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Abstract In this paper, we present an immersed boundarymethod for modeling a contractile
elastic ring in a three-dimensional Newtonian fluid. The governing equations are themodified
Navier–Stokes equations with an elastic force from the contractile ring. The length of the
elastic ring is time dependent and the ring shrinks with time because of its elastic nature in our
proposed model. We dynamically reduce the number of Lagrangian boundary points when
the distance between adjacent points is too small. This point-deleting algorithm helps keep
the number of immersed boundary points in a single Cartesian mesh grid from becoming too
high.We perform numerical experiments with various initial configurations of the contractile
elastic ring, and numerical simulations to investigate the effects of the parameters are also
conducted. The numerical results show that the proposed method can model and simulate
the time-dependent contractile elastic ring in a three-dimensional Newtonian fluid.

Keywords Immersed boundarymethod ·Contractile elastic ring ·Navier–Stokes equation ·
Multigrid method

1 Introduction

Cell division is one of the most important behaviors of living cells. However, its general
principles are still not clear because of its complicated process and various lineages in each
cytokinesis gene [1]. The process of physical cell division is caused by the contractile ring
(CR) on the cell membrane. The main protein content of the ring in eukaryotes is actin
filaments and myosin motors, which cluster on the membrane and produce a contractile
force (see [2] and references therein).
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We aremotivated tomodel and simulate three-dimensional cell growth and division.Many
studies of the the function of the CR during cytokinesis have been published [3–12], as one of
the key elements inmodeling cell division is how tomodel and simulate the CR.Nevertheless,
the detailed assembly and dynamics of theCR in cells are poorly understood [13]. The authors
in [14] proposed a simple numerical model of one hypothesis for the assembly mechanism
of the CR in cytokinesis by fission yeast using the Monte Carlo method. Zhou et al. [15]
recently showed that a function of the CR is to spatially coordinate curvature-dependent
septum assembly during fission yeast cytokineses.

In this paper, we focus on modeling and simulation of the CR in a three-dimensional
incompressible Newtonian fluid using the immersed boundary (IB). The IB method was
originally developed by Peskin to study the fluid dynamics of blood flow in the human heart
[16–18] and has been successfully applied to many problems [19–23].

There have been a number of simulations of an elastic boundary using the IB method
[24–29]. One of the advantages of the IB method is that we can solve the Navier–Stokes
equations on a single Cartesian domain where flexible boundaries were enabled to move or
change shapes in a complicated fashion [30]. Lim et al. [24,25] studied the dynamics of a
bent, twisted, and closed circular rod in a viscous incompressible fluid using a generalized
version of the IB method combined with the nonstandard Kirchhoff rod theory. Vahidkhah
and Abdollahi [26] considered the interactions between a deformable fiber and a viscous
channel flow. Deformation of a massless elastic fiber was simulated numerically using the
IB-lattice Boltzmann method.

This paper is organized as follows. In Sect. 2, we describe the mathematical model for
a contractile elastic ring in a three-dimensional Newtonian fluid. In Sect. 3, we describe
the discretization of the governing equations and present numerical solution algorithms.
Numerical experiments are presented in Sect. 4. Finally, our conclusion is given in Sect. 5.

2 Mathematical Model

We consider a closed contractile elastic ring immersed in a three-dimensional incompressible
fluid. The equations of fluid motion are given as

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p + ηΔu + f, in Ω × (0,∞), (1)

∇ · u = 0, (2)

where u(x, t) = (u(x, t), v(x, t), w(x, t)) is the velocity, p(x, t) is the pressure, x = (x, y, z)
is the Cartesian coordinate on Ω = (a, b) × (c, d) × (e, f ) ⊂ R

3, t is the time variable, ρ is
the density, and η is the viscosity. Here, the no-slip boundary condition is applied. The fluid
force density f(x, t) is given as

f(x, t) = ( f1(x, t), f2(x, t), f3(x, t)) =
∫ Lt

0
F(s, t)δ(x − X(s, t))ds, (3)

where s is a parameter, δ(x) is a three-dimensional smoothed Dirac-delta function, and
X(s, t) = (X (s, t), Y (s, t), Z(s, t)) is the Lagrangian variable of the CR. Here 0 ≤ s ≤ Lt ,
where Lt is the unstressed length of the boundary. Note that it is periodic with respect to
s, i.e., X(0, t) = X(Lt , t). To model the shrinking of the CR, we let Lt be time-dependent
length. The CR has an elastic force that enables it to be dynamically shortened from the
time-dependent Lt . The elastic force density F(s, t) generated by the ring is derived from
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the elastic stretching energy at the rest length [31]:

E(X(s, t)) = σ

2

∫ Lt

0

(∣∣∣∣∂X∂s
∣∣∣∣ − 1

)2

ds, (4)

where σ is the stiffness constant for the ring and |X| = √
X2 + Y 2 + Z2 is the L2-norm.

From the variation of the energy functional ℘E , we define F(s, t) as the negative of the
variational derivative:

℘E(X(s, t)) = −
∫ Lt

0
F(s, t) · ℘X(s, t)ds, (5)

where ℘ is a variation symbol, which distinguishes the symbol from the Dirac delta function
[18]. From the expression for the elastic energy, we obtain

℘E(X(s, t)) = d

dθ
E(X + θ℘X)

∣∣∣∣
θ=0

= σ

∫ Lt

0

(∣∣∣∣∂X∂s
∣∣∣∣ − 1

)
∂X/∂s

|∂X/∂s| · ∂(℘X)

∂s
ds

= −σ

∫ Lt

0

∂

∂s

[(∣∣∣∣∂X∂s
∣∣∣∣ − 1

)
∂X/∂s

|∂X/∂s|
]

· ℘Xds, (6)

where we have used integration by parts and the periodicity of s. Comparing Eqs. (5) and

(6), we define the elastic force density as F(s, t) = ∂

∂s
[T (s, t)τ (s, t)] , where

T (s, t) = σ

(∣∣∣∣∂X∂s
∣∣∣∣ − 1

)
(7)

is the tension of the ring and

τ (s, t) = ∂X/∂s

|∂X/∂s| (8)

is the unit tangent vector to the ring. The evolution equation of the ring is given by

∂X(s, t)

∂t
= U(s, t) =

∫
Ω

u(x, t)δ(x − X(s, t))dx, (9)

where U(s, t) is the boundary velocity on X(s, t).

3 Numerical Solution Algorithm

In this section, we describe the discretization of the governing Eqs. (1), (2), and (9). To
simplify the exposition, we consider the equations on the unit cube computational domain
Ω = (0, 1)3. Let h be the uniform mesh grid size, then the center of the cell is xi jk =
(xi , y j , zk) = ((i − 0.5)h, ( j − 0.5)h, (k − 0.5)h) for i, j, k = 1, . . . , N . Here, N denotes
the number of grid points in each direction. Let Δt be the time step size. To discretize the
equations, a staggered marker-and-cell (MAC) mesh [32] is used; i.e., the pressure p(x, t) is
stored at the cell-centers and the velocity components u(x, t), v(x, t), and w(x, t) are stored
at the cell-edges. In a discretized equation, we denote p(xi jk, nΔt) as pni jk . By discretizing
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the non-dimensionalized versions of Eqs. (1) and (2), we can rewrite them as follows:

un+1 − un

Δt
+ un · ∇dun = −∇d p

n+1 + 1

Re
Δdun + 1

We
fn, (10)

∇d · un+1 = 0, (11)

where Re = ρU∗L∗/η is the Reynolds number and We = ρ(U∗)2L∗/σ is the Weber
number with the characteristic velocity U∗ and length L∗. Therefore, in three-dimensional
Cartesian coordinates, we have

un+1
i+ 1

2 , jk
− un

i+ 1
2 , jk

Δt
+ (u · ∇du)n

i+ 1
2 , jk

= − pn+1
i+1, jk − pn+1

i jk

h
+ 1

Re
Δdu

n
i+ 1

2 , jk

+ 1

We
f n1 i+ 1

2 , jk, (12)

vn+1
i, j+ 1

2 ,k
− vn

i, j+ 1
2 ,k

Δt
+ (u · ∇dv)n

i, j+ 1
2 ,k

= − pn+1
i, j+1,k − pn+1

i jk

h
+ 1

Re
Δdv

n
i, j+ 1

2 ,k

+ 1

We
f n2 i, j+ 1

2 ,k, (13)

wn+1
i j,k+ 1

2
− wn

i j,k+ 1
2

Δt
+ (u · ∇dw)n

i j,k+ 1
2

= − pn+1
i j,k+1 − pn+1

i jk

h
+ 1

Re
Δdw

n
i j,k+ 1

2

+ 1

We
f n3 i j,k+ 1

2
, (14)

(∇d · u)n+1
i jk = 0. (15)

Here, we denote f nm i+ 1
2 , jk = 0.5( f nm i+1, jk + f nm i jk) for m = 1, 2, 3. Let Δsni be the

time-dependent step sizes satisfying Lt = ∑Ns−1
l=0 Δsnl = α(tn)L0, where Lt is the time

dependent length of the CR, Ns is the number of intervals, α(tn) is a scaling factor function
at time t = tn , and L0 is the initial length of the CR. Then, sn0 = 0 and snl+1 = snl + Δsnl for
l = 0, . . . , Ns−1.TheCR is defined asXn

l = X(snl , nΔt) = (Xn
l , Yn

l , Zn
l ) for l = 1, . . . , Ns .

Note that Xn
0 = Xn

Ns
and Xn

Ns+1 = Xn
1 because of the periodicity. This parametrization of

X(s, t) is schematically illustrated in Fig. 1.

Fig. 1 Schematic of
parametrization of X(s, t)

123

Author's personal copy



J Sci Comput (2016) 67:909–925 913

Given un and Xn , we want to find un+1 and Xn+1 by solving Eqs. (10) and (11) using the
projection method [33] and Eq. (9).

First, let us calculate the CR force f . Let Ds be the discrete differential operator with
respect to s:

DsXn
l+ 1

2
= (

Xn
l+1 − Xn

l , Yn
l+1 − Yn

l , Zn
l+1 − Zn

l

) /
Δsnl .

Then, Eqs. (7) and (8) are discretized as T n
l+ 1

2
= σ

(∣∣∣∣DsXn
l+ 1

2

∣∣∣∣ − 1

)
and τ n

l+ 1
2

=

DsXn
l+ 1

2

/ ∣∣∣∣DsXn
l+ 1

2

∣∣∣∣, respectively. The ring force density is defined as Fn
l = 2(T n

l+ 1
2
τ n
l+ 1

2
−

T n
l− 1

2
τ n
l− 1

2
)/(Δsnl−1 + Δsnl ). Then the cell-centered force f is given as

fn(x) =
Ns∑
l=l

Fn
l δh(x − Xn

l )
�snl−1 + �snl

2
. (16)

Here, δh is an approximation to the three-dimensional smoothed Dirac-delta function as
δh(x) = δ (x/h) δ (y/h) δ (z/h) /h3, where a four-point delta function [34] is given by

δ(r) =

⎧⎪⎪⎨
⎪⎪⎩

(
3 − 2|r | + √

1 + 4|r | − 4r2
)

/8 if |r | ≤ 1,(
5 − 2|r | − √−7 + 12|r | − 4r2

)
/8 if 1 < |r | ≤ 2,

0 otherwise.

(17)

Next, we compute an intermediate velocity field, ũ, which generally does not satisfy the
incompressible condition. To apply the no-slip boundary condition, we set the values of
ghost points as un− 1

2 , jk
= 0, vn0, jk = −vn1, jk , and wn

0, jk = −wn
1, jk in the x-direction. The

reason that only un has a different type of formula is that only un is saved at a cell-edge in
the x-direction on the MAC mesh. The values at ghost points in the y- and z-directions are
similarly defined. From Eq. (12) without the pressure gradient term, we have

ũn+1
i+ 1

2 , jk
− un

i+ 1
2 , jk

Δt
+ (u · ∇du)n

i+ 1
2 , jk

= 1

Re
Δdu

n
i+ 1

2 , jk
+ 1

We
f n1 i+ 1

2 , jk .

Then we define

ũn+1
i+ 1

2 , jk
= un

i+ 1
2 , jk

− Δt (u · ∇du)n
i+ 1

2 , jk
+ Δt

We
f n1 i+ 1

2 , jk + Δt

h2Re

(
un
i+ 3

2 , jk
+ un

i− 1
2 , jk

+ un
i+ 1

2 , j+1,k
+ un

i+ 1
2 , j−1,k

+ un
i+ 1

2 , j,k+1
+ un

i+ 1
2 , j,k−1

− 6un
i+ 1

2 , jk

)
,

where the advection term is defined as

(u · ∇du)n
i+ 1

2 , jk
= un

i+ 1
2 , jk

ūnx
i+ 1

2 , jk

+
vn
i, j− 1

2 ,k
+ vn

i+1, j− 1
2 ,k

+ vn
i, j+ 1

2 ,k
+ vn

i+1, j+ 1
2 ,k

4
ūny

i+ 1
2 , jk

+
wn
i j,k− 1

2
+ wn

i+1, j,k− 1
2

+ wn
i j,k+ 1

2
+ wn

i+1, j,k+ 1
2

4
ūnz

i+ 1
2 , jk

. (18)
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The values ūnx
i+ 1

2 , jk
are computed using the following upwind scheme:

ūnx
i+ 1

2 , jk
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un
i+ 1

2 , jk
− un

i− 1
2 , jk

h
if un

i+ 1
2 , jk

> 0,

un
i+ 3

2 , jk
− un

i+ 1
2 , jk

h
otherwise.

(19)

The other values ṽi, j+ 1
2 ,k and w̃i j,k+ 1

2
are calculated similarly. Then, we solve the following

equations for the advanced pressure field at the (n + 1)-th time step.

un+1 − ũ
Δt

= −∇d p
n+1, (20)

∇d · un+1 = 0. (21)

Applying the divergence operator to Eq. (20) and usingEq. (21), we have the Poisson equation
for the pressure at the advanced time (n + 1).

Δd p
n+1 = 1

Δt
∇d · ũ, (22)

where

Δd p
n+1
i jk = pni+1, jk + pni−1, jk + pni, j+1,k + pni, j−1,k + pni j,k+1 + pni j,k−1 − 6pni jk

h2
,

(∇d · ũ)i jk =
ũi+ 1

2 , jk − ũi− 1
2 , jk

h
+

ṽi, j+ 1
2 ,k − ṽi, j− 1

2 ,k

h
+

w̃i j,k+ 1
2

− w̃i j,k− 1
2

h
.

Since the Poisson problem is ill-posed under the no-slip boundary condition, the adjustment
step is needed for pn+1. Here, we specify that pn+1 has zero mean.

The linear system of Eq. (22) is solved using a multigrid method [35], specifically, V-
cycles using Gauss–Seidel relaxation with a tolerance of 10−7. After solving the pressure
field, we update un+1

i+ 1
2 , jk

as

un+1
i+ 1

2 , jk
= ũi+ 1

2 , jk − Δt

h

(
pn+1
i+1, jk − pn+1

i jk

)
. (23)

The variables vn+1
i, j+ 1

2 ,k
and wn+1

i j,k+ 1
2
are updated in a similar manner.

Using the updated fluid velocity un+1, we evaluate the IB velocityUn+1 and then the new
boundary position Xn+1 is updated according to

Un+1
l =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

un+1
i jk δh(xi jk − Xn

l )h
3, (24)

Xn+1
l = Xn

l + ΔtUn+1
l for l = 1, . . . , Ns . (25)

This completes one time step update.

4 Numerical Results

In this section, we describe several numerical tests for a time-dependent CR in a three-
dimensional domain.
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4.1 Convergence Test

We first perform a convergence test to verify of the proposed algorithm. Here, we set h to
1/32, 1/64, and 1/128. The initial condition of the CR is given by

X(s, 0) = (0.5 + R cos(2πs), 0.5 + R sin(2πs), 0.5), (26)

where R is the radius of the CR. In this test, we take R = 0.25, Lt = 2π(R − t), Re = 10,
We = 1, Δt = 0.1Re · h/128, and the final time T = 0.2441. We set the number of CR
particles as

Ns =
[‖X(s, 0)‖

h/m

]
,

where ‖X(s, 0)‖ = ∫ Lt
0 |∂X(s, 0)/∂s|ds is the length of X(s, 0), m is a positive integer, and

[x] is Gauss’ notation, i.e., the largest integer not greater than x . This equation implies that
there are about m Lagrangian points in one grid cell. Unless otherwise noted, we use m = 4
in the followings. Let us define a numerical discrete arc length as ‖Xn‖ = ∑

1≤l≤Ns
ΔXn

l ,
where ΔXn

l = |Xn
l+1 − Xn

l |.
Figure 2a, b show the configurations at t = 0.1221 and the temporal evolution of the

numerical arc length of the CR and Lt with respect to time, respectively. The figures indicate
that the configurations of the CR converge to a circle whose circumference is Lt and that the
numerical arc lengths also converge to Lt as the number of grid points increases.

In addition, the errors between Lt and ‖Xn‖ for each CR with different spatial step sizes
at t = 0.1221 are presented in Table 1. The result shows that our model has the first order
accuracy in both time and space.

32
64
128
L

t

(a)

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5 32
64
128
L

t

(b)

Fig. 2 a Configurations of CRs at t = 0.1221 and b temporal evolution of the numerical arc length ‖Xn‖ of
the CR and Lt with respect to time t , respectively. Re = 10 and We = 1 are used

Table 1 Error between Lt and
‖Xn‖ for each CR with different
spatial step sizes at T

h 1/32 1/64 1/128

Errors 0.2680 0.1206 0.06825

Order 1.155 0.8238

123

Author's personal copy



916 J Sci Comput (2016) 67:909–925

Fig. 3 ‖Xn‖ with respect to time
t of CRs having different spatial
step sizes

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

Pelham & Chang
L

t
32
64
128

4.2 Comparison with Experimental Data

Next, a numerical simulation is conducted to show the convergence of our model to exper-
imental data. Here, we match an unstressed length Lt with a circumference derived from a
ring diameter of the wild-type one in [3]. Note that the length and time of the experimental
data are non-dimensionalized by the characteristic length and time, respectively, and we take
Re = 10 and We = 10. The spatial and temporal step sizes are h = 1/32, 1/64, 1/128, and
Δt = 0.1Re · h/128, respectively.

Figure 3 shows ‖Xn‖ values with respect to time t for the CRs having different spatial
step sizes. The circular (◦) marker represents the data in [3]. The solid line (−) represents
Lt , which is interpolated from the experimental data. Further, the triangular (Δ), square (�),
and diamond (♦) markers represent the numerical results when h = 1/32, 1/64, and 1/128,
respectively. As seen in Fig. 3, the numerical circumference converges as the mesh becomes
finer and exhibits good agreement with the data from Pelham and Chang’s research.

Furthermore, configurations of CRs from the numerical simulation and in vivo are pre-
sented in Fig. 4. Here, the in vivo images are generated by the reverse progress for better
classification, and the solid line represents ‖Xn‖ in our model. The results demonstrate that
our modeling of the CR is in good agreement with the experimental results.

4.3 Effect of the Reynolds Number

To check the effect of Re, we consider another simulation with the same initial condition as in
Fig. 2 on a 643 mesh grid. The fixed temporal step sizeΔt = 0.12h2, Lt = 2π(R−0.5t/T ),
R = 0.25, andWe = 1 are used and the number of iterations is 4000; i.e., T = 9.7656×10−3.
Figure 5 shows the temporal evolution of the numerical arc length ‖Xn‖ of the CR for
Re = 10γ , γ = −1, . . . , 3 with respect to time. The result confirms that the rate of shrinkage
of the CR depends on the Reynolds number.

Further, we consider a similar simulation to check the effect of Re with respect to t/T .
Here, the parameters in Fig. 5 are used, except for T (or the number of iterations) and Lt ,
which depends on T . Figure 6 shows the temporal evolution of the numerical arc length ‖Xn‖
of the CR for various Re values with respect to the relative time t/T . The evolutions which
correspond to the legends 0.1 (circle marker), 1 (diamond marker), and 10 (plus marker) are
the same as in Fig. 5, whereas, the evolutionswhich correspond to the legends 0.1(L) (asterisk
marker) and 10(S) (squaremarker) are obtained from a longer simulation T = 5.8594×10−2

and a shorter simulation T = 4.3945 × 10−3, respectively. Although each simulation has
a different final time and shrinkage rate, the graphs for 0.1(L), 1, and 10(S) have a similar
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Fig. 4 Configurations of CRs from the numerical simulation and in vivo. Background images are reprinted
with permission from Nature [3] and dashed lines represent our simulation results

Fig. 5 Temporal evolution of the
numerical arc length ‖Xn‖ of the
CR for various Re values with
respect to time t

overall shape. The result implies that the effect of the Reynolds number may be precisely
varied by changing the time scale and the shrinkage rate in our model.

4.4 Point-Deleting Algorithm

During temporal evolution, two adjacent points in the IB can be too close to each other.
For efficient numerical calculation, we dynamically delete points whose distance from their
neighboring points becomes less than a given length,α. To bemore specific, let us assume that
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Fig. 6 Temporal evolution of the
numerical arc length ‖Xn‖ of the
CR for various Re values with
respect to relative time t/T

(c)(a) (b)

Fig. 7 Schematic of algorithm for deleting points. a Find an index l, b determine the deleted point, and c
delete and renumber

there is an index l which satisfies |Xn
l+1 −Xn

l | < α; then we check whether |Xn
l+2 −Xn

l+1| ≤
|Xn

l −Xn
l−1|. If that is true, then we delete Xn

l+1; otherwise, we delete X
n
l (see Fig. 7). At the

same time, we delete the corresponding snl+1 or s
n
l . Next, we rearrange the numbering of snl

andXn
l . In this point-deleting algorithm, wemakeΔXn

l be bounded as α ≤ ΔXn
l ≤ α+h/m

for l = 1, . . . , Ns and we can avoid clustering of the IB points while the CR is shrinking.
Figure 8 shows the distribution of the maximum, minimum, and average of �Xn

l /�X0
l

on 643 mesh grids with respect to time. Here, we use α = h/8, R = 0.25, Lt = 2π(R − t),
Re = 10, We = 1, �t = 0.1Re/1282, and T = 0.2441 with the initial condition (26). The

Fig. 8 Distribution of the
maximum (-), minimum (-), and
average (·) of �Xn

l /�X0
l for

l = 1, 2, . . . , Ns with respect to
time t

0 0.05 0.1 0.15 0.2

0.5

1

1.5
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Fig. 9 CR (solid line), Lagrangian particles (points), and velocity field (arrows) at a t = 0, b t = 0.4883, c
t = 0.6836, and d t = 0.8789. Initial positions of particles are randomly distributed in two crossed bands

dotted lines represent the upper and lower bounds of ΔXn
l , i.e., α and α +h/m, respectively.

The result proves that the boundedness of ΔXn
l is satisfied.

4.5 Particle Tracing

We trace Lagrangian particles that are passively advected by the velocity field to see the fluid
flow generated by the CR. The initial positions of the particles are randomly distributed in
two bands: one band is {(x, y, z)|0.46 ≤ x ≤ 0.54, (x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 =
0.452} and the other is {(x, y, z)|0.46 ≤ y ≤ 0.54, (x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 =
0.452}. Here, we use Re = 10 and We = 10 on a 643 mesh grid. The CR (solid line),
Lagrangian particles (points), and velocity field (arrows) at (a) t = 0, (b) t = 0.4883, (c)
t = 0.6836, and (d) t = 0.8789 are shown in Fig. 9a–d, respectively.

We also trace the simulated particles whose initial conditions are given on the sphere with
radius R = 0.45. Here, we also use Re = 10 and We = 10 on a 643 mesh grid, as in the
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Fig. 10 CR (solid line), Lagrangian particles (points), and velocity field (arrows) at a t = 0, b t = 0.4883, c
t = 0.6836, and d t = 0.8789. Initial positions of particles are given on the sphere

previous simulation. The numerical results for the CR, Lagrangian particles, and velocity
field are displayed in Fig. 10. Here, the surface generated by the particles is used for better
visualization.

The results in Figs. 9 and 10 both represent similar CR-driven flow and similar traces of
Lagrangian particles moved by the flow. Because there is no proper governing equation for
the particle advection or interparticle force, this result is not suitable for modeling the cell
division process. We focus only on modeling for the CR in this paper and leave detailed and
robust modeling of cell division with cell membrane movement as a future work.

Next, we present additional simulation results in Fig. 11 to check the effect of the Reynolds
number on the particle tracing. The CR, Lagrangian particles, and velocity field at t = 0.2930
for Re = 10, 100, and 1000 at are displayed Fig. 11a–c, respectively. The initial conditions
are those of Figs. 9 and 10 in the upper and lower panels, respectively. The other parameters
are the same as in Figs. 9 and 10. Note that the results in Fig. 11 are earlier stages of those
in Figs. 9b and 10b.
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Fig. 11 CR (solid line), Lagrangian particles (points), and velocity field (arrows) for a Re = 10, b Re = 100,
and c Re = 1000 at t = 0.2930

Fig. 12 CR (solid line), Lagrangian particles (points), and velocity field (arrows) for domain sizes of a (0, 1)3,
b (0, 1.5)3, and c (0, 2)3 at t = 0.8789
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Fig. 13 Various CR configurations and their temporal evolution. Top row shows initial conditions. The second,
third, and fourth rows represent the temporal evolution at t = 0.0488, 0.0977, and 0.1465, respectively

Finally, we perform a numerical simulation to check the effect of the domain size on the
particle tracing. The domains (0, 1)3 with a 643 meshgrid, (0, 1.5)3 with a 963 meshgrid,
and (0, 2)3 with 1283 meshgrid are considered, and the other parameters are the same as in
Figs. 9 and 10. Figure 12a–c shows CR, Lagrangian particles, and velocity field with domain
sizes of (a) (0, 1)3, (b) (0, 1.5)3, and (c) (0, 2)3, respectively, at t = 0.8789, which is the final
time in Figs. 9d and 10d. Here, the domains are partially displayed to compare the shapes
of particles conveniently. The locations of particles are almost the same near the CR in each
domain; however, the results show that particles are more diffused in the z-direction as the
domain size increases.

4.6 Various Initial Configurations

Simulationswith various initial configurations are described in this section. The computations
are done on a 323 mesh grid, and the other parameters are the same as in the previous sections.
We consider a bent and twisted ring, a twisted ring, and a bent ring as the initial conditions
of the CRs:

X0
l = 0.5 + (R cos (sl) , R sin (2sl) , 0.1 sin (sl)) ,

X0
l = 0.5 + (R cos (2sl) [0.9 + 0.1 sin (sl)] , R sin (2sl) , 0.2 cos (sl)) ,

123

Author's personal copy



J Sci Comput (2016) 67:909–925 923

X0
l = 0.5 + (R cos (sl) , R sin (sl) , 0.2 sin (3sl)) ,

where R = 0.45 and sl = 2π(l − 1)/Ns , respectively.
Figure 13 shows the various CR configurations and their temporal evolution. The initial

conditions are shown in the top row. The second, third, and fourth rows represent the temporal
evolution at t = 0.0488, 0.0977, and 0.1465, respectively. The numerical results show that
the proposedmethodworkswell withmore complex initial configurations than a circular ring.

Although the proposed model is motivated by the CR in cytokinesis, we expect that our
model has potential for application to other phenomena in which an elastic ring undergoes
contraction, such as a thin elastic ring under constraint [36], buckling [37], and mortar [38].
The simulations in this section could be useful for implementation in these other areas instead
of in the cell division process.

5 Conclusion

We proposed an IB method for a contractile elastic ring in a three-dimensional Newtonian
fluid. The length of the elastic ring is time dependent and decreases as time evolves. The
governing equations are the modified Navier–Stokes equations with an elastic force from the
contractile ring.Wedynamically reduced the number ofLagrangian boundary pointswhen the
distance between adjacent points was too small. We performed numerical experiments with
various initial configurations of the contractile elastic ring. The numerical results showed that
the proposed method can model and simulate the time-dependent contractile elastic ring in a
three-dimensional Newtonian fluid. The effects of various parameters were also investigated
using numerical simulations. As a future work, we will incorporate the proposed contractile
elastic ring into a model of the cell division process [39–41].
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