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Effect of confinement on droplet deformation in shear flow
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The dynamics of a single droplet under shear flow between two parallel plates is investigated by using the immersed boundary
method. The immersed boundary method is appropriate for simulating the drop-ambient fluid interface. We apply a volume-
conserving method using the normal vector of the surface to prevent mass loss of the droplet. In addition, we present a
surface remeshing algorithm to cope with the distortion of droplet interface points caused by the shear flow. This mesh
quality improvement in conjunction with the volume-conserving algorithm is particularly essential and critical for long time
evolutions. We study the effect of wall confinement on the droplet dynamics. Numerical simulations show good agreement
with previous experimental results and theoretical models.
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1. Introduction

Deformation and breakup of droplets play an important role
in the morphological development of blends (Tucker III and
Moldenaers 2002) as can be seen from their applications in
industry and natural processes such as in emulsions, ink-jet
printers, oil recovery and biological cell systems. Let us
consider two immiscible fluids, with a droplet of one fluid
surrounded by another ambient fluid with a Newtonian vis-
cosity η and interfacial tension coefficient σ . There are
two main parameters that determine the deformation and
breakup behaviour of the droplet component: the capillary
number Ca and the viscosity ratio λ. The capillary number
is defined as Ca = ηmRγ̇ /σ , where ηm, R and γ̇ denote the
viscosity of the ambient fluid, the radius of the undeformed
droplet, and the shear rate, respectively. The capillary num-
ber expresses the ratio between viscous stresses that distort
the droplet shape and interfacial stresses that restore the
droplet shape. The viscosity ratio is defined as the ratio of
the droplet viscosity to the ambient fluid viscosity: λ =
ηd/ηm, where ηd is the droplet viscosity.

The degree of confinement or confinement ratio is de-
fined as the ratio of the droplet diameter to the distance be-
tween two parallel plates. After the pioneering research on
the dynamics of small droplets immersed in another fluid by
Taylor (1932, 1934), most investigations have concentrated
on the unconfined droplet deformation and breakup ex-
perimentally and theoretically (Chaffey and Brenner 1967;
Rallison 1984). Several reviews are available in the lit-
erature (Stone 1994; Tucker III and Moldenaers 2002;
Cristini and Renardy 2006). For the numerical simulation
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of the droplet dynamics, a number of different methodolo-
gies have been developed, including the volume-of-fluid
(Gueyffier et al. 1999; Renardy and Cristini 2001; Renardy
2007), boundary-integral (Cristini et al. 2003; Janssen and
Anderson 2007; Vananroye et al. 2008), phase-field (Yue
et al. 2004; Kim 2005; Yue et al. 2006; Ceniceros, Nos,
and Roma 2010), level set (Pillapakkam and Singh 2001;
Xu et al. 2006; Ardekani, Dabiri, and Rangel 2009), and
immersed boundary methods (IBM; Sheth and Pozrikidis
1995).

The desired droplet-size distribution in multiphase sys-
tems, which is important in industrial processes, has been
studied (Thorsen et al. 2001; Tice, Lyon, and Ismagilov
2004; Garstecki, Stone, and Whitesides 2005). In these
multiphase systems, the droplet diameter is typically of the
order of the parallel plate height; therefore, wall effects play
an important role on droplet deformation. Many experimen-
tal and numerical investigations on the behaviour of a sin-
gle droplet especially under confined shear flow have been
performed (Sibillo et al. 2006; Vananroye, Van Puyvelde,
and Moldenaers 2006a, 2006b; Griggs, Zinchenko, and
Davis 2007; Janssen and Anderson 2007; Renardy 2007;
Vananroye, Van Puyvelde, and Moldenaers 2007;
Cardinaels et al. 2011).

Janssen and Anderson (2007) studied the evolution of
the shape of a single droplet placed between two paral-
lel plates using the boundary-integral method. The authors
investigated the influence of the capillary number and con-
finement ratio on droplet deformation. Vananroye et al.
(2008) also used the boundary-integral method to compare

C© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

K
or

ea
 U

ni
ve

rs
ity

] 
at

 2
2:

07
 0

2 
Fe

br
ua

ry
 2

01
4 

http://dx.doi.org/10.1080/10618562.2013.857406
mailto:cfdkim@korea.ac.kr


318 H. Hua et al.

the experimental and numerical results. They predicted an
increase in droplet deformation and greater orientation to
the flow direction with the increase of the degree of confine-
ment. Cardinaels et al. (2011) numerically investigated the
effect of confinement on the droplet dynamics after startup
of shear flow for systems with one viscoelastic component
using the volume-of-fluid method. They found that con-
finement substantially increases the elongation rate in and
around the droplet. Shapira and Haber (1988) gave a the-
oretical prediction of single droplet deformation at steady
state under confined shear flow. Recently, Minale (2008)
developed a phenomenological model, which is forced to
recover the small deformation limits of Shapira and Haber
(1990), successfully matching the experimental data avail-
able in the literature. See Minale (2010) for a review on
the theoretical models for the deformation of a single ellip-
soidal droplet.

In this paper, we focus on the investigation of the dy-
namics of droplet deformation with wall confinement. We
use the IBM to study droplet dynamics. In general, the IBM
does not guarantee the conservation of volume. Therefore,
we apply the area-preserving method (Li et al. 2012) and
volume-conserving method (Li et al. 2013) to overcome the
lack of conservation in the IBM. In previous work (Li et al.
2013), however, there has been a limitation for the long-time
evolution and large deformation because of mesh distortion.
The goal of this paper is to incorporate a surface remeshing
algorithm into the recently developed volume-conserving
IBM (Li et al. 2013) for two-phase fluid flow. In this work,
we apply the volume mesh generator DistMesh developed
by Persson and Strang (2004) and Persson (2006) to remesh
the distorted surface mesh.

The rest of the paper is organised as follows. In Section
2, we state the problem of droplet deformation in shear flow
and introduce the mathematical formulations. In Section 3,
we describe the numerical implementation of the remeshing
algorithm, construction of the signed distance function and
IBM. Sections 4 and 5 present numerical results in two
and three dimensions, respectively. Finally, conclusions are
drawn in Section 6.

2. Problem statement and governing equations

We consider the dynamical motion of a single droplet in an
ambient fluid between two parallel plates as schematically
depicted in Figure 1. The velocity vector field is generated
by the boundary condition for u = (±γ̇ H, 0, 0) at z = ±H,
where H is the wall height and γ̇ is the shear rate. For the
x- and y-directions, we use a periodic boundary condition
for the velocity u. For the pressure variable, we impose a
periodic boundary condition for the x- and y-directions and
a zero-Neumann boundary condition for the z-direction.
To measure the magnitude of the deformation, we use the
Taylor deformation number defined by D = (L − B)/(L +
B), where L and B are, respectively, the major and minor

Figure 1. Schematic illustration for a liquid droplet (Fluid 2) in
an ambient fluid (Fluid 1) under shear flow.

drop semiaxes in the x–z plane. W is another semiaxis in the
x–y plane. The orientation angle θ is defined as the angle
between the L-axis and the velocity direction.

The mathematical model is based on the IBM developed
by Peskin (1977). Let the fluid velocity u(x, t) = (u(x, t),
v(x, t), w(x, t)) be defined on the fixed Cartesian coordinate
x = (x, y, z) at time t. We denote X(t) as the Lagrangian
variable for the immersed boundary. The Lagrangian vari-
able X(t) separates the domain into two regions occupied by
two distinct fluids. The fluid flow is computed in the whole
domain and then X(t) is advected by the interpolated fluid
velocity from u(x, t). The fluid interacts with the boundary
via singular forces exerted by the boundary. This surface
tension force is spread to the surrounding Eulerian variable
x using a delta function. We suppose that the density and
viscosity are both constant. The dimensionless equations of
motion for the system are as follows:

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

= −∇p(x, t) + 1

Re
�u(x, t) + 1

We
f(x, t), (1)

∇ · u(x, t) = 0, (2)

f(x, t) =
∫

	

F(X(t))δ(x − X(t))ds, (3)

U(X(t)) =
∫

�

u(x, t)δ(x − X(t))dx, (4)

dX(t)

dt
= U(X(t)). (5)

Here, � is the domain and 	 is the interface between
the two fluids. The Reynolds number in Equation (1) is
defined as Re = ρmR2γ̇ /ηm, where ρm is the density of the
ambient fluid. Then, the Weber number can be defined as
We = Re · Ca. The fluid velocity u(x, t), pressure p(x, t), and
singular surface tension force f(x, t) are Eulerian variables
in a Cartesian domain � ∈ R

d (d = 2 or 3). The boundary
force density F(X(t)) and boundary velocity U(X(t)) are
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Figure 2. (a) Velocities defined at cell interfaces and pressure defined at the cell centres in three dimensions. (b) Illustration of Eulerian
points x and Lagrangian points X(t). (a) MAC mesh. (b) Immersed boundary.

Lagrangian variables. F(X(t)) is defined as

F(X(t)) = κ(X(t))n(X(t)), (6)

where κ is the mean curvature and n is the unit outward
normal vector. δ(x − X(t)) is the Dirac delta function, which
is defined by the product of one-dimensional Dirac delta
functions, i.e. δ(x) = δ(x)δ(y) and δ(x) = δ(x)δ(y)δ(z) in
two and three dimensions, respectively.

3. Numerical implementation

In this section, we briefly describe the DistMesh algorithm
and IBM in three dimensions. During the simulation of
droplet deformation in shear flow by the IBM, the distribu-
tion of surface mesh could be seriously distorted. In a long
time simulation, this distorted mesh distribution could lead
to an inaccurate calculation of surface curvature. Eventu-
ally, the droplet shape will not well maintained. The rest of
this section is devoted to explaining the algorithm for regen-
erating the surface mesh in conjunction with the volume-
conserving IBM.

3.1. Discretisation

We discretise the domain � = (a, b) × (c, d) × (e, f) in
three-dimensional space. Two-dimensional discretisation is
analogously defined. Let a computational domain be par-
titioned into a uniform mesh with a space step size h in a
Cartesian geometry. The center of each cell is located at
xijk = (xi, yj, zk), where xi = a + (i − 0.5)h, yj = c +
(j − 0.5)h, and zk = e + (k − 0.5)h, for i = 1, . . . , Nx, j =
1, . . . , Ny and k = 1, . . . , Nz. Here, Nx, Ny and Nz are the
numbers of cells in the x-, y-, and z-directions, respectively.

Let un
ijk be an approximation of u(xi, yj, zk, tn), where tn =

n�t and �t is the time step size.
We use a staggered marker-and-cell mesh, in which

pressure is stored at cell centres and velocities are stored at
cell interfaces (Harlow and Welch 1965). Velocity compo-
nents u, v, and w are defined at the x-, y-, and z-directional
face centres, respectively (see Figure 2(a)). We use a set of
M Lagrangian points Xn

l = (Xn
l , Y

n
l , Zn

l ) for l = 1, . . . , M
to discretise the immersed boundary. There are MT trian-
gles Tris = (Xl, Xm, Xq) for s = 1, . . . , MT with the three
vertices Xl, Xm and Xq for each triangle being ordered
counterclockwise (see Figure 2(b)).

3.2. DistMesh algorithm for the surface mesh

To generate the triangular surface mesh using the implicit
representation of the surface, we use the DistMesh algo-
rithm (Persson and Strang 2004; Persson 2006). Let us take
a two-dimensional example to illustrate the basic idea of
the algorithm. Let the interface of two fluids be implicitly
represented as the zero-level set of an implicit function.
For example, the function φ(x, y) =

√
x2 + y2 − 1 implic-

itly represents the unit circle by the zero level set φ = 0,
which is shown by the dashed curve in Figure 3. The main
procedure for generating the triangular surface mesh is as
follows (where, to simplify the explanation, we denote the
node points at Step 1 by Xn, 1. Xn, 2 and Xn, 3 are defined in
a similar manner):

Step 1. Assign the repulsive force depending on the length
of the edge of each triangle and calculate the net force at
node points Xn, 1 (see Figure 3(a)).

Step 2. According to the net force, move node points Xn, 1

to Xn, 2 (see Figure 3(b)).
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320 H. Hua et al.

Figure 3. Surface mesh generation: (a) net force vectors, (b) triangulation after moving points, (c) projection to the interface, and (d)
final triangulation. (a) Xn, 1. (b) Xn, 2. (c) Xn, 3. (d) Final.

Step 3. To get Xn, 3, project node points Xn, 2 to the zero-
level contour with respect to the normal direction |∇φ| (see
Figure 3(c)).

We repeat Steps 1–3 until the mesh uniformity is sat-
isfactory, i.e. until the movements of node points are less
than a given tolerance (see Figure 3(d)). The projection step
should be applied because points slightly deviate from the
zero-level set by Step 2. To project the point Xn,2

l to the
surface φ = 0 at the Step 3, we use the first-order approxi-
mation

Xn,3
l = Xn,2

l − φ
(
Xn,2

l

) ∇φ
(
Xn,2

l

)
∣∣∇φ

(
Xn,2

l

)∣∣2
. (7)

In the three-dimensional case, the above algorithm is
not sufficient for the moving points to satisfy the mesh
uniformity. To obtain a high-quality triangulation, we up-
date the connectivity to maintain good triangulation of the
nodes during the iterations. We only update the bad tri-
angles by changing the local connectivity. In the flipping

algorithm, we sweep all elements and consider flipping the
edge between neighbouring triangles. For example, the tri-
angles Tris1 = (Xa, Xb, Xd ) and Tris2 = (Xa, Xc, Xb) in
Figure 4(a) change to Tris1 = (Xa, Xc, Xd ) and Tris2 =
(Xc, Xb, Xd ) in Figure 4(b).

3.3. Signed distance function

We use the surface mesh, which is the immersed bound-
ary surface, to construct a signed distance function. The
interface between two fluids is implicitly defined by using
the signed distance function. Let us take a two-dimensional
example to illustrate the basic idea of the method. We take
20 uniformly distributed points for a circle of radius 0.25
on the computational domain (0, 1) × (0, 1) discretised by
a 32 × 32 mesh. Each element distributes the distance and
orientation from itself to nearby points (see Figure 5(a)).
At the point that receives data, we compare the receiving
and existing distances, then choose the smaller one and its
orientation. After all elements distribute data, we have the
shortest distance and its orientation to the surface at a set

Figure 4. Schematic illustration of the flipping algorithm.
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Figure 5. Schematic illustration for constructing a signed distance function by using the surface elements. (a) Nearby points. (b) Signed
distance function. (c) Contour.

of points within a band around the evaluated surface (see
Figure 5(b)). Figure 5(c) shows the node points and zero
contour. The more surface elements there are, the smoother
the zero contour of a signed distance function is.

We extend the above algorithm to the three-dimensional
case. Suppose one triangular mesh Tris = (Xl, Xm, Xq) on
the surface distributes the distance and its orientation to the
point xijk, which is on the Cartesian grid. Now, we describe
the formula to find the shortest distance from the point xijk to
the triangle and denote the point on the triangle as E where
the distance is minimum. To simplify the explanation, we
define four vectors as follows: p = −−−→

xijkE, q = −−−−→xijkXm, v1 =−−−→XmXl and v2 = −−−→XmXq . Then, we can describe the vector on
the triangular mesh by the parameters α and β as follows:
p − q = αv1 + βv2, where 0 ≤ α + β ≤ 1, α ≥ 0, and
β ≥ 0. Finding the minimum distance from the triangular
mesh to point E is equivalent to finding a minimum value
of ‖p‖2 (see Figure 6).

We define the distance function between point E and
the triangular mesh by

f (α, β) = ‖p‖2 = ‖v1‖2α2 + ‖v2‖2β2 + ‖q‖2

+ 2vT
1 v2αβ + 2vT

1 qα + 2vT
2 qβ. (8)

There are seven potential candidates to be minimum: a
critical point, three node points and three boundary points.
Note that the function f is a convex function for all α and
β since fααfββ − f 2

αβ > 0. Therefore, if there is a critical
point in the shaded region, f has a minimum value on it.

3.4. Immersed boundary method

At the nth time step, we have a velocity field un, which
is divergence-free, and a surface tension function fn

ijk

calculated by the boundary configuration Xn. An outline

Figure 6. Schematic illustration of the construction of the signed distance function in three dimensions.
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of the main procedure in one time step containing the vol-
ume correction and remeshing algorithms is as follows:

Step 1. Surface tension force

Evaluate the boundary force density Fn
l from the boundary

configuration Xn,

Fn
l = κn

l nn
l , (9)

for l = 1, . . . , M, where κn
l is the mean curvature and nn

l

is the normal vector. We then calculate the surface tension
force fn

ijk .

fn
ijk =

M∑
l=1

Fn
l δh

(
xijk − Xn

l

)
�Al , (10)

for i = 1, . . . , Nx, j = 1, . . . , Ny and k = 1, . . . , Nz, where δh

is a smoothed Dirac delta function (Peskin and McQueen
1995) and �Al is a surface area element. The reader could
refer to Li et al. (2013) for details of calculations of curva-
ture and normal vector.

Step 2. Calculation of momentum equation

The Navier–Stokes Equations (1) and (2) are solved by
using a projection method. First, we solve an advection–
diffusion equation including surface tension fn in the ab-
sence of the pressure, resulting an intermediate velocity
ũ,

ũ − un

�t
+ un · ∇dun = 1

Re
�un + 1

We
fn (11)

where ∇d and �d denote the centred difference approxima-
tions for the gradient and Laplacian operators, respectively.
Second, we solve the following equation for the advanced
pressure field

un+1 − ũ

�t
= −∇dp

n+1. (12)

The pressure pn + 1 is obtained from the fact that the veloc-
ity field is divergence-free at (n + 1)th time step

�dp
n+1 = 1

�t
∇d · ũ, (13)

where ∇d· denotes the discrete divergence operator. The
resulting system of Equation (13) is solved using a multigrid
method (Trottenberg, Oosterlee, and Schüller 2001). The
velocity field un + 1 is then computed by

un+1 = ũ − �t∇dp
n+1. (14)

Step 3. Updating the interface variables

The new immersed boundary velocity Un+1
l and

position Xn+1
l

Un+1
l =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

un+1
ijk δh

(
xijk − Xn

l

)
h3, (15)

Xn+1
l = Xn

l + �tUn+1
l , l = 1, . . . , M. (16)

These Steps 1–3 complete the procedure for calculating the
fluid velocity un + 1 and boundary position Xn + 1.

We then apply the volume-conserving algorithm (Li
et al. 2013) to Xn + 1 for keeping the initial volume. In ad-
dition, after several time steps, we construct the signed dis-
tance function using the immersed boundary surface mesh
(Section 3.3) and apply the distance function to the remesh-
ing algorithm (Section 3.2) to maintain the mesh uniformity
and quality.

4. Numerical experiments in two dimensions

In this section, we perform numerical experiments in two
dimensions. The convergence tests and the comparison with
previous results are performed to verify our algorithm. We
then investigate the effects of the domain size and initial
shape on the droplet evolution. In addition, the steady-
state droplet shapes are investigated in details under various
conditions.

4.1. Convergence test

We calculate the dimensionless axes L/R and B/R to de-
scribe the deformation of the drop (Minale 2008). A drop
with radius R = 0.5 is located in the centre of the compu-
tational domain � = (−1, 1) × (−1, 1). Other parameters
are Re = 10, Ca = 0.2 and γ̇ = 1. Figure 7 shows the
evolutions of the dimensionless axes and orientation angle
with increasing mesh size: 32 × 32, 64 × 64, 128 × 128 and
256 × 256. Here, we use the time step �t = 0.1h2 depend-
ing on the space step size h. With the increase of mesh size,
the results become convergent.

We next investigate the effect of the number of marker
points on the results. The results are calculated on the do-
main (−1, 1) × (−1, 1), where the space step size h = 1/32.
The initial interface is a circle with radius R = 0.5. Let M
be the number of marker points, and the marker points are
evenly distributed on the interface 2πR at the initial state.
Figure 8 shows droplet shapes with different numbers of
marker points in steady state. The increasing number of
marker points improves the accuracy of interface presenta-
tion, but there is a little difference. Thus, in the following
two-dimensional simulations, we will use a moderate value
of M defined as the nearest integer number of 2πRm/h,
where m is a integer. A Lagrangian mesh size then approx-
imates to h/m. We will use a modest value of m = 4.
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Figure 7. Convergence of (a) dimensionless axes and (b) orientation angle with different mesh sizes.

4.2. Comparison with previous result

We compare our results with previous results (Sheth and
Pozrikidis 1995). In Sheth and Pozrikidis (1995), a 24 × 24
mesh grid is used on the domain (−1, 1) × (−1, 1). For
comparison, we choose a 32 × 32 mesh with the same pa-
rameters. Figure 9 shows the deformation number D as
a function of time with different Reynolds and capillary
numbers. Our results agree well with those of the previous
studies.

4.3. Effect of the domain size

We perform simulations with different domain sizes,
(−2H, 2H) × (−H, H), (−3H, 3H) × (−H, H) and (−4H,
4H) × (−H, H) where the wall height H = 1.25R and the
droplet radius R = 1. The parameters Ca = 0.25, Re = 1
γ̇ = 1, and h = H/128 are used. The initial interface is a cir-
cle with radius R = 0.5. Figure 10 shows the drop shapes in
steady state with a time step size �t = 0.1h2. Because of the
periodic boundary condition, the solutions depend on the

Figure 8. (a) Droplet shape at steady state with different numbers of marker points. (b) Expanded view for different marker points.
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324 H. Hua et al.

Figure 9. Comparison of the temporal evolution of drop deformation. Solid lines are the results in Sheth and Pozrikidis (1995). (a)
Re = 1. (b) Re = 10. (c) Re = 50. (d) Re = 100.

Figure 10. Effect of enlarging the x-direction size on droplet
shape in steady state.

x-direction size of the computational domains. However, the
droplet shapes obtained on domains (−3H, 3H) × (−H, H)
and (−4H, 4H) × (−H, H) are almost identical. Therefore,
the numerical solution does not change if the x-direction
size is large enough.

4.4. Effect of the initial state

To show that the steady-state droplet shape is independent
of the initial state, we take different initial shapes as shown
in Figure 11(a). The three rectangles and the ellipse have
the same area π . With space step size h = 1/32 and time step
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Figure 11. Comparison for different initial configurations having the same area. (a) Initial state. (b) Steady state.

size �t = 0.1h2, numerical solutions are computed on the
domain (−3, 3) × (−1, 1). The other parameters used are
Re = 1, Ca = 0.25 and γ̇ = 1. At steady state, the droplet
deformations almost overlap (Figure 11(b)).

4.5. Droplet state with wall confinement

For the two-dimensional simulations, we set the initial
marker points as X0 = (R cos α, R sin α) if H > R, di-
viding by the Lagrangian size �s. If H ≤ R, we use (R1

cos α, R2 sin α) for the generation of initial marker points.
We investigate the wall effect by increasing the confine-

ment ratio (see Figures 12 and 13). The calculations are on
the domain (−3H, 3H) × (−H, H) with space step size h =
H/32. Other parameters used are as follows: R = 1, Re = 1,
Ca = 0.25, γ̇ = 1 and �t = 0.1h2.

Figure 12 shows the deformation of the droplet and
velocity vectors at y = ±R when the droplet is in steady
state. As the wall height decreases, the velocity at height
y = ±1 is more straightforward, which means that the wall
velocity strongly affects the droplet deformation.

To compare the deformation shapes, we put the re-
sults from Figure 12 together (Figure 13(a)). We observe
that the drop is elongated and inclines toward the hori-
zontal axis gradually with increasing confinement ratio.
Figure 13 shows the droplet deformations with the smaller
wall height. The initial droplets are the ellipses, which have
the same area π . The droplet shapes become more stretched
and extruded as the wall height decreases.

Figure 14 shows the droplet shapes at steady state with
wall height H = 0.7R and different Re and Ca numbers.
The calculations are on the domain (−4H, 4H) × (−H, H)
with space step size h = H/32. Other parameters are used as
follows: R = 1, γ̇ = 1 and �t = 0.1h2. Figure 14(a) shows
that the droplets get sigmoidally stretched as the Reynolds
number increases, and Figure 14(b) shows that droplets
become elongated as the capillary number increases.

The velocity field of the shear flow makes the drop
rotate. At steady state, the interface point moves along the
interface and returns to its original position periodically (a
phenomenon is called tank-treading). We track the interface
point and calculate the tank-treading time. We investigate

Figure 12. Drop deformation and corresponding velocity vectors at y = ±1. (a) H = 2R. (b) H = 1.5R. (c) H = 1.25R. (d) H = R.
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Figure 13. Droplet shapes at steady state with varying wall height.

Figure 14. Droplet shapes at steady state with different Re and Ca numbers. (a) Ca = 0.2. (b) Re = 10.

the tank-treading time, interface length and arc length at
different wall heights H (see Figures 15 and 16). Ca = 0.3,
Re = 1 and γ̇ = 1 are used.

Figure 15 shows the tank-treading time and interface
length of the droplet at steady state. With the decrease
of the wall height, both the tank-treading times and drop
interface length increase. There are almost no wall effects
on either the tanking-treading time or the interface length
when the wall height changes from 2H to 3H.

Figure 16 shows the arc length of the tank-trading curve
that covers one time period at different wall heights. The
speed of the tank-treading point, which is the slope of the
arc length, changes periodically.

5. Numerical experiments in three dimensions

In this section, we investigate the wall confinement effect in
three dimensions. We first show the effect of the mesh grid
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Figure 15. (a) Tank-treading time and (b) interface length of the droplet versus wall height in steady state. (a) Tank-treading time. (b)
Interface length.

size and the number of interface points. A comparison of
with and without remeshing algorithm is performed to il-
lustrate the necessity of using the remeshing procedure. We
then study the droplet state in the confined wall by com-
paring with the experimental data and theoretical values.
Finally, we show the effect of Re and Ca numbers on the
droplet shape for the more confined wall height.

For the three-dimensional simulations, we generate ini-
tial marker points as a sphere using the DistMesh algorithm
for the surface mesh if R < H. If H = R, we use an ellipsoid
that has the same volume as the sphere, 4πR3/3.

5.1. Effect of mesh size and the number
of marker points

We investigate the effect of the mesh grid size and the num-
ber of marker points. For the initial condition, the spher-
ical droplet with radius R = 0.5H is centred at (0, 0, 0)
in the computational domain � = (−2H, 2H) × (−2H,
2H) × (−H, H). We use the parameter values as Re = 1,
Ca = 0.3 and γ̇ = 1. We calculate to time t = 2 with the
time step �t = 0.1h2. Figure 17 shows the droplet shapes
with different mesh grid size with the fixed number of
marker points M = 1287. There is no evident difference
between two droplet shapes. We next fix the mesh grid as
64 × 64 × 32 and use the same parameters above mentioned
except the number of marker points. Figure 18 shows that

Figure 16. Arc length of the tank-treading point with varying
wall height.

there is little difference by increasing the number of marker
points.

5.2. Necessity of remeshing

The remeshing algorithm plays an important role on the
long time simulation. We compare the droplet evolution
with and without remeshing algorithm in conjunction with
the volume correction procedure. We calculate to time t =
10 with �t = 0.1h2. Other parameters Re = 1, Ca = 0.3
and γ̇ = 1.5 are used. Without remeshing procedure, nei-
ther with nor without volume correction could maintain
marker points well distributed (Figure 19(a) and (b)). At
time t = 5, the marker points concentrate near to the tip
sections, and at a longer time t = 10, the surface points dis-
torted in the middle of droplet. However, the droplet shape
keeps well with a remeshing procedure (Figure 19(c)).

5.3. Droplet state with wall confinement

For the following simulations, we use the number of marker
points M = 1827 for the sphere with radius R and M =
1894 for the ellipsoid of which the z-directional semiaxis
is 0.8R. We use R = 1, h = H/16, and �t = 0.1h2. The
computational domain is (−2H, 2H) × (−2H, 2H) × (−H,
H), if not specified.

Figure 17. Droplet shape at time t = 2 with (a) 64 × 64 × 32 and
(b) 128 × 128 × 64 mesh grids.
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Figure 18. Droplet shape at time t = 2 with the number of interface marker points M being (a) 480, (b) 1827 and (c) 7518.

Figure 19. Droplet deformation with (a) without remeshing and without volume correction procedure, (b) without remeshing and with
volume correction procedure and (c) with remeshing and with volume correction procedure. First and second rows are at time t = 5 and
10, respectively.

We compare our results with two theoretical models in
Shapira and Haber (1990) and Minale (2008) and exper-
imental results in Vananroye, Van Puyvelde, and Molde-
naers (2007). We use wall height H = 1.2R. For the other

parameters, Re = 1 and γ̇ = 1.2 are used. We measure the
dimensionless axes L/R, B/R and W/R with different Ca
numbers. Figure 20 shows a comparison among the model
predictions, experimental results, and our simulations. Our

Figure 20. Dimensionless axes of the droplet at steady state versus Ca number. Note that in theoretical and experimental references,
λ = 1.07, whereas in our simulation, λ = 1. (a) L/R. (b) B/R. (c) W/R.
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Figure 21. Droplet shape at steady state in a side view at different Ca numbers. (a) Ca = 0.1. (b) Ca = 0.2. (c) Ca = 0.25.

Figure 22. Droplet shapes at steady state with different wall heights in three dimensions. (a) H = 2R. (b) H = 1.5R. (c) H = 1.25R. (d)
H = R.

simulations show good agreements with the Minale model
and experimental results.

Figure 21 shows the simulations of droplet shape at
steady state in the x-z plane. The reader could refer to
Vananroye et al. (2008) for a comparison with experimental
results. The wall height H = 1.2R, Re = 1 and γ̇ = 1.2 are

used. The simulation results agree well with experimental
results at the three different capillary numbers.

We furthermore perform simulations to investigate the
effect of the wall height as in two-dimensional cases. Fig-
ure 22 shows the droplet shapes at steady state with dif-
ferent wall heights. The other parameters used are Re = 1,

Figure 23. Droplet shape at steady state with different Re and Ca numbers in three dimensions. (a) Re = 5, Ca = 0.2. (b) Re = 10,
Ca = 0.2. (c) Re = 1, Ca = 0.1. (d) Re = 1, Ca = 0.2. (e) Re = 1, Ca = 0.3.
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Table 1. Dimensionless axes of the droplet at steady state for the
cases shown in Figure 23. The Reynolds number is Re = 1.

Ca 0.1 0.2 0.3

L/Lini 1.145 1.380 1.670
B/Bini 1.005 0.882 0.793
W/Wini 0.882 0.826 0.736

Ca = 0.25 and γ̇ = 1. With the increase of confinement
ratio, the droplet become elongated and develops a sig-
moidal shape similar to that in the two-dimensional case
(see Figure 12). However, the droplet deformations in three
dimensions are less elongated than those in two dimensions.

Figure 23 shows the steady state with different Re and
Ca numbers. The droplet becomes more elongated along
the fluid flow with increasing Re and Ca. Here, H = R
and γ̇ = 1 are used. We set the domain as � = (−4H,
4H) × (−2H, 2H) × (−H, H).

To show the relative change of the steady-state droplet,
we define the dimensionless axes in the cases of wall height
H > R, as L/Lini, B/Bini and W/Wini, where Lini, Bini and
Wini are the semiaxes for the initial ellipsoidal shape. Table 1
shows the values of these dimensionless axes at different
Ca numbers corresponding to the shapes in Figures 23(c)–
23(e). The values of dimensionless axes that are greater
than 1 tell us that the droplet is inflated in that axis direction
whereas the values that are less than 1 show that the droplet
is contracted in that axis direction.

6. Conclusions

We numerically investigated droplet dynamics under shear
flow between two parallel plates by the IBM in two and
three dimensions. A surface remeshing algorithm coping
with the distortion of interface points was described. Fur-
thermore, it was shown that this remeshing procedure takes
an important role in long time simulations for droplet defor-
mation. We validated our numerical method by comparing
with experimental results and theoretical models and good
agreements were obtained. Moreover, higher confinement
ratio cases with elliptically initial shape in two and three
dimensions were presented to show the droplet dynamics.
Our numerical method confirmed that the droplet confined
by two parallel walls presents different behaviours com-
pared with unconfined ones under shear flow and there is
an increase of droplet elongation with sigmoidal shape and
greater orientation to the flow direction.
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