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Abstract

We applied a second-order conservative nonlinear multigrid method for the ternary Cahn–Hilliard system with a concentration
dependent degenerate mobility for a model for phase separation in a ternary mixture. First, we used a standard finite difference
approximation for spatial discretization and a Crank–Nicolson semi-implicit scheme for the temporal discretization. Then, we
solved the resulting discretized equations using an efficient nonlinear multigrid method. We proved stability of the numerical
solution for a sufficiently small time step. We demonstrate the second-order accuracy of the numerical scheme. We also show that
our numerical solutions of the ternary Cahn–Hilliard system are consistent with the exact solutions of the linear stability analysis
results in a linear regime. We demonstrate that the multigrid solver can straightforwardly deal with different boundary conditions
such as Neumann, periodic, mixed, and Dirichlet. Finally, we describe numerical experiments highlighting differences of constant
mobility and degenerate mobility in one, two, and three spatial dimensions.
© 2008 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this work is to consider the conservative nonlinear multigrid method for the ternary Cahn–Hilliard
(CH) system with a concentration dependent degenerate mobility for a three component mixture, occupying a domain
Ω ⊂ R

d (d = 1,2,3). When a homogeneous system composed of three components, at high temperature, is rapidly
cooled to a uniform temperature below a critical temperature, where it is unstable with respect to concentration fluc-
tuations, spinodal decomposition takes place: the system separates into spatial regions rich in one specie and poor in
the other species. The system evolves into an equilibrium state with lower overall free energy [5].

The composition of a ternary mixture (A, B, and C) can be mapped onto an equilateral triangle (the Gibbs trian-
gle [18]) whose corners represent 100% concentrations of A, B, or C as shown in Fig. 1(a). Mixtures with components
lying on lines parallel to BC contain the same percentage of A; those with lines parallel to AC have the same per-
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Fig. 1. (a) Gibbs triangle. (b) Contour plot of the free energy F(c).

centage of B concentration; and analogously for the C concentration. In Fig. 1(a), the mixture at the position marked
‘◦’ contains 60% A, 10% B, and 30% C (the total percentage must sum to 100%).

Let ci(x, t), i = 1, 2, and 3, denote the fractional concentration of the ith component at space x ∈ Ω and time t .
We only solve equations for c1 and c2 since c1 + c2 + c3 = 1, i.e., c = (c1, c2). We define vector gradient, divergence,
and Laplace operations as

∇c = (∇c1,∇c2), ∇ · ∇c = (∇ · ∇c1,∇ · ∇c2), and �c = ∇ · ∇c.

We shall consider the numerical approximation of c(x, t) and μ(x, t) by solving a system of fourth-order nonlinear
diffusion equations given by

∂c(x, t)

∂t
= ∇ · (M(c)∇μ(x, t)

)
, for (x, t) ∈ Ω × (0, T ), (1)

μ(x, t) = f
(
c(x, t)

) − �c(x, t)�ε, (2)

where

M(c) =
3∑

i<j

cicj and f(c) = ∂F (c)
∂c

≡
(

∂F (c)
∂c1

,
∂F (c)
∂c2

)

with the initial condition c(x,0) = c0(x). Here M(c) is a concentration dependent mobility, μ is a generalized chem-
ical potential and F(c) is the free energy of the system. We assume F(c) = [c2

1c
2
2 + (c2

1 + c2
2)(1 − c1 − c2)

2]/4
throughout this paper. Fig. 1(b) shows a contour plot of this free energy, and

�ε =
(

2ε2 ε2

ε2 2ε2

)
, where ε is a small positive parameter.

The natural and mass conserving boundary conditions for the ternary CH system are the zero Neumann boundary
conditions:

∇c · n = ∇μ · n = 0 on ∂Ω, (3)

where n is the unit normal vector to ∂Ω . Two important aspects of the ternary CH problem in the case of zero
Neumann boundary conditions are the conservation of the average 1

|Ω|
∫
Ω

c(x, t) dx and the existence of a Lyapunov
function E (c),

E (c) =
∫
Ω

[
F(c) +

3∑
i=1

ε2

2
|∇ci |2

]
dx, (4)

so that
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d

dt
E (c) = −

∫
Ω

M(c)|∇μ|2 dx.

In this paper, we consider a ternary CH system that we solve by using a second-order accurate conservative finite
difference nonlinear multigrid method. The resulting discretization of the ternary CH system (1) and (2)

(i) preserves the mass (average of c) on the discrete level;
(ii) has a discrete equivalent for the Lyapunov functional;

(iii) has a second-order convergence.

Mathematical issues related to the CH equation have been reviewed by Elliott [6]. A generalization of the CH
equations to multi-component systems is in Morral and Cahn [17]. Elliott and Luckhaus [10] give a global existence
result under constant mobility and with certain assumptions. Eyre [11] discussed differences between multicomponent
and binary alloys.

Although there are many numerical works (see [2,6,7,9,8,13,14,12,19] and references therein) with a binary CH
equation, much less work has been carried out involving the ternary CH system [4,5,11,16]. But such a system is of
considerable practical interest because most engineering alloys consist of more than two components. In [15], a finite
difference method is used for the constant mobility. In [3], a finite element approximation is used for the ternary CH
system with a degenerate mobility matrix. Multigrid methods are generally accepted as among the fastest numerical
methods for solving this type of partial differential equations [20]. We use a nonlinear multigrid method to solve
resulting equations accurately and efficiently.

The contents of this paper are organized as follows. In Section 2, we consider a fully discrete semi-implicit finite
difference scheme and obtain sufficient stability estimates. Also, we describe a nonlinear multigrid V-cycle algorithm
for the ternary CH system. Numerical experiments such as a second-order convergence test, comparison with linear
stability analysis, different boundary conditions, and effects of a concentration dependent mobility are presented in
Section 3. Finally, in Section 4 we conclude.

2. Numerical analysis

In the following numerical scheme and analysis, we restrict space dimensions to two for simplicity. The three-
dimensional extension is straightforward.

2.1. Discretization

Let Ω = [a, b] × [c, d] ⊂ R
2 be partitioned by

a = x 1
2

< x1+ 1
2

< · · · < x
Nx−1+ 1

2
< x

Nx+ 1
2

= b,

c = y 1
2

< y1+ 1
2

< · · · < y
Nx−1+ 1

2
< y

Ny+ 1
2

= d.

For simplicity, we assume the above partitions are uniform in both directions and the grid size is h. We denote by
Ωh = {(xi, yj ): 1 � i � Nx,1 � j � Ny} set of cell centered points (xi, yj ) = ((x

i− 1
2
+ x

i+ 1
2
)/2, (y

j− 1
2
+ y

j+ 1
2
)/2).

Let cij and μij be approximations of c(xi, yj ) and μ(xi, yj ). We first implement the zero Neumann boundary
condition (3) by requiring that

Dxc 1
2 ,j

= Dxc
Nx+ 1

2 ,j
= Dyc

i, 1
2

= Dyc
i,Ny+ 1

2
= 0,

Dxμ 1
2 ,j

= DxμNx+ 1
2 ,j

= Dyμi, 1
2

= Dyμi,Ny+ 1
2

= 0,

where the discrete differentiation operators are

Dxc
i+ 1

2 ,j
= (ci+1,j − cij )/h and Dyc

i,j+ 1
2

= (ci,j+1 − cij )/h.

We then define the discrete Laplacian by

�hcij = (Dxc 1 − Dxc 1 + Dyc 1 − Dyc 1 )/h

i+ 2 ,j i− 2 ,j i,j+ 2 i,j− 2
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and the discrete l2 inner product by

(c,d)h = h2
Nx∑
i=1

Ny∑
j=1

(c1ij d1ij + c2ij d2ij ). (5)

For a grid function c defined at the cell centers, Dxc and Dyc are defined at the cell-edges. We use the following
notation

∇hcij = (Dxc
i+ 1

2 ,j
,Dyc

i,j+ 1
2
),

to represent the discrete gradient of c. We can define an inner product for ∇hc on the staggered grid by

(∇hc,∇hd)h = h2

[
Nx∑
i=0

Ny∑
j=1

(Dxc1i+ 1
2 ,j

Dxd1i+ 1
2 ,j

+ Dxc2i+ 1
2 ,j

Dxd2i+ 1
2 ,j

)

+
Nx∑
i=1

Ny∑
j=0

(Dyc1i,j+ 1
2
Dyd1i,j+ 1

2
+ Dyc2i,j+ 1

2
Dyd2i,j+ 1

2
)

]
. (6)

We also define discrete norms associated with (5) and (6) as

‖c‖2 = (c, c)h, |c|21 = (∇hc,∇hc)h.

The time-continuous, space-discrete system that corresponds to (1) and (2) is

d

dt
cij = ∇h · [M(cij )∇hμij

]
, μij = f(cij ) − �hcij�ε, (7)

where the boundary conditions are implemented using (3). The scheme has a discrete energy functional given by the
discretization of (4).

We discretize (7) in time by using the Crank–Nicolson algorithm:

cn+1
ij − cn

ij

�t
= ∇h · [M(cij )

n+ 1
2

ij ∇hμ
n+ 1

2
ij

]
, (8)

μ
n+ 1

2
ij = 1

2

(
f(cn+1

ij ) + f(cn
ij )

) − 1

2
�h(c

n+1
ij + cn

ij )�ε, (9)

where μ
n+ 1

2
ij = (μn+1

ij + μn
ij )/2.

2.2. Stability

In this subsection, assuming that the nonlinear system at an implicit time step is solvable, we establish the mass
conservation and demonstrate that the energy functional is nonincreasing in time provided that the step size of time is
sufficiently small. We show the mass conservation and energy dissipation in the next theorem.

Theorem 1. Let {cn+1,μn+1} be the solution of (8) and (9), and the discrete energy functional be given by

E (cn) = (
F(cn),1

)
h

+ ε2

2
‖∇hcn‖2

m, (10)

where

‖∇hcn‖2
m := |cn

1 |21 + |cn
2 |21 + |1 − cn

1 − cn
2 |21

= 2|cn
1 |21 + 2|cn

2 |21 + 2(∇hc
n
1 ,∇hc

n
2).

Suppose that the numerical solution cn is bounded. Then

(cn+1,1)h = (cn,1)h, (11)
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and there exists an absolute constant C depending only on Ω such that

E (cn+1) − E (cn) � −Rh�t
(
M(c)n+ 1

2 ∇hμ
n+ 1

2 ,∇hμ
n+ 1

2
)
h
, (12)

where

Rh =
(

1 − C‖D2F(·)‖L∞‖M(·)‖L∞�t

h2

)
.

Moreover, E (cn+1) � E (cn) for all n provided that �t is sufficiently small.

Proof. The mass conservation is straightforward by using summation by parts. Indeed,

(cn+1,1)h = (
cn + �t∇h · [M(c)n+ 1

2 ∇hμ
n+ 1

2
]
,1

)
h

= (cn,1)h.

First, by multiplying (8) and (9) by μn+ 1
2 and cn+1 − cn, we obtain the following two identities:

(cn+1 − cn,μn+ 1
2 )h + �t

(
M(c)n+ 1

2 ∇hμ
n+ 1

2 ,∇hμ
n+ 1

2
)
h

= 0 (13)

and

(μn+ 1
2 , cn+1 − cn)h = 1

2

(
f(cn+1) + f(cn), cn+1 − cn

)
h

+ ε2

2

(|cn+1|2m − |cn|2m
)
. (14)

Since the first identity (13) is straightforward, the details are omitted. Thus we need to verify only the second one (14).
Indeed,

(μn+ 1
2 , cn+1 − cn)h = 1

2

(
f(cn+1) + f(cn) − �ε�h(cn+1 + cn), cn+1 − cn

)
h

= 1

2

(
f(cn+1) + f(cn), cn+1 − cn

)
h

− 1

2

(
�ε�h(cn+1 + cn)�ε, cn+1 − cn

)
h
.

The second term on the right side is calculated:

(
�ε(�cn+1 + �cn), cn+1 − cn

) =
(

2ε2 ε2

ε2 2ε2

)(
�cn+1

1 + �cn
1

�cn+1
2 + �cn

2

)
·
(

cn+1
1 − cn

1
cn+1

2 − cn
2

)
= −2ε2(|cn+1|21 − |cn|21

) − 2ε2(∇hc
n+1
2 ,∇hc

n+1
1 ) + 2ε2(∇hc

n
2 ,∇hc

n
1)

= −2ε2(|cn+1|21 + (∇hc
n+1
2 ,∇hc

n+1
1 )

) + 2ε2(|cn|21 + (∇hc
n
2 ,∇hc

n
1)

)
= −ε2‖∇hcn+1‖2

m + ε2‖∇hcn‖2
m.

This completes the derivation of (14). Next, using our scheme (8) and (9), we also have the following estimates.

‖cn+1 − cn‖2 � C�t2

h2

∥∥M(c)n+ 1
2 ∇hμ

n+ 1
2
∥∥2

, (15)

|cn+1 − cn|21 � C�t2

h4

∥∥M(c)n+ 1
2 ∇hμ

n+ 1
2
∥∥2

, (16)

where C depends on Ω . To show (15), multiplying cn+1 − cn to (8),

‖cn+1 − cn‖2 = �t
(
M(c)n+ 1

2 ∇hμ
n+ 1

2 ,∇h(cn+1 − cn)
)
.

On the other hand, we can easily check the following inequality:

|cn+1 − cn|21 � C

h2
‖cn+1 − cn‖2.

Combining the above inequalities, we get

‖cn+1 − cn‖ � C�t ∥∥M(c)n+ 1
2 ∇hμ

n+ 1
2
∥∥,
h
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where we used a discrete Hölder inequality. The estimate (16) is an easy consequence of the estimate (15). Indeed,

|cn+1 − cn|21 � C

h2
‖cn+1 − cn‖2 � C�t2

h4

∥∥M(c)n+ 1
2 ∇hμ

n+ 1
2
∥∥2

.

Now we consider

E (cn+1) − E (cn) = (
F(cn+1) − F(cn),1

)
h

+ ε2

2

(|cn+1|2m − |cn|2m
)

= (
F(cn+1) − F(cn),1

)
h

+ (μn+ 1
2 , cn+1 − cn)h − 1

2

(
f(cn+1) + f(cn), cn+1 − cn

)
h

= (
F(cn+1) − F(cn),1

)
h

− 1

2

(
f(cn+1) + f(cn), cn+1 − cn

)
h

− �t
(
M(c)n+ 1

2 ∇hμ
n+ 1

2 ,∇hμ
n+ 1

2
)
h
,

where we used the identities (13) and (14). Since F is differentiable, we have

(
F(cn+1) − F(cn),1

)
h

=
( 1∫

0

d

dθ
F

(
θcn+1 + (1 − θ)cn

)
dθ,1

)
h

=
( 1∫

0

∂

∂c
F

(
θcn+1 + (1 − θ)cn

)
dθ, cn+1 − cn

)
h

.

Therefore, using the identity above, we have(
F(cn+1) − F(cn),1

)
h

− 1

2

(
f(cn+1) + f(cn), cn+1 − cn

)
h

=
( 1∫

0

[
∂

∂c
F

(
θcn+1 + (1 − θ)cn

) − 1

2

(
∂

∂c
F(cn+1) + ∂

∂c
F(cn)

)]
dθ, cn+1 − cn

)
h

� ‖D2F‖L∞‖cn+1 − cn‖2 � C‖D2F‖L∞�t2

h2

∥∥M(c)n+ 1
2 ∇hμ

n+ 1
2
∥∥2

,

where D2F indicates the Hessian of F and we used the estimate (15). Since F is smooth and the numeric solution ck

is assumed to be uniformly bounded for all k, it is obvious that ‖D2F‖L∞ is also uniformly bounded.
Here we note that, due to the nonnegativity of M(c), we observe the following estimate:∥∥M(c)n+ 1

2 ∇hμ
n+ 1

2
∥∥2 �

∥∥M(·)∥∥
L∞

(
M(c)n+ 1

2 ∇hμ
n+ 1

2 ,∇hμ
n+ 1

2
)
.

In the above estimate we again used that M(·) is smooth and the numeric solution ck is bounded for all k. Summing
the above estimates, we obtain

E (cn+1) − E (cn) � −�t
(
M(c)n+ 1

2 ∇hμ
n+ 1

2 ,∇hμ
n+ 1

2
)
h

+ ‖D2F‖L∞‖cn+1 − cn‖2

� −�t
(
M(c)n+ 1

2 ∇hμ
n+ 1

2 ,∇hμ
n+ 1

2
)
h

+ C‖D2F(·)‖L∞‖M(·)‖L∞�t2

h2

(
M(c)n+ 1

2 ∇hμ
n+ 1

2 ,∇hμ
n+ 1

2
)
h

= −�t
(
M(c)n+ 1

2 ∇hμ
n+ 1

2 ,∇hμ
n+ 1

2
)
h

(
1 − C‖D2F(·)‖L∞‖M(·)‖L∞�t

h2

)
.

Therefore, if �t is taken to be sufficiently small, then the discrete energy is dissipated. More precisely, if we
choose �t :

�t � h2

C‖D2F(·)‖L∞‖M(·)‖L∞
,

then we have E (cn+1) � E (cn) for all n. This completes the proof. �
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Table 1
l2 convergence result

32–64 rate 64–128 rate 128–256 rate 256–512

6.8629e − 2 2.3335 1.3616e − 2 2.1575 3.0521e − 3 2.1450 6.9008e − 4

2.3. A nonlinear multigrid V-cycle algorithm

In this section, we describe a nonlinear Full Approximation Storage (FAS) multigrid method to solve the nonlin-
ear discrete system at the implicit time level. The nonlinearity, f(c), is treated using one step of Newton’s iteration.
A pointwise Gauss–Seidel relaxation scheme is used as the smoother in the multigrid method. One SMOOTH relax-
ation operator step consists of solving the system (17) and (18) given below by 4 × 4 matrix inversion for each ij .
First, let us discretize Eq. (8).

c̄m
ij

�t
+

M
i+ 1

2 ,j
+ M

i− 1
2 ,j

+ M
i,j+ 1

2
+ M

i,j− 1
2

h2
μ̄

m− 1
2

ij

= φn
ij +

M
i+ 1

2 ,j
μ

m− 1
2

i+1,j + M
i− 1

2 ,j
μ̄

m− 1
2

i−1,j + M
i,j+ 1

2
μ

m− 1
2

i,j+1 + M
i,j− 1

2
μ̄

m− 1
2

i,j−1

h2
, (17)

where M
i+ 1

2 ,j
= M((cm

ij + cm
i+1,j + cn

ij + cn
i+1,j )/4) and the other terms are similarly defined. Next, let us discretize

Eq. (9). Since f(cn+1
ij ) is nonlinear with respect to cn+1

ij , we linearize f(cn+1
ij ) at cm

ij , i.e.,

f(cn+1
ij ) ≈ f(cm

ij ) + (c̄m
ij − cm

ij )
∂f(cm

ij )

∂c
,

−c̄m
ij

(
∂f(cm

ij )

2∂c
+ 2

h2
�ε

)
+ μ̄

m− 1
2

ij = ψn
ij + 1

2
f(cm

ij ) − cm
ij

∂f(cm
ij )

2∂c

− 1

2h2
(cm

i+1,j + c̄m
i−1,j + cm

i,j+1 + c̄m
i,j−1)�ε. (18)

See the reference text [20] for additional details.

3. Numerical experiments

In this section, we perform a convergence test, linear stability analysis, and comparisons between constant and
degenerate mobilities.

3.1. Convergence test

To obtain an estimate of the rate of convergence, we perform a number of simulations for a sample initial problem
on a set of increasingly finer grids. The initial condition is

c1(x) = 0.25 + 0.01 cos(3πx) + 0.04 cos(5πx),

c2(x) = 0.25 − 0.02 cos(2πx) + 0.01 cos(4πx) (19)

on a domain, Ω = [0,1]. The numerical solutions are computed on the uniform grids, h = 1/2n and with correspond-
ing time steps, �t = 0.1h for n = 5, 6, 7, 8, and 9. The calculations are run up to time T = 0.2 and ε = 0.005 is
used.

We define the error to be the discrete l2-norm of the difference between that grid and the average of the next finer
grid cells covering it: e

h/ h
2 i

:= chi − (c h
2 2i

+ c h
2 2i−1

)/2. The rate of convergence is defined as: log2(‖e
h/ h

2
‖/‖e h

2 / h
4
‖).

The errors and rates of convergence are given in Table 1. The results suggest that the scheme is indeed second order
accurate.

In Fig. 2, the time evolution of the total energy (10) with the same initial data (19) is shown. Also, the inscribed
small figures are the concentration fields (c1: solid, c2: dotted, and 1 − c1 − c2: dashed lines) at the indicated times.
As expected from Theorem 1, the total energy is nonincreasing and tends to a constant value.
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Fig. 2. The time evolution of the total energy (10) of the numerical solutions with the initial data (19). Snapshots of the concentration fields
(c1: solid, c2: dotted, and 1 − c1 − c2: dashed lines) are shown.

3.2. Linear stability analysis

To fix ideas, we consider a ternary system in the one dimensional domain, Ω = [0,1] and M(c) ≡ 1. The partial
differential equations (1) and (2) we wish to solve may be written as

∂c(x, t)

∂t
= �

(
∂F (c)

∂c
− �c�ε

)
, where (x, t) ∈ Ω × (0, T ]. (20)

Let the mean concentration take the form m = (m1,m2). We seek a solution of the form

c(x, t) = m +
∞∑

k=1

cos(kπx)
(
αk(t), βk(t)

)
, where

∣∣αk(t)
∣∣, ∣∣βk(t)

∣∣ � 1.

After linearizing ∂F (c)/∂c about m, we have

∂F (c)
∂c

≈ ∂F (m)

∂c
+ (c − m)

(
∂2
c F (m) ∂c∂dF (m)

∂c∂dF (m) ∂2
dF (m)

)
. (21)

Substituting (21) into (20) and letting m1 = m2 = m for simplicity, then, up to first order, we have

∂c
∂t

= �c
(

7.5m2 − 4m + 0.5 6m2 − 2m

6m2 − 2m 7.5m2 − 4m + 0.5

)
− �2c�ε . (22)

After substituting c = m + cos(kπx)(αk(t), βk(t)) into (22), we obtain(
αk(t)

βk(t)

)′
= A

(
αk(t)

βk(t)

)
, A =

(
a b

b a

)
, (23)

where ′ is time derivative and
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Fig. 3. Growth rates for the different wave number k.

a = −(kπ)2[7.5m2 − 4m + 0.5 + 2ε2(kπ)2],
b = −(kπ)2[6m2 − 2m + ε2(kπ)2].

The solution to the system of ODEs (23) is given by(
αk(t)

βk(t)

)
= eAt

(
αk(0)

βk(0)

)
.

The eigenvalues of A are

λ1 = −(kπ)2[13.5m2 − 6m + 0.5 + 3ε2(kπ)2], (24)

λ2 = −(kπ)2[1.5m2 − 2m + 0.5 + ε2(kπ)2]. (25)

In Fig. 3, the theoretical growth rates λ1 and λ2 are compared to those obtained from the nonlinear numerical
scheme. The numerical growth rate is defined by

λ̃ = log

(
maxj |ci(xj , T ) − 0.22|
maxj |ci(xj ,0) − 0.22|

)/
T , i = 1,2.

Here, we used m = 0.22, ε = 0.01, �t = 10−3, h = 1/128, and T = 0.02. In Fig. 3, the symbol ‘◦’ is a numerical
result, which is compared with the theoretical values λ1 (solid line) with initial condition c1(x) = c2(x) = 0.22 +
0.001 cos(kπx). The symbol ‘
’ is a numerical result, which is compared with λ2 (solid line) with initial conditions
c1(x) = 0.22 + 0.001 cos(kπx) and c2(x) = 0.22 − 0.001 cos(kπx).

3.3. Comparisons between different boundary conditions

In this section, we demonstrate the capabilities of the multigrid solver in the ternary Cahn–Hilliard equation with
different boundary conditions such as Neumann, periodic, mixed, and Dirichlet. The initial condition is

c1(x, y) = 1/3 + 0.01 rand(x, y), c2(x, y) = 1/3 + 0.01 rand(x, y),
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Fig. 4. (a) Neumann boundary; (b) Periodic boundary; (c) Mixed boundary (Neumann in x direction and periodic in y direction); (d) Dirichlet
(c2(x,0) = c2(x,1) = c2(0, y) = c2(1, y) = 1) boundary. Times are t = 0.1, 0.68, and 3.91 (from top to bottom).

where the random number, rand(x, y), is in [−1,1] and has zero mean. A 128 × 128 mesh is used on the unit square
Ω = [0,1] × [0,1] and we choose h = 1/128, �t = 0.1h, and ε = 0.004. In Fig. 4, the medium, darkest, and lightest
shades of gray represent the first, second and third components of mixture, respectively. From the first column to the
fourth column are Neumann, periodic, mixed (Neumann in x direction and periodic in y direction), and Dirichlet
(c2(x,0) = c2(x,1) = c2(0, y) = c2(1, y) = 1) boundary conditions, respectively. The temporal evolution is from top
to bottom. As each column shows, the multigrid method can straightforwardly deal with various boundary conditions.

3.4. Comparisons between constant and degenerate mobilities

In this section, we demonstrate the fundamental difference between a degenerate and a constant mobility using the
proposed numerical method. The reduction of the total amount of interfacial area is the main driving force in the CH
system both for degenerate and for constant mobility. In the case of degenerate mobility this is done only by local
adjustment in connected phase regions, whereas in the case of constant mobility also nonlocal interactions are used
to achieve this. In the case of a constant mobility, diffusion through bulk regions is still possible and disconnected
regions influence each other in order to decrease the total amount of interfacial area. For long times, constant CH
systems generally lead to situations where each phase occupies only one connected part of the domain [1].

3.4.1. One space dimension
We perform a degenerate and a constant mobility experiment with an initial condition,

c1(x) = 1/3 + 0.1 rand(x), c2(x) = 1/3 + 0.1 rand(x).

A 128 grid is used on the interval Ω = [0,1]. We choose h = 1/128, �t = 0.1h, and ε = 0.01. We consider that
the numerical computations reach a numerical equilibrium state when the discrete l2-norm of the difference between
(n + 1)th- and nth-time steps becomes less than 10−7, i.e., ‖cn+1 − cn‖ � 10−7.
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Fig. 5. Long time evolution of a ternary system with (m1,m2,m3) = ( 1
3 , 1

3 , 1
3 ). Columns (a) and (b) show the evolution of a degenerate and a

constant mobility system, respectively, at time t = 0.0, 5.5, 62.5, and 70.3 (from top to bottom). Solid, dotted, and dashed lines are c1, c2, and
1 − c1 − c2, respectively.
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Fig. 6. The top and the bottom row is the evolution of constant and degenerate mobility, respectively. The times are t = 9.77, 68.36, 195.31, and
380.86 (from left to right).

The pictures in Fig. 5 are arranged with time increasing from the top to the bottom (t = 0.0, 5.5, 62.5, and 70.3).
Column (a) is a degenerate mobility and column (b) is a constant mobility. The final numerical solutions plotted in
Fig. 5 are stationary numerical solutions.

3.4.2. Two space dimensions
We now perform a degenerate and a constant mobility numerical experiment with the initial data,

c1(x, y) = 0.22 + 0.1 rand(x, y), c2(x, y) = 0.22 + 0.1 rand(x, y).

A 64 × 64 mesh is used on the unit square Ω = [0,1] × [0,1] and we choose h = 1/64, �t = 0.1h, and ε = 0.004.
In Fig. 6, the medium, darkest, and lightest shades of gray represent the first, second and third components of

mixture, respectively. The first row is a constant mobility and the second row is a degenerate mobility. We note that
the final pictures of each row in Fig. 6 show numerical stationary solutions of a constant and a degenerate mobility,
respectively.

3.4.3. Three space dimensions
The following example illustrates our method’s potential for modeling phase separation in three spatial dimensions.

We now perform a degenerate and a constant mobility numerical experiment with the initial data,

c1(x, y, z) = 0.22 + 0.1 rand(x, y, z), c2(x, y, z) = 0.22 + 0.1 rand(x, y, z).

A 32 × 32 × 32 mesh is used on the unit cube Ω = [0,1] × [0,1] × [0,1]. We choose h = 1/32, �t = 0.2h, and
ε = 0.01.

We illustrate the evolution of this initial condition in Fig. 7. In Fig. 7, the medium, darkest and lightest shades of
gray represent the first, second and third components of the mixture, respectively. The first row is a constant mobility
and the second row is a degenerate mobility. We note that the final pictures of each row in Fig. 7 show numerical
stationary solutions of a constant and a degenerate mobility, respectively.

4. Conclusions

We considered a fully discrete semi-implicit finite difference scheme for the ternary CH system with a degenerate
mobility. We solved the resulting scheme by an efficient nonlinear multigrid method and obtained sufficient stability
estimates. We carried out numerical experiments such as a second-order convergence test, comparison with linear
stability analysis, the multigrid treatment on different boundary conditions, and phase separation in the ternary system
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Fig. 7. The top row (times are t = 12.5, 25.0, 50.0, 62.5, and 75.0) and the bottom row (the times are t = 12.5, 50.0, 212.5, 250.0, and 312.5) is the
evolution of constant and degenerate mobility, respectively.

with a constant and a degenerate mobility. We found, in the case of a constant mobility, the diffusion through bulk
regions is still possible and that disconnected regions influence each other, leading to situations where each phase
occupies only one connected part of the domain after long times. Whereas, in the case of a degenerate mobility, we
found each phase could occupy disconnected parts of the domain.
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