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a b s t r a c t

In this paper we present a conservative numerical method for the Cahn–Hilliard
equation with Dirichlet boundary conditions in complex domains. The method uses an
unconditionally gradient stable nonlinear splitting numerical scheme to remove the high-
order time-step stability constraints. The continuous problemhas the conservation ofmass
and we prove the conservative property of the proposed discrete scheme in complex
domains. We describe the implementation of the proposed numerical scheme in detail.
The resulting system of discrete equations is solved by a nonlinear multigrid method. We
demonstrate the accuracy and robustness of the proposed Dirichlet boundary formulation
using various numerical experiments. We numerically show the total energy decrease
and the unconditionally gradient stability. In particular, the numerical results indicate
the potential usefulness of the proposed method for accurately calculating biological
membrane dynamics in confined domains.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider an efficient and robust numerical scheme for the Cahn–Hilliard (CH) equation with Dirichlet
boundary conditions in complex domains. This equation was introduced to model spinodal decomposition and coarsening
phenomena in binary alloys [1,2] and it arises from the Helmholtz free energy functional

E(φ) =


Ω


F(φ)+

ϵ2

2
|∇φ|

2

dx,

whereΩ ⊂ R2 and ϵ is a positive constant. The quantity φ(x, t) is defined to be the difference between themole fractions of
binarymixtures (e.g.,φ(x, t) = mα−mβ wheremα andmβ are themole fractions of phasesα andβ). F(φ) = 0.25(φ2

−1)2 is
the Helmholtz free energy per unit volume of a homogeneous system of composition φ (see Fig. 1) and ϵ2

2 |∇φ|
2 is a gradient

energy.
The Cahn–Hilliard equation takes the form

∂φ

∂t
(x, t) = M1µ(x, t), x ∈ Ω, 0 < t ≤ T , (1)

µ(x, t) = F ′(φ(x, t))− ϵ21φ(x, t), (2)
φ(x, t) = g(x), x ∈ ∂Ω, (3)
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Fig. 1. Helmholtz free energy density F(φ) = 0.25(φ2
− 1)2 .

∂µ

∂n
(x, t) = 0, x ∈ ∂Ω, (4)

where M is a positive constant mobility, g(x) is a given function, and n is the outward normal vector at the boundary.
To derive Eqs. (1)–(4), we start with mass conservation, i.e.,

φt = −∇ · J, (5)

where the flux is defined as J = −M∇µ. The chemical potentialµ can be obtained via the variational derivative of the free
energy functional with respect to φ, such that

d
dη

E(φ + ηv)


η=0

=


Ω


vF ′(φ)+ ϵ2∇v · ∇φ


dx

=


Ω


F ′(φ)− ϵ21φ


v dx +


∂Ω

ϵ2
∂φ

∂n
v ds =


Ω


F ′(φ)− ϵ21φ


v dx,

where v satisfies

Ω
v dx = 0 and v = 0 on ∂Ω . Now we get the chemical potential

µ =
δE

δφ
= F ′(φ)− ϵ21φ. (6)

Using Eqs. (5) and (6), we get Eq. (1). The CH equation can be derived from a constrained gradient flow in the H̄−1 Hilbert
space and it guarantees that the total free energy E(φ) will decrease in time t [3]. We will show later that the numerical
total energy decrease implies the stability of the numerical solutions. The solution φ(x, t) of the CH Eqs. (1)–(4) possesses
the properties that the total mass


Ω
φ dx is conserved and that the total energy E(t) decreases with time. That is,

d
dt


Ω

φ dx =


Ω

φt dx = M

Ω

1µ dx = M

∂Ω

∂µ

∂n
ds = 0,

d
dt

E(t) =


Ω

(F ′(φ)φt + ϵ2∇φ · ∇φt)dx

=


Ω

µφtdx +


∂Ω

ϵ2
∂φ

∂n
φtds =


Ω

µM1µdx

=


∂Ω

µM
∂µ

∂n
ds −


Ω

M∇µ · ∇µdx = −


Ω

M|∇µ|
2dx ≤ 0.

Many research papers have been published on the numerical methods for the CH equation [4–35]. Various numerical
methods are intensively studied with either Neumann [8–17] or periodic [18–29] boundary condition. Some authors have
studied the CH equationwith contact angle boundary conditions [30–32]. A few authors have analyzed theDirichlet problem
for the CH equation. Du and Nicolaides [33] proposed a finite element/difference scheme with the property that the total
energy decreaseswith time by using Dirichlet boundary conditions. Bronsard andHilhorst [34] studied the limiting behavior
of the solution of the CH equation with the Dirichlet boundary condition using energy-type methods. In [35], Bates and Han
discussed the existence, uniqueness and continuous dependence on initial data of the solution for a nonlocal CH equation
with the Dirichlet boundary condition on a bounded domain. While our paper is slightly different from the papers referred
to [33–35], we adopt the Neumann boundary condition for µ to keep the mass conservation. Furthermore with Dirichlet
boundary conditions, the biharmonic [36], the Schrödinger [37], and the regularized longwave equations [38] were studied.
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Fig. 2. (a) DomainΩ with boundary ∂Ω and (b) discrete domainΩh with discrete boundary ∂Ωh .

The possible applications of the CH model with Dirichlet boundary conditions are a non-wetting droplet dynamics in
a channel, a red blood cell in capillary blood vessels, and deformation of biological cell morphology in a confined domain
[39–52].

The objective of this paper is to propose the conservative numericalmethod for the Cahn–Hilliard equationwith Dirichlet
boundary conditions in complex domains. The CH equation is discretized using an unconditionally gradient stability scheme
and its resulting scheme is solved by a fast multigrid method.

This paper is organized as follows. In Section 2, we describe the discretization of the CH equationwith Dirichlet boundary
conditions and its multigrid algorithm. The numerical results, which demonstrate the accuracy and robustness of the
proposed Dirichlet boundary formulation, are described in Section 3. A discussion is presented in Section 4.

2. Proposed numerical algorithm with Dirichlet boundary conditions

In this section, we propose a new conservative numerical algorithm for solving the Cahn–Hilliard equationwith Dirichlet
boundary conditions in complex domains. We discretize the governing Eqs. (1) and (2) in two-dimensional space, i.e.,
Ω = (a, b)× (c, d) and its domain boundary is denoted as ∂Ω (see Fig. 2(a)). Let xi = a+ (i−0.5)h, yj = c+ (j−0.5)h, 0 ≤

i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1, where Nx and Ny are positive even integers and h = (b − a)/Nx = (d − c)/Ny is the uniform
mesh size. Then discrete domain and discrete boundary are defined as Ωh

= {(xi, yj)| 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} and
∂Ωh

= {(x0, yj), (xNx+1, yj), (xi, y0), (xi, yNy+1)| 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}, respectively (see Fig. 2(b)). Note that the discrete
boundary points are located at a half space step away from the true boundary points. It will be shown that this treatment of
boundary points makes the solution algorithm be considerably simpler than standard treatments.

2.1. Discretization in a rectangular domain

Let φn
ij be an approximation of φ(xi, yj, n1t), where 1t = T/Nt is the time-step, T is the final time, and Nt is the

total number of time-steps. We take M ≡ 1 for convenience. Then, a semi-implicit time and centered difference space
discretization of the CH equation is given by

φn+1
ij − φn

ij

1t
= ∆dµ

n+1
ij , (7)

µn+1
ij = F ′(φn+1

ij )+ φn+1
ij − φn

ij − ϵ2∆dφ
n+1
ij . (8)

Here, the discrete Laplacian operator is defined by∆dφij = (φi+1,j +φi−1,j −4φij +φi,j+1 +φi,j−1)/h2. The discrete boundary
condition is defined as

φn
0j = g(a, yj), φn

Nx+1,j = g(b, yj), φn
i0 = g(xi, c), φn

i,Ny+1 = g(xi, d).

The resulting nonlinear system of Eqs. (7) and (8) is solved efficiently using a nonlinear multigrid method. The
unconditionally gradient stability of the discrete system is proved in [53–56]. We define the discrete energy functional:

Eh(φ
n) =

Nx
i=1

Ny
j=1


h2F(φn

ij)+
ϵ2

2


(φn

i+1,j − φn
ij)

2
+ (φn

i,j+1 − φn
ij)

2 .
Eh(φ

n)/Eh(φ
0) is defined as the normalized discrete total energy. We also define the discrete average mass asNx

i=1
Ny

j=1 φ
n
ij/(NxNy). In [53,54], Eyre proved that if φn+1 is a numerical solution of Eqs. (7) and (8) with a given φn, then

Eh(φ
n+1) ≤ Eh(φ

n). The decrease of the discrete total energy functional implies the pointwise boundedness of the numerical
solution (please refer to [56] for more details and proof).
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Fig. 3. (a) Complex domainΩin and (b) discrete complex domainΩh
in .

2.2. Conservation of the total mass in a rectangular domain

To satisfy the mass conservation property, i.e.,
Nx

i=1
Ny

j=1 φ
n+1
ij =

Nx
i=1
Ny

j=1 φ
n
ij , we should have

0 =

Nx
i=1

Ny
j=1

φn+1
ij − φn

ij

1t
=

Nx
i=1

Ny
j=1

∆dµ
n+1
ij

=

Ny
j=1

Nx
i=1


µn+1

i+1,j − µn+1
ij

h2
−
µn+1

ij − µn+1
i−1,j

h2


+

Nx
i=1

Ny
j=1


µn+1

i,j+1 − µn+1
ij

h2
−
µn+1

ij − µn+1
i,j−1

h2



=

Ny
j=1


µn+1

Nx+1,j − µn+1
Nxj

h2
−
µn+1

1j − µn+1
0j

h2


+

Nx
i=1


µn+1

i,Ny+1 − µn+1
iNy

h2
−
µn+1

i1 − µn+1
i0

h2


,

where we have used Eq. (7) and telescoping cancellation. Therefore, if we impose the following numerical no-flux boundary
conditions:

µn+1
0j = µn+1

1j , µn+1
Nx+1,j = µn+1

Nxj for 1 ≤ j ≤ Ny,

µn+1
i0 = µn+1

i1 , µn+1
i,Ny+1 = µn+1

iNy
for 1 ≤ i ≤ Nx,

then we have the mass conserving property.

2.3. Discretization in a complex domain

Next, we present a conservative discretization for the CH equation in a non-rectangular domain with Dirichlet boundary
conditions. LetΩin be an arbitrarily shaped open domain embedded inΩ (see Fig. 3(a)). Also, letΩh

in be a discrete domain,
∂Ωh

in be its discrete boundary, andΩh
out = Ωh

\ (Ωh
in ∪ ∂Ωh

in) (see Fig. 3(b)).
As we refine the mesh, i.e., h → 0, the arbitrarily shaped domainΩin is approximated byΩh

in (see Fig. 4).
To solve the CH equation in an arbitrarily shaped domainΩin, we propose the following numerical scheme:

φn+1
ij − φn

ij

1t
= Gh

ij∆dµ
n+1
ij , (9)

µn+1
ij = Gh

ij(F
′(φn+1

ij )+ φn+1
ij − φn

ij − ϵ2∆dφ
n+1
ij )+ µ̃n+1

ij . (10)

Note that for (xi, yj) ∈ ∂Ωh
in, µ̃

n+1
ij will be defined in Section 2.4 and otherwise we assume µ̃n+1

ij = 0. The boundary control
function Gh

ij is defined as

Gh
ij = Gh(xi, yj) =


1 if (xi, yj) ∈ Ωh

in,

0 if (xi, yj) ∈ Ωh
out ∪ ∂Ωh

in.

The discrete boundary condition is defined on the discrete boundary ∂Ωh
in as φn

ij = g(x, y), where (x, y) ∈ ∂Ω and
|(x − xi, y − yj)| = min(α,β)∈∂Ω |(α − xi, β − yj)|. Thus, by using the boundary control function Gh

ij, we can solve the CH
equation in the arbitrarily shaped domainΩh

in as follows:

φn+1
ij − φn

ij

1t
=


∆dµ

n+1
ij if (xi, yj) ∈ Ωh

in,

0 if (xi, yj) ∈ Ωh
out ∪ ∂Ωh

in,
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Fig. 4. Convergence ofΩh
in toΩin as we refine the mesh.

Fig. 5. Examples of discrete boundary point µn+1
ij in a complex domain. Each equation corresponding to each label is defined in Eq. (12).

µn+1
ij =


F ′(φn+1

ij )+ φn+1
ij − φn

ij − ϵ2∆dφ
n+1
ij if (xi, yj) ∈ Ωh

in,

µ̃n+1
ij if (xi, yj) ∈ ∂Ωh

in,

0 if (xi, yj) ∈ Ωh
out.

2.4. Conservation of the total mass in a complex domain

In order to keep the conservation property for the CH equation in a complex domainΩh
in, i.e.,


(xi,yj)∈Ωh

in
(φn+1

ij −φn
ij) = 0,

we have to satisfy the following condition for (xi, yj) ∈ ∂Ωh
in:

µ̃n+1
ij =

Gh
i+1,jµ

n+1
i+1,j + Gh

i−1,jµ
n+1
i−1,j + Gh

i,j+1µ
n+1
i,j+1 + Gh

i,j−1µ
n+1
i,j−1

Gh
i+1,j + Gh

i−1,j + Gh
i,j+1 + Gh

i,j−1
. (11)

Note thatGh
i+1,j+Gh

i−1,j+Gh
i,j+1+Gh

i,j−1 is always positive for (xi, yj) ∈ ∂Ωh
in. Therefore, µ̃

n+1
ij is well-defined. Fig. 5 represents

examples of µ̃n+1
ij :

(a) µ̃n+1
ij = µn+1

i+1,j,

(b) µ̃n+1
ij = (µn+1

i+1,j + µn+1
i,j+1)/2, and

(c) µ̃n+1
ij = (µn+1

i+1,j + µn+1
i,j+1 + µn+1

i,j−1)/3.

(12)

Let us define four types of boundaries as

∂Ωh
in,l = {(xi, yj) ∈ ∂Ωh

in | (xi+1, yj) ∈ Ωh
in},

∂Ωh
in,r = {(xi, yj) ∈ ∂Ωh

in | (xi−1, yj) ∈ Ωh
in},

∂Ωh
in,b = {(xi, yj) ∈ ∂Ωh

in | (xi, yj+1) ∈ Ωh
in},

∂Ωh
in,t = {(xi, yj) ∈ ∂Ωh

in | (xi, yj−1) ∈ Ωh
in}.

Then ∂Ωh
in = ∂Ωh

in,l ∪ ∂Ω
h
in,r ∪ ∂Ωh

in,b ∪ ∂Ωh
in,t . These definitions are illustrated in Fig. 6.

Now, we will prove the mass conservation property of our proposed scheme on a discrete complex domain. By summing
Eq. (9) in the complex numerical domain,Ωh

in, we get
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Fig. 6. Complex domain with different boundaries.
(xi,yj)∈Ωh

in

φn+1
ij − φn

ij

1t
=


(xi,yj)∈Ωh

in

∆dµ
n+1
ij

=


(xi,yj)∈∂Ωh

in,r

µ̃n+1
ij − µn+1

i−1,j

h2
−


(xi,yj)∈∂Ωh

in,l

µn+1
i+1,j − µ̃n+1

ij

h2

+


(xi,yj)∈∂Ωh

in,t

µ̃n+1
ij − µn+1

i,j−1

h2
−


(xi,yj)∈∂Ωh

in,b

µn+1
i,j+1 − µ̃n+1

ij

h2

=


(xi,yj)∈∂Ωh

in


Gh
i−1,j(µ̃

n+1
ij − µn+1

i−1,j)− Gh
i+1,j(µ

n+1
i+1,j − µ̃n+1

ij )

h2

+
Gh
i,j−1(µ̃

n+1
ij − µn+1

i,j−1)− Gh
i,j+1(µ

n+1
i,j+1 − µ̃n+1

ij )

h2



=


(xi,yj)∈∂Ωh

in


(Gh

i+1,j + Gh
i−1,j + Gh

i,j+1 + Gh
i,j−1)µ̃

n+1
ij

h2

−
Gh
i+1,jµ

n+1
i+1,j + Gh

i−1,jµ
n+1
i−1,j + Gh

i,j+1µ
n+1
i,j+1 + Gh

i,j−1µ
n+1
i,j−1

h2


= 0,

where we have used Eq. (11) in the last equality. Therefore, we have proved themass conservation property of the proposed
numerical scheme for the CH equation with Dirichlet boundary conditions in complex domains.

2.5. Nonlinear multigrid solver in a complex domain

In this section, we use a nonlinear full approximation storage multigrid method to solve the nonlinear discrete system
(9) and (10) at the implicit time level. To condense the discussion we describe only the relaxation step of the method. First,
rewrite Eqs. (9) and (10) as follows:

φn+1
ij

1t
+

4Gh
ijµ

n+1
ij

h2
=
φn
ij

1t
+ Gh

ij

µn+1
i+1,j + µn+1

i−1,j + µn+1
i,j+1 + µn+1

i,j−1

h2
,

−
4Gh

ijϵ
2

h2
φn+1
ij − Gh

ij(φ
n+1
ij )3 + µn+1

ij = −Gh
ijφ

n
ij −

Gh
ijϵ

2

h2
(φn+1

i+1,j + φn+1
i−1,j + φn+1

i,j+1 + φn+1
i,j−1)+ µ̃n+1

ij .

Next, we replace φn+1
kl and µn+1

kl in the above equations with φ̄
m
kl and µ̄

m
kl if k ≤ i and l ≤ j, otherwise with φm

kl and µ
m
kl ,

i.e.,
φ̄m
ij

1t
+

4Gh
ijµ̄

m
ij

h2
=
φn
ij

1t
+ Gh

ij

µm
i+1,j + µ̄m

i−1,j + µm
i,j+1 + µ̄m

i,j−1

h2
,

−
4Gh

ijϵ
2

h2
φ̄m
ij − Gh

ij(φ̄
m
ij )

3
+ µ̄m

ij = −Gh
ijφ

n
ij −

Gh
ijϵ

2

h2
(φm

i+1,j + φ̄m
i−1,j + φm

i,j+1 + φ̄m
i,j−1)+ µ̃m

ij . (13)
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Fig. 7. Initial condition φ(x, y, 0) onΩin .

Since (φ̄m
ij )

3 in Eq. (13) is nonlinear with respect to φ̄m
ij , we linearize (φ̄m

ij )
3 at φm

ij :

(φ̄m
ij )

3
= (φm

ij )
3
+ 3(φm

ij )
2(φ̄m

ij − φm
ij ).

After substituting this expression into Eq. (13), we obtain

− Gh
ij


4ϵ2

h2
+ 3(φm

ij )
2

φ̄m
ij + µ̄m

ij = ψn
ij − Gh

ij
ϵ2

h2


φm
i+1,j + φ̄m

i−1,j + φm
i,j+1 + φ̄m

i,j−1


− 2Gh

ij(φ
m
ij )

3
+ µ̃m

ij . (14)

It should be noticed that for the boundary point (xi, yj) ∈ ∂Ωh
in, we use Eq. (11) as

µ̃m
ij =

Gh
i+1,jµ

m
i+1,j + Gh

i−1,jµ̄
m
i−1,j + Gh

i,j+1µ
m
i,j+1 + Gh

i,j−1µ̄
m
i,j−1

Gh
i+1,j + Gh

i−1,j + Gh
i,j+1 + Gh

i,j−1
.

For restriction and interpolation operators, we briefly describe them here. For more details, please refer to [17].

3. Numerical results

In this section,we perform the following numerical experiments: a convergence test, a test of the stability of the proposed
scheme, a comparison of Dirichlet and Neumann boundary conditions for spinodal decompositions, and their effects on the
increasing area in rectangular and complex domains, applications of models for biological membranes in confined domains,
and a passively moving droplet in a wavy channel.

Unless otherwise specified, a 128 × 128 mesh grid is used on the computational domain Ω = (0, 1) × (0, 1) and
1t = 0.2h is used for the time integration. Furthermore, across the interfacial regions, the concentration field varies from
−0.9 to 0.9 over a distance of approximately 2

√
2ϵ tanh−1(0.9). Therefore, if we want this value to be approximatelym grid

points, the ϵ value needs to be taken as follows: ϵm = hm/[2
√
2 tanh−1(0.9)]. In our numerical simulation, we set ϵ = ϵ8.

3.1. Convergence test

We start with spatial and temporal convergence tests of the proposedmethod. In order to obtain the spatial convergence
rate, we perform a number of simulations with increasingly finer grids h = 1/2n−1 for n = 6, 7, and 8 on a computational
domainΩin = (−1, 1) × (−1, 1) \ [−0.5, 0.5] × [−0.5, 0.5]. We define the function f (x, y) = (x2 − 1)(x2 − 0.25)(y2 −

1)(y2 − 0.25). The initial condition is φ(x, y, 0) = 2f 4/∥f 4∥∞ − 1 where ∥f ∥∞ is the maximum of f on the domain Ωin,
shown in Fig. 7. The minus one Dirichlet boundary condition, i.e., g(x) = −1 and ϵ = 0.0113 are used. Numerical solutions
are computed up to time T = 0.0001.

Since there is no closed-form analytical solution for this problem, we consider a reference numerical solution, φref, which
is obtained with very fine spatial and temporal grids. In this test, we use a 1024 × 1024 mesh grid and1t = 6.25E−6. We
define the error of a grid as the discrete l2-norm of the difference between that grid and the average of the reference solution
cells neighboring it as follows: ehij := φhij−(φ

ref
p−1,q−1+φ

ref
p,q−1+φ

ref
p−1,q+φ

ref
pq )/4. Here, p and q are appropriate fine reference

grid indexes. The rate of convergence is defined as the ratio of successive errors: log2(∥eh∥2/∥e h
2
∥2). The errors and rates of

convergence obtained using these definitions are given in Table 1. Second-order accuracy with respect to space is observed,
as expected from the discretization.

To obtain the convergence rate for temporal discretization, we fix the space step size as h = 1/128 and choose a set of
decreasing time-steps1t = 6.25E−4, 3.125E−4 and 1.563E−4. Numerical solutions are computed up to time T = 0.005.
Note that in this test we define the l2-norm error of a grid to be e1t ij := φ1t ij − φref

ij . Here, φref is the reference numerical
solutionwhich is obtainedwith a small time-step1t = 1.953E−5. The errors and rates of convergence obtained using these
definitions are given in Table 2. First-order accuracy with respect to time is observed, as expected from the discretization.
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Table 1
Error and convergence results with various mesh grids.
Here,1t = 6.25E−6.

Grid 64×64 128×128 256×256
l2-error 3.90E−3 8.92E−4 2.07E−4
Rate 2.13 2.11

Table 2
Error and convergence results with various time-steps.
Here, a 256 × 256 mesh grid is used.

1t 6.25E−4 3.125E−4 1.563E−4
l2-error 3.30E−2 1.61E−2 7.21E−3
Rate 1.03 1.16

Fig. 8. Temporal evolution with large time-step1t = 10 000.

3.2. Stability of the proposed scheme

The proposed scheme (9) and (10) with Dirichlet boundary conditions is unconditionally gradient stable. In order to
demonstrate this, we perform a numerical experiment in a complex domain with a large time-step,1t = 10 000. The initial
condition is random perturbations with a maximum amplitude of 0.75, that is, φ(x, y, 0) = 0.25 + 0.75rand(x, y), where
rand(x, y) is a random number between−1 and 1. The numerical solutions are obtained from 10 iterations and are shown in
Fig. 8, which represents the non-increasing discrete total energy and conservation of mass concentration of the numerical
solutions with large time-step. These results suggest that our proposed scheme with the Dirichlet boundary condition is
indeed unconditionally stable.

3.3. Spinodal decomposition with Dirichlet and Neumann boundary conditions

We perform a numerical experiment with an example of spinodal decomposition of a binary mixture. Spinodal
decomposition is a mechanism by which a solution of two or more components separates into different phases. The system
separates into spatial regions rich in one species and poor in the other species and evolves into an equilibrium state with a
lower overall free energy [1]. Here, we will consider this problem for the CH equation using aminus one Dirichlet boundary,
i.e., g(x) = −1 and the Neumann boundary with the initial condition φ(x, y, 0) = 0.25 + 0.75rand(x, y). Simulations are
run up to time T = 7.81. Fig. 9(a) and (b) show the evolutions of spinodal decomposition with Dirichlet and Neumann
boundary conditions, respectively. With theminus one Dirichlet boundary condition, the positive phases are gathered away
from the boundary. With the Neumann boundary, the phases keep the 90° contact angle on the boundary. More detailed
models and simulations of the contact angle in phase-fields are described in [57]. From Fig. 9(c), we observe that the average
composition is preserved and the total discrete energy is non-increasing.

We also consider spinodal decomposition with variable Dirichlet boundary conditions. The control function G(x, y) and
initial configuration φ(x, y, 0) are defined as

G(x, y) =


0, if


(x − 0.5)2 + (y − 0.5)2 > 0.3 + 0.1 sin(7θ),

1, otherwise.
(15)

φ(x, y, 0) =


− sin(3(θ + π)2/π), if (x, y) ∈ ∂Ωin,
0.55 + 0.75rand(x, y), if (x, y) ∈ Ωin,

(16)
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Fig. 9. Evolutions with (a) Dirichlet and (b) Neumann boundary conditions. Evolution times are given below each figure. (c) The non-increasing discrete
total energy and conservation of mass concentration of the numerical solutions.

where

θ =


tan−1


y − 0.5
x − 0.5


, if x > 0.5,

π + tan−1

y − 0.5
x − 0.5


, otherwise.

(17)

In Fig. 10(a), we show that the boundary condition g(x, y) = − sin(3(θ + π)2/π) by a stem plot. Using this boundary
condition, the evolution of spinodal decomposition is shown in Fig. 10(b)–(e). The computational times are shown
below each figure. Results in Fig. 10 suggest that our proposed method works well with the variable Dirichlet boundary
condition.

3.4. Effects of Dirichlet and Neumann boundary conditions on increasing area

In order to further investigate the effects of the Dirichlet boundary condition, we consider growing phases inside a
confined domain. To increase the area, we add a source term F(φ) = 0.25(φ2

− 1)2 to the CH equation, such that

∂φ

∂t
= 1µ+ λF(φ), (18)

where λ is a constant and depending on its sign the average concentration of the phase increases or decreases. This type of
source term has been used in simulating crystal growth [58–60] and solving image segmentation problems [61]. We solve
Eq. (18) with Dirichlet and Neumann boundary conditions using the same initial condition

φ(x, y, 0) = tanh


0.3 −


(x − 0.5)2 + (y − 0.5)2

√
2ϵ


.

Here, we use λ = 50 to make the phases grow until the average composition of the phases becomes 0.7. We then set
λ = 0 until t = 2.34 when the phases converge to a numerical steady state. These evolutions are shown in Fig. 11(a) and
(b) for Dirichlet and Neumann boundary conditions, respectively. Fig. 11(c) shows the time-dependent non-dimensional



Y. Li et al. / Computers and Mathematics with Applications 65 (2013) 102–115 111

Fig. 10. (a) Plot of the boundary condition g(x, y) = − sin(3(θ + π)2/π). (b)–(e) Evolution of spinodal decomposition. The computational times are
shown below each figure.

Fig. 11. Evolutions with (a) Dirichlet and (b) Neumann boundary conditions. Evolution times are given below each figure. (c) Evolution of the total energy
and average mass.

discrete total energy and mass change of the numerical solution. From the evolutions with two boundary conditions, it can
be observed that when the Dirichlet boundary condition is used, the interface does not wet the domain boundary. On the
other hand, for the Neumann boundary condition, the phases wet the boundary and is in contact with it by 90°.
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Fig. 12. Evolution of cell growth in confined domains. From left to right, first column: initial configurations; second and third columns: cell growth results;
fourth column: steady cell shapeswith doubled cell area; and last column: figures reprintedwith permission fromMinc et al., Cell,144, 414–426 (2011) [52].
© 2011, Elsevier.

a b c

Fig. 13. (a) and (c) are steady states with Dirichlet and Neumann boundary conditions, respectively; (b) figure reprinted with permission fromMinc et al.,
Cell, 144, 414–426 (2011) [52].
© 2011, Elsevier.

3.5. Application of models for biological membrane in confined domains

One application of phase-field models with Dirichlet boundary conditions is modeling biological membranes in confined
domains. As an example, we consider sea urchin embryos placed in microfabricated chambers for an investigation of how
cell shape affects the positioning of the nucleus, spindle, and subsequent cell division planes [52]. The last column in
Fig. 12 shows differential interference contrast (DIC) pictures of eggs in the chambers adopting different geometries in real
experiments.

To simulate numerically these experimental results, we set initial configurations on confined domains as shown in the
first column in Fig. 12 and we give λ = 50 in Eq. (18) to make the cell grow until the cell doubles in its area. Once the cell
doubles in its area, we reset λ = 0 to stop the cell growth, and thenwe run the simulation until a numerical solution reaches
a steady state. From the second column to the fourth column, we show the evolution in each case. These results show that
our computational results are in good qualitative agreement with the experimental data. Unlike the Neumann boundary
condition, the Dirichlet boundary condition allows us to model membrane dynamics in confined domains with relatively
coarse grids (see Fig. 13(a)). Note that if we had used the Neumann boundary condition, then cell membranes would have
been broken and become attached to the wall as shown in Fig. 13(c).

3.6. A passively moving droplet in a wavy channel

Fig. 14 shows the droplet evolution in the given flow field at t = 0, 1.22, 1.83, 2.44, 3.66, and 4.88 from top to bottom.
The channel geometry is given by two sine functions with period 2 and amplitude 0.25. The vertical distance between the
boundaries is 0.4 and the channel domain is embedded in the computational domainΩ = (0, 5)× (0, 1) with a 320 × 64
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Fig. 14. Droplet evolutions in the flow velocity field with a wavy channel.

mesh grid. Initially, the droplet of diameter 0.3 is placed at the upper left. At the inflow, we use a parabolic velocity profile,
(−24(y − 0.55)(y − 0.95), 0). Similar numerical experiments were performed to simulate two-phase flows with complex
geometries using adaptive finite elements [30]. In [30], the droplet evolution was simulated over time by the flow field
in a wavy channel with a boundary condition that encodes the contact line information. Our proposed method applies
the Dirichlet boundary condition to prevent contact between the droplet and the channel. The flow vector field is driven
by the Navier–Stokes equation with the no-slip Dirichlet boundary condition and with a Reynolds number of 1, and the
droplet is moved by evolving the advective CH equation. In this simulation, the droplet is transported passively by the given
background velocity field. As the droplet moves through the channel, it is deformed as a result of the given velocity field.

4. Conclusions

In this paper we presented a conservative numerical method for the Cahn–Hilliard equation with Dirichlet boundary
conditions in complex domains. The method used an unconditionally gradient stable nonlinear splitting numerical scheme
to remove the high-order time-step stability constraints. The resulting discrete equations were solved by a nonlinear
multigrid method. We described the implementation of our numerical scheme in more detail. A continuous problem had
mass conservation and it was proved that this property holds for a discrete problem. We numerically showed the total
energy decrease and the unconditionally gradient stability. We demonstrated the accuracy and robustness of the proposed
Dirichlet boundary formulationwith various numerical experiments. The numerical results showed the potential usefulness
of the proposed method for accurately calculating membrane dynamics in confined domains. In the future work, we will
compare our proposed method with other numerical methods, for example, adaptive finite element method [30] and apply
our method to simulate biological membrane dynamics in confined domains.
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