optimal local

volatility surface.140
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(a)

(b) (c)

Figure 7: (a) Constructed local volatility surface. (b) Mesh plots of σM (S, t), σopt(S, t) and

|σM (S, t)− σopt(S, t)| in effective region. (c) Plots of V α
β
, uTα,Kβ

, and |V α
β

− uTα,Kβ
|.
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Next, we consider another manufactured local volatility function:

σM (S, t) =
(

10−5(S − 200)2 + 0.2
)

e−t, (0 ≤ S ≤ 300, 0 ≤ t ≤ 2), (14)

which is shown in Fig. 8(a). We run the same test with Eq. (14). Figure 8(b)

shows the option values V α
β using the manufactured local volatility surface (14).

(a) (b)

Figure 8: (a) Manufactured local volatility surface, σM (S, t) =
(

10−5(S − 200)2 + 0.2
)

e−t.

(b) Option values V α
β

using the manufactured local volatility surface (14).

Figures 9(a)–(c) represent constructed local volatility surface; plots of σM (S, t),

σopt(S, t) and |σM (S, t) − σopt(S, t)| in effective region; and mesh plots of V α
β ,145

uTα,Kβ
, and |V α

β −uTα,Kβ
|, respectively. The RMSE in effective region between

σopt(S, t) and σM (S, t) is approximately 0.0042.

On the third test, we compare the our algorithm with another method [5]

to construct the local volatility for the stock price and time. In [5], the au-

thors verified the performance of their method by assuming the following local150

volatility form:

σM (S, t) = σA +
A

S
+Bt, (0.2S0 ≤ S ≤ 5S0, 0 ≤ t ≤ 1), (15)

where σA = 0.2, A = 10, and B = 0.2. In [5], the following parameters are

used: the strike prices K = [33.60, 34.40, 35.28, · · · , 50.40], the maturity

time T = [0.1, 0.145, 0.19, · · · , 1.0], the interest rate r = 0.05, a continuous

dividend yield q = 0.03, S0 = 42, and the number of grid points Ns = 401,155

and time step Nτ = 401. Figure 10(a) and (b) show the manufactured local

volatility surface as a function of S and t and the option values V α
β , respectively.
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(a)

(b) (c)

Figure 9: (a) Constructed local volatility surface. (b) Plots of σM (S, t), σopt(S, t) and

|σM (S, t)− σopt(S, t)| in effective region. (c) Mesh plots of V α
β
, uTα,Kβ

, and |V α
β

− uTα,Kβ
|.

(a) (b)

Figure 10: (a) Manufactured local volatility surface, σM (S, t) = σA + A
S

+ Bt. (b) Option

values vα
β
.

14



To find σopt by using the proposed algorithm, we set the initial guess (a, b, c, d) =

(1, 1.5, 10, 1) and N = 6, (p1, p2, p3, p4, p5, p6) = (0.1, 0.3, 0.5, 0.7, 0.9, 1.0)

for the effective sub-regions. Figures 11(a)–(c) represent constructed local volatil-160

ity surface; plots of σM (S, t), σopt(S, t) and |σM (S, t) − σopt(S, t)| in effective

region; and mesh plots of V α
β , uTα,Kβ

, and |V α
β − uTα,Kβ

|, respectively. In [5],

the accuracy of the local volatility is observed with highest error being 0.02

and the highest of the proposed algorithm is 0.08 with less accurate results.

However, we observe that the RMSE in effective region between σopt(S, t) and165

σM (S, t) is approximately 0.0258. In the above three tests, the proposed algo-

rithm has been shown to reconstruct local volatility surfaces that are similar to

manufactured local volatility functions in the effective region.

(a)

(b) (c)

Figure 11: (a) Constructed local volatility surface. (b) Plots of σM (S, t), σopt(S, t), and

|σM (S, t)− σopt(S, t)| in effective region. (c) Mesh plots of V α
β
, uTα,Kβ

, and |V α
β

− uTα,Kβ
|.
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3.2. Local volatility surface from real market data

In this section, we apply the proposed algorithm to real market data to170

reconstruct a local volatility surface. We use the data of KOSPI 200 index call

option price on 29 July 2016 [16] as listed in Table 1 and shown in Fig. 12(a).

Table 1: KOSPI 200 index call option price on 29 July 2016.
P
P
P
P
P
P
P
P
P
P
P

Maturity

Strike
245 247.5 250 252.5 255 257.5 260 262.5

2016.08.11 7.34 5.29 3.39 1.93 0.92 0.37 0.11 0.04

2016.09.08 8.85 6.90 5.28 3.82 2.56 1.70 1.05 0.62

We use the following parameters: N = 6, (p1, p2, p3, p4, p5, p6) =

(0.1, 0.3, 0.5, 0.7, 0.9, 1.0), S0 = 251.48, ∆t = 1/365, and r = 0.0136. Figure

12(b) is a local volatility surface created with real market data. Figure 12(c)175

shows the comparison between the real market price and the numerical option

price calculated by optimal local volatility surface. Table 2 lists the numerical

option prices and the absolute errors between the real market and the numer-

ical option prices in parentheses. From these results, we can confirm that the

proposed local volatility surface reconstruction algorithm works well with the180

real finance market data.

Table 2: Numerical option price and absolute error between real and numerical prices on 29

July 2016.
P
P
P
P
P
P
P
P
P
P
P

Maturity

Strike
245 247.5 250 252.5 255 257.5 260 262.5

2016.08.11
7.18 5.16 3.39 1.97 0.93 0.35 0.09 0.02

(0.16) (0.13) (0.00) (0.04) (0.01) (0.02) (0.02) (0.02)

2016.09.08
8.76 6.96 5.33 3.89 2.68 1.70 0.97 0.52

(0.09) (0.06) (0.05) (0.07) (0.12) (0.01) (0.08) (0.10)

Next, we reconstruct the local variability surface by applying the proposed

algorithm to the up-to-date market data. We use KOSPI 200 index call option

price on 30 March 2020 as shown in Table 3 and Fig. 13(a).
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(a)

(b) (c)

Figure 12: (a) Option values in Table 1. (b) Reconstructed local volatility surface from the

data on 29 July 2016. (c) Comparison with market price and numerical option price.

Table 3: KOSPI 200 index call option price on 30 March 2020.
P
P
P
P
P
P
P
P
P
P
P

Maturity

Strike
245 247.5 250 252.5 255 257.5 260 262.5

2020.04.09 2.74 2.16 1.72 1.34 1.04 0.84 0.64 0.50

2020.05.14 7.08 6.30 5.51 5.24 4.66 3.72 3.51 2.72

17



We take parameters: S0 = 232.45, ∆t = 1/365, and r = 0.01. Other param-185

eters are the same as those of the above test. Figure 13(b) is a local volatility

surface created with the latest data. Table 4 lists the numerical prices calcu-

lated by reconstructed local volatility surface, and the absolute errors between

the market and and numerical prices for KOSPI 200 index call option in paren-

theses. Figure 13(c) shows two overlapping graphs of the open prices listed in190

Table 4.

(a)

(b)
(c)

Figure 13: (a) Option values in Table 4. (b) Reconstructed local volatility surface from latest

data. (c) Comparison with market price and numerical option price.

4. Conclusions

In this paper, we proposed a robust and accurate numerical algorithm to

reconstruct a local volatility function using BS PDE. Finding local volatility

function is an ill-posed inverse problem. To solve this problem, we got the195

time-dependent volatility, then found the effective area using Monte Carlo sim-
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Table 4: Numerical option price and absolute error between real and numerical prices on 30

March 2020.
P
P
P
P
P
P
P
P
P
P
P

Maturity

Strike
247.5 250 252.5 255 257.5 260 262.5 265

2020.04.09
2.43 1.96 1.57 1.26 1.01 0.81 0.65 0.52

(0.31) (0.20) (0.15) (0.08) (0.03) (0.03) (0.01) (0.02)

2020.05.14
7.16 6.37 5.66 5.01 4.44 3.93 3.47 3.06

(0.08) (0.07) (0.15) (0.23) (0.22) (0.21) (0.04) (0.34)

ulation and obtained the initial local volatility function. We used the initial

local volatility function and the hyperbolic tangent function to specify param-

eters and obtained option price using the fully implicit FDM. The value of the

cost function can be calculated from the computed option price. We can solve200

the ill-posed inverse problem by optimizing only four parameters and obtained

unique local volatility function. We demonstrated that the proposed algorithm

is robust and accurate by testing manufactured local volatility surfaces and a

real market data. In the present work, we found the effective region using MCS

technique numerically. In future work, we plan to use the probability density205

function for the effective region, which is much simpler than MCS. Figure 14

shows the log-normal distribution PDF with T = 1, σ = 0.3, S0 = 100, and

r = 0.015.

f(S, t) =
1

σS
√
2πt

exp

(

− [ln(S/S0)− (r − σ2/2)t]2

2σ2t

)

. (16)
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Figure 14: (a) Probability density function. (b) Filled contour plots at the levels, f =

0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, 0.1.

Appendix A.

By applying the fully implicit FDM to Eq. (2), we obtain Eq. (A.1).215

un+1
i − un

i

∆τ
=

(σn+1
i Si)

2

2

un+1
i−1 − 2un+1

i + un+1
i+1

h2
+ rSi

un+1
i+1 − un+1

i−1

2h
(A.1)

−run+1
i ,

where un
i = u(Si, τn) = u((i− 1)h, n∆τ) and σn

i = σ(Si, τn) = σ((i− 1)h, n∆τ)

(i = 1, . . . , NS , n = 0, . . . , Nτ ). To solve the system (A.1), we rearrange it as

below

αiu
n+1
i−1 + βiu

n+1
i + γiu

n+1
i+1 = bi, (i = 1, . . . , NS), (A.2)

αi =
rSi

2h
− (σn+1

i Si)
2

2h2
, βi =

1

∆τ
+

(σn+1
i Si)

2

h2
+ r,

γi = −rSi

2h
− (σn+1

i Si)
2

2h2
, bi =

un
i

∆τ
.

We use linear boundary condition at S1 and SNS
, i.e., un

0 = 2un
1 − un

2 and

un
Ns+1 = 2un

Ns
− un

Ns−1 for all n. To solve the discrete system (A.2), we use220

the Thomas algorithm [6] which can directly obtain the inverse of tridiagonal

matrix.
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