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Abstract. We investigate microphase separation patterns on curved surfaces in three-dimensional space
by numerically solving a nonlocal Cahn-Hilliard equation for diblock copolymers. In our model, a curved
surface is implicitly represented as the zero level set of a signed distance function. We employ a discrete
narrow band grid that neighbors the curved surface. Using the closest point method, we apply a pseudo-
Neumann boundary at the boundary of the computational domain. The boundary treatment allows us to
replace the Laplace-Beltrami operator by the standard Laplacian operator. In particular, we can apply
standard finite difference schemes in order to approximate the nonlocal Cahn-Hilliard equation in the
discrete narrow band domain. We employ a type of unconditionally stable scheme, which was introduced
by Eyre, and use the Jacobi iterative to solve the resulting implicit discrete system of equations. In addition,
we use the minimum number of grid points for the discrete narrow band domain. Therefore, the algorithm
is simple and fast. Numerous computational experiments are provided to study microphase separation
patterns for diblock copolymers on curved surfaces in three-dimensional space.

1 Introduction

The directed self-assembly of block copolymers in thin
films is an emerging technology for nanoscale patterning
(see [1] and references. therein). A diblock copolymer con-
sists of two blocks, each of a different type of monomer,
which are joined chemically to each other [2]. When the
temperature is lowered below a critical point, the two se-
quences become incompatible, and the copolymer melt un-
dergoes phase separation. This results in the occurrence
of periodic structures such as lamellae, spheres, cylinders,
and gyroids [3,4]. Such phase ordering or separation may
occur on static or dynamic surfaces [5]. For example, we
name the cases of lipid bilayer membranes [6], crystal
growth on curved surfaces [7], and phase separation within
thin film [8].

The study of “phase separation in confined geometries”
has a long history. In this context, many authors [9–12]
have considered wetting surfaces, where the kinetic pro-
cess is referred to as surface-directed spinodal decomposi-
tion (SDSD). However, there have also been several stud-
ies [4, 5, 13–16] on neutral surfaces, as will be considered
in this work.

Experimental studies in this setting present many chal-
lenges, owing to the intrinsic complexity of the block
copolymer molecules [14]. Therefore, it is helpful to inves-
tigate mathematical models and numerical simulations to
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understand the dynamics. Although a considerable num-
ber of numerical studies [4, 13, 15, 17–20] have focused on
microphase separation patterns for diblock copolymers on
flat surfaces, there have been few attempts to investigate
phase separation on curved surfaces [5, 21,22].

In this article, we investigate microphase separation
patterns for diblock copolymers on curved surfaces in
three-dimensional space using numerical techniques. We
adopt a nonlocal Cahn-Hilliard (CH) equation [16] as a
mathematical model for block copolymers. The key ele-
ment in solving the nonlocal CH equation on a surface
is calculating the Laplace-Beltrami operator [23], for de-
scribing a Laplacian on a curved surface [5]. Our method
is based on the closest point method [24], and lets us
replace the Laplace-Beltrami operator by the standard
Laplacian operator. Given a curved surface, we define a
signed distance function to represent the surface as the
zero level set of the function [25]. Furthermore, we use
the minimum number of a discrete narrow band grid that
neighbors the curved surface. Using the finite difference
method, we approximate the nonlocal CH equation in the
discrete narrow band domain. We employ a type of un-
conditionally stable scheme, introduced by Eyre [26], and
apply the Jacobi iterative method [27] to solve the result-
ing implicit discrete system of equations. On the compu-
tational domain boundary, we apply a pseudo-Neumann
boundary condition, by using the closest point method.
This boundary treatment results in constant values for the
solution along the direction that is normal to the curved
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Fig. 1. Schematic illustration of a surface S, a narrow band
domain Ωδ with thickness 2δ, and its boundary ∂Ωδ.

surface. Therefore, we can use the standard Laplacian op-
erator instead of the Laplace-Beltrami operator. Thus,
the proposed algorithm should be simple and fast. Nu-
merous computational experiments are provided to study
microphase separation patterns for diblock copolymers on
curved surfaces in three-dimensional space. The numerical
results confirm that the proposed algorithm is simple and
fast.

The layout of the rest of this paper is as follows. In
sect. 2, we describe the nonlocal CH equation on a narrow
band domain. In sect. 3, we provide the numerical solution
algorithm. We present our numerical results in sect. 4. In
sect. 5, some conclusions are delivered.

2 Mathematical model on a narrow band
domain

Let S be a given smooth surface embedded in R
3 and Ωδ =

{y|x ∈ S,y = x + θn(x) for |θ| < δ} be a δ-neighborhood
band of S, where n(x) is a unit normal vector at x ∈ S.
Figure 1 presents a schematic illustration of S, Ωδ, and
the boundary ∂Ωδ of the narrow band domain Ωδ.

We consider a diblock copolymer consisting of two
homopolymer blocks A and B. Let the order parameter
φ(x, t) = ρA(x, t) − ρB(x, t) be defined as the difference
between the local volume fractions of A and B at position
x and time t. Let Etotal = Eshort + Elong be the free energy
functional of the system, where Eshort is the short-range
part of the free energy functional, given by

Eshort =
∫

Ω

(
F (φ(x)) +

ε2

2
|Δφ(x)|2

)
dx

and Elong is the long-range part of the free energy func-
tional, given by

Elong =
α

2

∫
Ω

∫
Ω

G(x − y)(φ(x) − φ̄)(φ(y) − φ̄)dy dx,

where G is the Green’s function, which has the property
ΔG(x−y) = −δ(x−y). Here, δ is the Dirac delta function.
Then, we have the following continuity equation for the
order parameter:

∂φ(x, t)
∂t

= −∇ · J (x, t), (1)

where J (x, t) is a flux, taking the form of the gradient of
the functional derivative of the free energy

J = −∇μ. (2)

Fig. 2. Closest points cp(x1) and cp(x2) for points x1 and x2.

Here, μ = δEtotal/δφ. From eqs. (1) and (2), we can obtain
the Ohta-Kawasaki model [28]:

∂φ(x, t)
∂t

= Δμ(x, t) − α
(
φ(x, t) − φ̄

)
, (3)

μ(x, t) = F ′(φ(x, t)) − ε2Δφ(x, t), (4)

where x ∈ Ωδ, 0 < t ≤ T , F (φ) = 0.25(φ2 − 1)2 is a
double well potential, ε is a positive constant, α is inversely
proportional to the square of the total chain length of
the copolymer [29], and φ̄ =

∫
Ωδ

φ(x, 0)dx/
∫

Ωδ
dx is the

spacial mean value of the order parameter.
The integrands of the short-range and long-range en-

ergy functionals are local and nonlocal, respectively. If we
only consider the short-range energy functional, then we
get the CH equation (α = 0 in eq. (3)), which describes
the process of the reduction in the total interfacial energy
of a microstructure. If α �= 0, then a long-range effect
is also present. The minimization of Eshort yields the do-
mains of pure phases with φ = ±1, with minimal tran-
sition regions; whereas, Elong induces oscillations between
the phases according to the average volume fraction φ̄ [13].
In the context of phase separation with chemical reactions,
Puri and Frisch [30] and Glotzer et al. [31,32] have noted
that the segregation of block copolymers is described by
the nonlocal CH equation.

Next, we describe the governing equation on curved
surfaces. Let cp(x) be the point belonging to S that is
closest to x [33]. Figure 2 illustrates the closest points
cp(x1) and cp(x2) for boundary points x1 and x2, respec-
tively, on ∂Ωδ. The boundary condition is given by

φ(x, t) = φ(cp(x), t) on ∂Ωδ. (5)

Because we want to investigate microphase separation pat-
terns on a curved surface S in the three-dimensional space
R

3, we need to solve the following nonlocal CH equation
on the curved surface:

∂φ(x, t)
∂t

= ΔSμ(x, t) − α
(
φ(x, t) − φ̄

)
,

μ(x, t) = F ′(φ(x, t)) − ε2ΔSφ(x, t),

where x ∈ S, and ΔS is the Laplace-Beltrami operator.
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Fig. 3. Schematic illustration of the discrete narrow band do-
main Ωh

δ (indicated by •) and its ghost points ∂Ωh
δ (indicated

by ◦). Here the curve S is illustrated by the solid line. Cross
shaded regions indicate the stencil for the discrete Laplacian.
Square shaded regions indicate the interpolation stencil for
cp(xijk).

For a given smooth surface S, we define a signed dis-
tance function ψ : R

3 → R for S. Specifically, S = {x ∈
R

3 : ψ(x) = 0}, with ψ < 0 inside of S and ψ > 0 outside
of S. The tangential gradient of φ on S can be written as

∇Sφ(x, t) = P(x)∇φ(x, t),

where P = I − (∇ψ)T∇ψ is a projection operator on the
tangent space. Here, I is the 3 × 3 identity matrix [34].
Then, the Laplace-Beltrami operator is defined as

ΔSφ = ∇S · ∇Sφ = (P∇) · (P∇φ) = ∇ · (P∇φ).

If we take a small enough δ, then the numerical solu-
tion of eqs. (3) and (4), with the boundary condition (5)
yields a φ that is constant along the direction that is nor-
mal to the surface. Thus, we can use the standard Lapla-
cian operator instead of the Laplace-Beltrami operator in
the narrow band domain.

3 Numerical solution algorithm

In this section, we describe our algorithm for a numerical
solution to the nonlocal CH equation on the narrow band
domain, Ωδ. We discretize the nonlocal CH equation in a
three-dimensional domain Ω = (a, b) × (c, d) × (e, f) that
includes Ωδ. Let h = (b−a)/Nx = (d−c)/Ny = (f−e)/Nz

be the uniform mesh size, where Nx, Ny, and Nz are
positive integers. Then Ωh = {xijk = (xi, yj , zk) : xi =
a + hi, yj = c + hj, and zk = e + hk for 0 ≤ i ≤ Nx, 0 ≤
j ≤ Ny, and 0 ≤ k ≤ Nz} is the discrete domain. Let
φn

ijk and μn
ijk be approximations of φ(xi, yj , zk, nΔt) and

μ(xi, yj , zk, nΔt), respectively, where Δt = T/Nt is the

time step, T is the final time, and Nt is the total num-
ber of time steps. We define Ωh

δ = {xijk : |ψijk| < δ}
as the discrete narrow band domain (see fig. 3). We
need to take δ >

√
3h (the diagonal of a cube with an

edge length of h) because Ωh
δ must contain the interpola-

tion stencil for the closest points of all domain boundary
points.

Let ∂Ωh
δ = {(xi, yj , zk) : Iijk|∇hIijk| �= 0} be the dis-

crete domain boundary points (see fig. 3), where ∇hIijk =
(Ii+1,jk − Ii−1,jk, Ii,j+1,k − Ii,j−1,k, Iij,k+1 − Iij,k−1)/(2h).
Here, Iijk = 0 if (xi, yj , zk) ∈ Ωh

δ , and Iijk = 1 other-
wise. We consider the following unconditionally stable dis-
cretization of the nonlocal CH system given in (3) and (4):

φn+1
ijk − φn

ijk

Δt
= Δhμn+1

ijk − α
(
φn+1

ijk − φ̄
)

, (6)

μn+1
ijk =

(
φn+1

ijk

)3

− φn
ijk − ε2Δhφn+1

ijk , (7)

where the seven-point discrete Laplacian operator is de-
fined as

Δhφijk =
φi+1,jk + φi−1,jk + φi,j+1,k + φi,j−1,k

h2

+
φij,k+1 + φij,k−1 − 6φijk

h2
.

The pseudo-Neumann boundary condition on ∂Ωh
δ is

implemented as

φn+1
ijk = φn+1(cp(xijk)) and μn+1

ijk = μn+1(cp(xijk)).

Let xijk be a boundary point in ∂Ωh
δ . Then,

cp(xijk) = xijk − ∇h|ψijk|
|∇h|ψijk||

|ψijk|

is the numerical closest point to the surface S. In gen-
eral, cp(xijk) is not a grid point in the discrete narrow
band domain, i.e., cp(xijk) /∈ ∂Ωh

δ . Therefore, we cal-
culate φn(cp(xijk)) by using trilinear interpolation (see
fig. 3). Using the Jacobi iteration method, we solve eqs. (6)
and (7) numerically. Assume that we have the numerical
solution at time step level n, φn

ijk. Then, we want to find
the numerical solution φn+1

ijk at time level n + 1. First,
we take an initial guess φn+1,1

ijk = φn
ijk and μn+1,1

ijk = μn
ijk.

Then, we apply the Jacobi iteration defined by (8) and (9)
for eqs. (6) and (7), until the stopping criterion is satisfied,
‖φn+1,m+1 − φn+1,m‖L2(Ωh

δ ) < tol, where “tol” is a given
tolerance value. Here, a discrete L2-norm on Ωh

δ is de-
fined as ‖φ‖L2(Ωh

δ ) =
√∑

xijk∈Ωh
δ

φ2
ijk/#Ωh

δ , where #Ωh
δ

is the number of elements of the set Ωh
δ . By φn+1,m and

φn+1,m+1, we denote the iterative solutions after the m-
th and (m + 1)-th rounds of Jacobi iteration. The Jacobi



Page 4 of 7 Eur. Phys. J. E (2015) 38: 117

iteration is given by
(

1
Δt

+ α

)
φn+1,m+1

ijk +
6
h2

μn+1,m+1
ijk =

φn
ijk

Δt
+ αφ̄ +

1
h2

(
μn+1,m

i+1,jk + μn+1,m
i−1,jk + μn+1,m

i,j+1,k

)

+
1
h2

(
μn+1,m

i,j−1,k + μn+1,m
ij,k+1 + μn+1,m

ij,k−1

)
, (8)

−
(

3
(
φn+1,m

ijk

)2

+
6ε2

h2

)
φn+1,m+1

ijk + μn+1,m+1
ijk =

−φn
ijk + 2

(
φn+1,m

ijk

)3

+
ε2

h2

(
φn+1,m

i+1,jk + φn+1,m
i−1,jk

)

+
ε2

h2

(
φn+1,m

i,j+1,k + φn+1,m
i,j−1,k + φn+1,m

ij,k+1 + φn+1,m
ij,k−1

)
, (9)

for all xijk ∈ Ωh
δ . Equations (8) and (9) can be rewritten

in the following form:

(
a b

c 1

)⎛
⎝φn+1,m+1

ijk

μn+1,m+1
ijk

⎞
⎠ =

(
f

g

)
,

where

a =
1

Δt
+ α, b =

6
h2

, c = −3
(
φn+1,m

ijk

)2

− 6ε2

h2
,

f =
φn

ijk

Δt
+ αφ̄ +

1
h2

(
μn+1,m

i+1,jk + μn+1,m
i−1,jk + μn+1,m

i,j+1,k

)

+
1
h2

(
μn+1,m

i,j−1,k + μn+1,m
ij,k+1 + μn+1,m

ij,k−1

)
,

g = −φn
ijk + 2

(
φn+1,m

ijk

)3

+
ε2

h2

(
φn+1,m

i+1,jk + φn+1,m
i−1,jk

)

+
ε2

h2

(
φn+1,m

i,j+1,k + φn+1,m
i,j−1,k + φn+1,m

ij,k+1 + φn+1,m
ij,k−1

)
.

Therefore, the solutions at each step are obtained as

φn+1,m+1
ijk =

f − bg

a − bc
and μn+1,m+1

ijk =
ag − cf

a − bc
.

In each updating step, we define the boundary points
using the closest point method and trilinear interpolation.
Note that we only use the closest point method on the
boundary points, not on the narrow band domain.

4 Numerical experiments

In this section, we perform several numerical experiments
on various curved surfaces.

4.1 Comparison with previous numerical results

In order to verify our proposed numerical scheme, we per-
form the same numerical tests as in [5], where Tang et al.

Fig. 4. Temporal evolutions of lamella pattern on the sphere
surface with initial conditions φ(x, y, z) = 0.5 rand(x, y, z) and
α = 0.2. Here, rand(x, y, z) is random value between −1 and 1.
(a) Reprinted images from Tang et al. [5]. c© 2005, American
Physical Society. Reprinted with permission. (b) Numerical re-
sults obtained using our proposed method. The computational
times are shown below each column.

studied phase separation on spherical surfaces by solving
the nonlocal CH equation using a finite volume method.
They found that at a late stage of phase separation for
a symmetric composition of the block copolymers, spiral
structures are seen on the spherical surface, which has not
been observed to occur on a flat surface. To be consistent
with the previous tests, we set ε = 1, h = 1, and Δt = 1 on
the computational domain Ω = [−37.5, 37.5]3. The sphere
surface is represented by the zero level set of the signed
distance function

d(x, y, z) =
√

x2 + y2 + z2 − 31.25. (10)

For the first test, we perform a numerical simulation
with α = 0.2 and an initial condition of φ(x, y, z) =
0.5 rand(x, y, z), where rand(x, y, z) is a uniformly dis-
tributed random number between −1 and 1. For com-
parison, we include reprinted images from [5] in fig. 4(a).
Figure 4(b) shows the temporal evolution of morphologi-
cal patterns during spinodal decomposition on the sphere.
In this figure, we can see that our results show a similar
lamella pattern to that in fig. 4(a).

Figure 5 shows the temporal evolution of morpholog-
ical patterns during spinodal decomposition on the sur-
face of the sphere with α = 0.1 and the initial condition
φ(x, y, z) = −0.3+0.5 rand(x, y, z). From a random initial
state, the phase on the sphere separates into a hex-cylinder
type phase, as shown in fig. 5(b), which is similar to the
previous result from fig. 5(a) in Tang et al. [5].

4.2 Temporal evolution on a torus

Our next example is that of phase separation on the sur-
face of a torus. The torus is represented by the zero level
set of the signed distance function as follows:

d(x, y, z) =
√

(
√

x2 + y2 − 0.7)2 + z2 − 0.3. (11)

Figures 6(a) and (b) show the phase separation on
the surface of a torus with two initial conditions: (a)
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Fig. 5. Temporal evolutions of hexagonal patterns on the
sphere surface with initial conditions φ(x, y, z) = −0.3 +
0.5 rand(x, y, z) and α = 0.1. (a) Reprinted images from Tang
et al. [5]. c© 2005, American Physical Society. Reprinted with
permission. (b) Numerical results obtained using our pro-
posed method. The computational times are shown below each
column.

Fig. 6. Phase separation on torus. Temporal evolutions with
(a) φ(x, y, z, 0) = 0.0 + 0.5 rand(x, y, z), ε = 1/(20

√
2), h =

0.0375 and (b) φ(x, y, z, 0) = −0.3 + 0.5 rand(x, y, z), ε =
1/(30

√
2), and h = 0.031. The computational times are shown

below each column.

φ(x, y, z, 0) = 0.0 + 0.5 rand(x, y, z), ε = 1/(20
√

2), h =
0.0375, Nx = Ny = Nz = 51, Δt = 0.1 and (b)
φ(x, y, z, 0) = −0.3 + 0.5 rand(x, y, z), ε = 1/(30

√
2),

Δt = 0.1, h = 0.031, Nx = Ny = Nz = 51, Δt = 0.1,
respectively. Depending on the values of the parameters,
the phase on the torus forms different patterns. As shown
in figs. 6(a) and (b), we have lamellar and hexagonal pat-
terns, respectively. The required computational times are
shown below each column.

4.3 Temporal evolution on a cube

Now, we demonstrate the robustness of the proposed nu-
merical algorithm by performing phase separation simula-
tion on a cube surface, which has sharp curvatures. Here,

Fig. 7. Phase separation on a cube surface. Temporal evolu-
tions with φ(x, y, z, 0) = 0.0 + 0.5 rand(x, y, z), ε = 1/(20

√
2),

and h = 0.0375. The computational times are shown below
each figure.

the cube surface is represented by the zero level set of the
signed distance function as follows:

d(x, y, z) = min (max (x̄,max(ȳ, z̄)) , 0)

+
√

max(x̄, 0)2 + max(ȳ, 0)2 + max(z̄, 0)2,
(12)

where x̄ = |x| − 1.7, ȳ = |y| − 1.7, and z̄ = |z| − 1.7.
Figure 7 illustrates the temporal evolutions of phase

separation on a cube surface. In this test, we applied an
initial condition of φ(x, y, z, 0) = 0.0 + 0.5 rand(x, y, z).
The numerical parameters were set to ε = 1/(20

√
2),

α = 100, h = 0.0375, Δt = 0.1, and Ω = [0, 100h]3.
In fig. 7, the numerical solutions show the development
of a lamellar pattern on the cube surface as time pro-
gressed. The phase field method that we are currently us-
ing is known as treating a microscopically sharp interface
like a diffuse region. That is, the phase field variable φ is
smoothly set to any value from φ ≈ −1 to φ ≈ 1 between
the two phases over the diffuse interface region, which has
a small but numerically resolvable thickness. Therefore,
we can see stable numerical solutions at sharp curvatures
without any difficulties.

4.4 Temporal evolution on a bunny

To demonstrate that our proposed method can deal
with complex surfaces, we perform phase separation on
the surface of a bunny. For the majority of complex
surfaces, closed-form signed distance functions such as
eqs. (10), (11), and (12) are not available. Therefore,
we need to reconstruct a signed distance function from
scattered data points that are sampled from a three-
dimensional object. In [35, 36], the authors proposed
numerical algorithms for implicit surface reconstruction
based on partial differential equations. The method con-
sists of three steps. First, we determine the distance func-
tion to a scattered data point set on rectangular grids. Sec-
ond, we find a good initial surface. Third, we solve time-
dependent partial differential equations for the signed dis-
tance function. For more details on the numerical algo-
rithm, see [35, 36] and references therein. Figures 8(a)
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Fig. 8. Morphological evolutions on the surface of a bunny
with initial conditions (a) φ(x, y, z) = 0.0 + 0.5 rand(x, y, z)
and (b) φ(x, y, z) = −0.3+0.5 rand(x, y, z). The computational
times are shown below each column.

and (b) demonstrate the temporal evolution of morpholog-
ical patterns during spinodal decomposition on the surface
of the bunny with the initial conditions: φ(x, y, z) = 0.0+
0.5 rand(x, y, z) and φ(x, y, z) = −0.3 + 0.5 rand(x, y, z),
respectively. Here, we set Δt = 0.1, α = 100, and Ω =
[0, 137h]3. For test (a), we used the parameters h = 0.0375
and ε = 1/(20

√
2) and for (b), we used h = 0.031 and

ε = 1/(30
√

2). These specific values are from the same as
those used in [15]. From these results we can confirm that
the proposed algorithm can compute microphase separa-
tion patterns in diblock copolymers on complex surfaces.

4.5 Effect of surface geometry on pattern formation

Finally, we investigate the effect of surface geometry on
pattern formation. We consider a torus with the following
signed distance function:

d(x, y, z) =
√

(
√

x2 + y2 − 1)2 + z2 − r, (13)

where r is the tube radius of the torus. Here, the torus
generated in eq. (13) has a unit circumferential radius,
which is the radius of the circle that constitutes the cen-
ter of the torus tube. We investigate the pattern in a
steady state on three different torus surfaces with r =
0.16, r = 0.08, and 0.03. For our numerical test, we use
h = 0.01, Δt = 0.001, ε = 0.0236, and α = 100 on
Ω = [−0.5, 0.5]3. Figure 9 shows the phase pattern in a
steady state on the different tori, with the initial condi-
tion φ(x, y, z) = φ̄ + 0.5 rand(x, y, z). For (a) and (b) we
applied φ̄ = 0.0 and −0.3, respectively. In these numerical
results, we obseve lamella and hexagonal patters on the
surfaces of the various tori with respect to average con-
centration. However, when the radius of the torus tube is
small, the pattern shows a lamella phase.

Fig. 9. Phase pattern in a steady state on surface of a
torus defined by the signed distance function d(x, y, z) =
q

(
p

x2 + y2 − 1)2 + z2 − r. In this test, the different aver-

age concentrations are applied (a) φ̄ = 0 and (b) φ̄ = −0.3
with the initial condition φ(x, y, z) = φ̄+0.5 rand(x, y, z). The
other parameters used are h = 0.01, Δt = 0.001, ε = 0.0236,
and α = 100. In addition, each column applied a different ra-
dius to the torus tube with r = 0.16, r = 0.08, and r = 0.03,
respectively.

5 Conclusions

In this paper, we explored the microphase separation of di-
block copolymers on curved surfaces in three-dimensional
space. Our study was based on a nonlocal Cahn-Hilliard
equation, which is derived from the Ohta-Kawasaki func-
tional. In performing numerical simulations, we implicitly
represented curved surfaces as the zero level sets of signed
distance functions. By using the standard finite difference
scheme, we approximated the nonlocal CH equation in
the discrete narrow band domain, which is a neighboring
region of the curved surface. In addition, we applied a
pseudo-Neumann boundary condition at the boundary
of the computational domain using the closet point
method. With this treatment of the boundary condition,
we were able to replace the Laplace-Beltrami operator
with the well-known standard Laplacian operator. The
resulting implicit discrete system, obtained from a type
of unconditionally stable scheme proposed by Eyre, was
solved using the Jacobi iterative method. Because the
computation is only performed in a discrete narrow band,
the numerical simulation is fast, and its correspond-
ing algorithm is simple. Using this efficient numerical
method, we provided several computational experiments
to study the patterns of microphase separation for
diblock copolymers on various curved surfaces. Through
our numerical tests, we found two different patterns
on general surfaces: lamella phases for compositionally
symmetric block copolymers and hexagonal phases for
asymmetric compositions. In particular, we were able
to observe the spiral lamella phase, the occurrence of
which is not observed in two-dimensional flat space. In
addition, in case of torus surfaces with a small tube
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radius, we observed a lamellar phase, even though the
average concentration φ̄ was not symmetric.
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