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Abstract. In this study, we investigate the effect of space dimensions on the equilib-
rium solutions of the Cahn–Hilliard (CH) and conservative Allen–Cahn (CAC) equa-
tions in one, two, and three dimensions. The CH and CAC equations are fourth-
order parabolic partial and second-order integro-partial differential equations, re-
spectively. The former is used to model phase separation in binary mixtures, and
the latter is used to model mean curvature flow with conserved mass. Both equa-
tions have been used for modeling various interface problems. To study the space-
dimension effect on both the equations, we consider the equilibrium solution profiles
for symmetric, radially symmetric, and spherically symmetric drop shapes. We high-
light the different dynamics obtained from the CH and CAC equations. In particular,
we find that there is a large difference between the solutions obtained from these
equations in three-dimensional space.
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1. Introduction

In this study, we investigate the effect of space dimensions on the equilibrium solu-
tions of the Cahn–Hilliard (CH) and conservative Allen–Cahn (CAC) equations in one,
two, and three dimensions. The CH equation is given as

∂φ

∂t
(x, t) = ∆µ(x, t), x ∈ Ω, t > 0, (1.1a)

µ(x, t) = F ′(φ(x, t))− ε2∆φ(x, t), (1.1b)
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n · ∇φ(x, t) = n · ∇µ(x, t) = 0, x ∈ ∂Ω, t > 0, (1.1c)

where the order parameter φ(x, t) is the difference between two concentrations in a
binary mixture in the domain Ω ⊂ Rd (d = 1, 2, 3). F (φ) = 0.25(φ2 − 1)2 is the free-
energy density, ε is a positive constant related to the interfacial thickness, and n is the
outward normal vector at the boundary. The CH equation was introduced to model
phase separation phenomena in binary alloys [1]. A review paper [2] that documents
the physical, mathematical, and numerical derivations of the CH equation is available.
The CAC equation is given as

∂φ

∂t
(x, t) = −F

′(φ(x, t))

ε2
+ ∆φ(x, t) + β(t)

√
F (φ(x, t)), x ∈ Ω, t > 0, (1.2a)

n · ∇φ(x, t) = 0, x ∈ ∂Ω, t > 0, (1.2b)

where
β(t) =

∫
Ω
F ′(φ(x, t))dx

/[
ε2
∫

Ω

√
F (φ(x, t))dx

]
.

This equation is a second-order integro-partial differential equation, which is used for
modeling mean curvature flows under the assumption of conservation of mass [3].
Both the equations and their modified forms can be used to model various interface
problems in phase separation, fluids, topology optimization, tumor growth, image seg-
mentation, phase field crystals, and so on [4–11]. In [12], the CH and CAC equations
were compared as phase models, and the different dynamics between the two equa-
tions were specifically depicted. Please refer to [12] for further information.

The primary objective of this study is to investigate equilibrium solutions of the two
equations in one, two, and three dimensions. In particular, we highlight the different
dynamics of the CH and CAC equations.

The remainder of this paper is organized as follows: In Section 2, we describe the
numerical solution algorithms of the CH and CAC equations. In Section 3, we present
the numerical experiments. Finally, the conclusions are presented in Section 4.

2. Numerical solution

In this section, we consider numerical solutions in symmetric, radially symmetric,
and spherically symmetric forms. The symmetric form of the CH equation (1.1a) and
(1.1b) is as follows:

φt(r, t) =
1

rd−1
[rd−1µr(r, t)]r, r ∈ Ω, t > 0, (2.1a)

µ(r, t) = F ′(φ(r, t))− ε2

rd−1
[rd−1φr(r, t)]r, (2.1b)

where d is the space dimension. We discretize the CH equation (2.1a) and (2.1b) in
Ω = (0, a). Let Nr be a positive even integer, h = a/Nr be the uniform mesh size,
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Ωh = {ri : ri = (i− 0.5)h, 1 ≤ i ≤ Nr} be the set of cell-centers, and tn = n∆t. Let φni
and µni be approximations of φ(ri, t

n) and µ(ri, t
n), respectively. Further, we discretize

Eqs. (2.1a) and (2.1b) in time using a nonlinear splitting algorithm [13]:

φn+1
i − φni

∆t
= ∆hµ

n+1
i , (2.2a)

µn+1
i = (φn+1

i )3 − φni − ε2∆hφ
n+1
i , (2.2b)

where

∆hφ
n+1
i = [rd−1

i+1/2(φn+1
i+1 − φ

n+1
i )− rd−1

i−1/2(φn+1
i − φn+1

i−1 )]
/

(rd−1
i h2).

Eq. (1.1c) shows that the homogeneous Neumann boundary conditions for both φ and µ
are to be used. The resultant system of discrete equations is solved by using a multigrid
method [14]. There have been several multigrid solutions for the CH equation [15,
16]; therefore, we do not provide the complete descriptions of the solution algorithms.
However, the core part of the multigrid algorithm, i.e., the relaxation part, is presented.
First, we rewrite Eqs. (2.2a) and (2.2b) as follows:

φn+1
i

∆t
+
rd−1
i+1/2 + rd−1

i−1/2

rd−1
i h2

µn+1
i =

φni
∆t

+
rd−1
i+1/2

rd−1
i h2

µn+1
i+1 +

rd−1
i−1/2

rd−1
i h2

µn+1
i−1 , (2.3a)

− (φn+1
i )3 − ε2

rd−1
i+1/2 + rd−1

i−1/2

rd−1
i h2

φn+1
i + µn+1

i

= −φni − ε2
rd−1
i+1/2

rd−1
i h2

φn+1
i+1 − ε

2
rd−1
i−1/2

rd−1
i h2

φn+1
i−1 . (2.3b)

Next, we linearize the nonlinear term and apply a Gauss–Seidel iterative scheme:

1

∆t
φn+1,m+1
i +

rd−1
i+1/2 + rd−1

i−1/2

rd−1
i h2

µn+1,m+1
i

=
φni
∆t

+
rd−1
i+1/2

rd−1
i h2

µn+1,m
i+1 +

rd−1
i−1/2

rd−1
i h2

µn+1,m+1
i−1 , (2.4a)

−

[
3(φn+1,m

i )2 + ε2
rd−1
i+1/2 + rd−1

i−1/2

rd−1
i h2

]
φn+1,m+1
i + µn+1,m+1

i

= −φni − 2(φn+1,m
i )3 − ε2

rd−1
i+1/2

rd−1
i h2

φn+1,m
i+1 − ε2

rd−1
i−1/2

rd−1
i h2

φn+1,m+1
i−1 , (2.4b)

where φn+1,m+1
i and φn+1,m

i are the solutions after and before an iteration, respectively.
We solve Eqs. (2.4a) and (2.4b) by using a 2 × 2 matrix inversion for each i. The
complete description of the multigrid method for the CH equation is available in [15].
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Now, we describe a numerical solution for the CAC equation (1.2) in the symmetric
form:

φt(r, t) = −F
′(φ(r, t))

ε2
+

1

rd−1
[rd−1φr(r, t)]r + β(t)

√
F (φ(r, t)). (2.5)

We use the hybrid method proposed in [17] for Eq. (2.5). This method is based on an
operator-splitting technique. We numerically solve Eq. (2.5) by successively solving a
sequence of simpler problems:

φt(r, t) =
1

rd−1
[rd−1φr(r, t)]r, (2.6a)

φt(r, t) = −F
′(φ(r, t))

ε2
, (2.6b)

φt(r, t) = β(t)
√
F (φ(r, t)). (2.6c)

By applying the backward Euler’s method as well as the multigrid method [14] and
using the homogeneous Neumann boundary condition (1.2b), we solve Eq. (2.6a):

φn+1,1
i − φni

∆t
= [rd−1

i+1/2(φn+1,1
i+1 − φn+1,1

i )− rd−1
i−1/2(φn+1,1

i − φn+1,1
i−1 )]

/
(rd−1
i h2).

The analytic solution of Eq. (2.6b) is obtained using the method of separation of vari-
ables:

φn+1,2
i =

φn+1,1
i√

e−2∆t/ε2 +
(
φn+1,1
i

)2 (
1− e−2∆t/ε2

) , (2.7a)

φn+1
i = φn+1,2

i + ∆tβn+1,2
√
F (φn+1,2

i ), (2.7b)

where

βn+1,2 =
1

∆t

Nr∑
i=1

[
α(ri)(φ

0
i − φ

n+1,2
i )h

]/ Nr∑
i=1

[
α(ri)

√
F (φn+1,2

i )h

]
, (2.8)

and where the scaling factor, α(r), is given by

α(r) =


1, if d = 1,
2πr, if d = 2,
4πr2, if d = 3.

(2.9)

More details about the hybrid method can be found in [17]. In addition, a higher-order
and mass-conservative method for the CAC equation can be referred to from [18].
Furthermore, we refer to a recent article [19] for benchmark problems for the AC and
CH dynamics.
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3. Numerical results and discussion

Unless otherwise specified, we use the notation ε = εs = hs/[2
√

2 tanh−1(0.9)],
which ensures that the number of grid points across the interfacial regions (e.g., |φ| ≤
0.9) is approximately s [20].

3.1. Cahn–Hilliard equation

We consider the effect of the initial condition on the equilibrium-state configuration
in the computational domain Ω = (0, 1) with 64 grid points. Here, we use h = 1/64,
ε = ε4, and ∆t = 0.1h2. We consider the initial conditions to be

φ(r, 0) =

{
1, if r ≤ qh,
−1, otherwise,

(3.1)

where q is an integer. Fig. 1(a) shows the initial condition with q = 7. We define a nu-
merical equilibrium solution if the discrete l2-norm of the difference between the two
consecutive time step solutions is less than 10−6, i.e., ‖φn+1 − φn‖2 < 10−6. Figs. 1(b),

(a) (b)

(c) (d)

Figure 1: (a) Initial configuration with q = 7. (b), (c), and (d) depict the one-, two-, and three-dimensional
numerical equilibrium solutions with different values of q, respectively.
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Figure 2: (a) Comparison between equilibrium solutions of one-, two-, and three-dimensional space with
q = 19. (b) Temporal evolution of the numerical solution in three-dimensional space. The arrows indicate
the direction of evolution. (c) Temporal evolution of normalized total energy with respect to the phase
evolution in (b).

(c), and (d) show the one-, two-, and three-dimensional numerical equilibrium solu-
tions with different values of q, respectively. From the results, we observe that for a
small number of grid points, almost all constant solutions are equilibrium solutions.
We can also infer that the minimum value of q, which yields a non-constant solution
increases as the space dimension increases from 1D to 3D, i.e., q = 3, q = 11, and
q = 19. Note that in the three-dimensional case with ε4, we need at least 38 grid points
for a drop because it is spherically symmetric. In contrast, for less than 38 grid points,
we obtain a flat solution instead of instead of a drop shape. This is a very impor-
tant finding, and it suggests that a sufficiently high resolution is required to simulate
three-dimensional two-phase fluid flows using the CH equation.

Fig. 2(a) depicts the difference between the equilibrium solutions in one-, two-,
and three-dimensional space with q = 19. In particular, for the three-dimensional case
shown in Fig. 2(b), the drop shrinks substantially from the initial profile through a
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Table 1: (p, q) for various ε values, where p is the number of grid points satisfying φ ≥ −0.9 and q is the
minimum value of the integer required to preserve a drop shape in the equilibrium state.

Case ε = ε4 ε = ε6 ε = ε8 ε = ε10 ε = ε12
1D (5, 3) (7, 4) (9, 5) (10, 5) (12, 6)
2D (10, 11) (13, 13) (14, 14) (19, 16) (21, 17)
3D (16, 19) (21, 22) (21, 23) (26, 25) (28, 26)

shift of the phase-field to a negative one. This result implies that, to set a drop in the
three-dimensional space, we need to consider the shrinkage of the drop from an initial
setting. For the CH model, the total energy can be reduced by shrinking the interface
while simultaneously shifting the bulk φ slightly away from the initial value from −1 to
1 (see Fig. 2(b)). Fig. 2(c) illustrates the temporal evolution of total energy according
to the evolution of φ in Fig. 2(b). We can find that the total energy is decreasing in
time.

Table 1 lists (p, q) for various ε values, where p is the number of grid points satis-
fying φ ≥ −0.9, and q is the minimum value of the integer required to preserve a drop
shape in the equilibrium state. Because the system is symmetric, we need double the
number of points, i.e., 2q, to preserve the drop shape in the equilibrium state.

To confirm that the flat solution is an equilibrium solution for q = 18 in three-
dimensional space, we compute the temporal evolution of the total energy, i.e.,

E(φ) =

∫ 1

0

[
F (φ) +

ε2

2
φ2
r

]
4πr2 dr.

The discrete total energy is defined as

Eh(φn) = 4π

Nr∑
i=1

[
F (φni )r2

i +
ε2

2

(
φni+1 − φni

h

)2

r2
i+ 1

2

]
h.

In this test, we consider the evolution of the numerical solution of the CH equation
and the temporal evolution of total energy in a three-dimensional domain for q = 18.
The parameters for the same are selected as follows: h = 1/64, ε = ε4, ∆t = 0.1h2. We
consider the initial condition to be

φ(r, 0) =

{
1, if r ≤ 18h,
−1, otherwise,

(3.2)

in the computational domain Ω = (0, 1). Fig. 3(a) shows the evolution of the numerical
solution of the CH equation for q = 18; the direction of the arrow shows the direction
of evolution of the numerical solutions, and (b) shows the temporal evolution of the
normalized total energy, Eh(φn)/Eh(φ0). We can infer from the figure that the total
energy of the CH equation decreases with increasing time.
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Figure 3: (a) The evolution of the numerical solution of the CH equation. The arrow indicates the direction
of evolution. (b) The temporal evolution of the normalized total energy, Eh(φn)/Eh(φ0).

3.2. Conservative Allen–Cahn equation

Next, we consider the CAC equation. We use the same initial condition (3.1), with
q = 7 and ε4. Figs. 4(a), (b), and (c) show the one-, two-, and three-dimensional nu-
merical equilibrium solutions with different values of q, respectively. From the results,
we can conclude that non-constant solutions exist in the two-dimensional space, except
for q = 1, and in the three-dimensional space, except for q = 1, 2.

Fig. 5(a) shows a comparison between the equilibrium solutions of one-, two-, and
three-dimensional space with q = 19. The equilibrium profiles for all dimensions are
almost identical. Fig. 5(b) shows the temporal evolution of the numerical solution in
three-dimensional space. The arrows indicate the direction of evolution. Unlike the
solution from the CH equation, the zero-level set of the phase-field does not deviate
from the initial location.

Table 2 lists (p, q) for various ε values, where p is the number of grid points sat-
isfying φ ≥ −0.9, and q is the minimum value of the integer that preserves a drop
shape in equilibrium state. Compared with the results from the CH equation, we need
considerably fewer grid points to preserve a drop shape in equilibrium state.

Table 2: (p, q) for various ε values, where p is the number of grid points satisfying φ ≥ −0.9, and q is the
minimum value of the integer that preserves a drop shape in equilibrium state.

Case ε = ε4 ε = ε6 ε = ε8 ε = ε10 ε = ε12
1D (3, 1) (5, 1) (7, 1) (9, 1) (9, 1)
2D (4, 2) (6, 3) (8, 4) (10, 4) (12, 5)
3D (5, 3) (6, 4) (9, 6) (11, 7) (13, 8)
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Figure 4: (a), (b), and (c) depict the one-, two-, and three-dimensional numerical equilibrium solutions with
different values of q, respectively.
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Figure 5: (a) Comparison between equilibrium solutions of one-, two-, and three-dimensional space with
q = 19. (b) Temporal evolution of the numerical solution in three-dimensional space. The arrows indicate
the direction of evolution.

3.3. Comparison between CH and CAC equations

Fig. 6 shows a comparison between the equilibrium solutions of the CH (dashed
line) and CAC (solid line) equations in three-dimensional space with q = 19. We can
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Figure 6: Comparison between equilibrium solutions of the CH (dashed line) and CAC (solid line) equations
in three-dimensional space with q = 19.

observe a severe shrinkage in the result of the CH equation, compared with that of the
CAC equation.

3.4. Comparison between the two models using two-phase fluid flows

A typical equation for analyzing fluid flow is the Navier–Stokes (NS) equation. The
NS equation continues to be the focus of various studies [21, 22]. We consider two-
phase fluid flows with the CH and CAC equations. The Navier–Stokes–Cahn–Hilliard
(NSCH) system is given by

ut + u · ∇u = −∇p+
1

Re
∆u +

1

We
SF, (3.3a)

∇ · u = 0, (3.3b)

φt +∇ · (φu) =
1

Pe
∆µ, (3.3c)

µ = F ′(φ)− ε2∆φ, (3.3d)

where u is the velocity, p is the pressure, and SF is the surface-tension force. There are
several different forms for representing the surface-tension force [23]. In this study, we
consider

SF = −0.75
√

2ε∇ · (∇φ/|∇φ|)|∇φ|∇φ.

The non-dimensional parameters are the Reynolds number Re, Weber number We, and
Peclet number Pe.

The Navier–Stokes–conservative Allen–Cahn (NSCAC) system is given by

ut + u · ∇u = −∇p+
1

Re
∆u +

1

We
SF, (3.4a)

∇ · u = 0, (3.4b)

φt +∇ · (φu) =
1

Pe

(
−F

′(φ)

ε2
+ ∆φ+ β

√
F (φ)

)
. (3.4c)
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Figure 7: Schematic illustration of a droplet under shear flow.

Both systems have been extensively studied [24–27]. The numerical solutions for the
NSCH and NSCAC systems are available in [25, 28], respectively. Here, we consider
droplet evolution under simple a shear flow, a schematic diagram of which is shown in
Fig. 7.

In this test, we first consider the shear flow governed by the NSCH system in the
computational domain Ω = (−1, 1) × (−0.5, 0.5) × (−0.5, 0.5) with the parameters as
follows: h = 1/64, ∆t = 5h2, Re = 200, We = 50, ε = ε4, and Pe = 1/ε. We consider
the following initial condition:

φ = tanh

(
0.2−

√
r√

2ε

)
, u = z, v = 0, w = 0,

where r =
√
x2 + y2 + z2 denotes the distance from the center. The parameters u, v,

and w denote the velocity in the x-, y-, and z-directions, respectively. Figure 8(a) shows
the temporal evolution of a droplet under a simple shear flow in three-dimensional
space at t = 0, 16000∆t, 17000∆t, and 17200∆t. The corresponding temporal evo-
lution of the cross-sectional slice of the droplet with the velocity field is shown in
Fig. 9(a). We can observe that the size of the droplet is vanishing with the passage
of time. In Fig. 1(d), we find that the initial droplet will decreases and eventually dis-
appears if q ≤ 18, i.e., the initial radius of droplet is less than or equal to the length of
18 grid points in 3D space. We plot the half cross profile of Fig. 9(a) in Fig. 10 and we
can find that the initial radius is less than the length of 18 grid points. Therefore, the
CH model can not preserve the volume of droplet.

Next, we investigate the two-phase fluid flow governed by the NSCAC system. The
computational domain, the initial condition, and the parameters are taken to be the
same as for the previous case, except for the Peclet number, Pe = 0.001/ε. Fig. 8(b)
shows the temporal evolution of the droplet in a three-dimensional space. The cor-
responding temporal evolution of the cross-sectional slice of the droplet is shown in
Fig. 9(b). The first, second, third, and fourth rows represent the initial condition and
snapshots of the numerical results at t = 16000∆t, 17000∆t, and 17200∆t, respectively.
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(a) (b)

Figure 8: Temporal evolution of a droplet under a simple shear flow. (a) NSCH system and (b) NSCAC
system. The first, second, third, and fourth rows depict the initial condition and snapshots of the numerical
results at t = 16000∆t, 17000∆t, and 17200∆t, respectively.

We can observe that the droplet conserves its original volume during the temporal evo-
lution.

Now, we investigate the large deformation of a droplet under a shear flow for the
NSCH and NSCAC models. To show the dynamics of the CH equation without flow, we
set an initial droplet at the center of the domain, Ω = (0, 2) × (0, 1) × (0, 1), with two
different radii, R1 = 0.2 and R2 = 0.35. We use h = 1/64,∆t = 0.01, P e = 1, ε = ε4.
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(a) (b)

Figure 9: Cross-sectional slice in x − −z plane through y = 0 after various time steps. (a) NSCH system
and (b) NSCAC system. The first, second, third, and fourth rows depict the initial condition and snapshots
of the numerical results at t = 16000∆t, 17000∆t, and 17200∆t, respectively.

Figs. 11(a) and (b) show the evolutions of droplet according to the CH dynamics. We
find that the droplet having radius R2 = 0.35 sustains itself for a long time, whereas
the droplet having radius R1 = 0.2 vanishes within a short time. In the following test,
we use the radius R2 = 0.35 for the NSCH and NSCAC models.

For the NSCH and NSCAC models, the initial conditions are given as

φ(x, y, z, 0) = tanh

(
0.35−

√
(x− 1)2 + (y − 0.5)2 + (z − 0.5)2

√
2ε

)
,

u(x, y, z, 0) = 4(y − 0.5),

v(x, y, z, 0) = 0,

p(x, y, z, 0) = 0,

in the domain Ω = (0, 2) × (0, 1) × (0, 1). The numerical parameters are h = 1/64,
Re = 50, ∆t = 5h2, We = 100, ε = ε4, and Pe = 1/ε. Figs. 12(a) and (b) show the
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evolution of droplet deformation for the NSCH model and the NSCAC model, respec-
tively. The temporal evolutions of the non-dimensional discrete volume of a droplet for
the two types of models are shown in Fig. 13. In the case of large deformation, the
non-dimensional discrete volume of a droplet for the NSCAC model is almost entirely
conserved, whereas the non-dimensional discrete volume of a droplet for the NSCH
model decreases with the passage of time. Thus, the NSCAC model conserves the mass
better than the NSCH model does, for the deformation of a single droplet.

3.5. CPU time for the CH and the CAC equations

In this part, we investigate the consumed CPU time for the CH and the CAC equa-
tions in 3D space. The initial condition is set to be 1 inside a cube with length: l = 0.3
and −1 in the rest region. The computational domain is Ω = (0, 1)× (0, 1)× (0, 1) with
the mesh size: h = 1/64. We fix the time step: ∆t = 0.1h2 and use Pe = 1, ε = ε8.
Figs. 14(a) and (b) show the temporal evolutions of CH and CAC equations, respec-
tively. The consumed CPU time is illustrated in Fig. 15. As we can see, the calculation
of CH equation costs more time than the CAC equation.

3.6. Equilibrium states of the CH and the CAC equations with a logarithm
potential

We further investigate the effect of initial conditions on the equilibrium states of
the CH and the CAC equations with the following physically relevant logarithm poten-
tial [29]:

F (φ) =
θ

2

[
(1 + φ) ln

(
1 + φ

2

)
+ (1− φ) ln

(
1− φ

2

)]
+
θc
2

(
1− φ2

)
,
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(a) (b)
Figure 11: Temporal evolution of droplets with different radii. (a) R1 = 0.2, (b) R2 = 0.35. The
dimensionless times from top to bottom for each column are t = 0, 0.4, 0.9, 1.3, 4.0.
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(a) (b)

Figure 12: Temporal evolutions of droplet deformation for (a) NSCH model and (b) NSCAC model. The
dimensionless times from the top to bottom for each column are t = 0, 0.134, 0.2686, 0.5249, 0.6592.
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Figure 13: Temporal evolutions of non-dimensional discrete volume of a droplet for NSCH and NSCAC
models.

(a)

(b)

Figure 14: Temporal evolutions of (a) CH equation and (b) CAC equation. The last figure in each row is
the numerical equilibrium state.

where θ is an absolute temperature and θc is a critical temperature. In this test, we
use θ = 0.6 and θc = 1. Lee and Kim [29] found that a proper value of parameter
ε was related to the absolute temperature θ and the number of grid points lying in
the interfacial layer. Thus, if we use the θ value and want m grid points to lie in the
interfacial layer, the formula is given by:

ε(θ,m) = 0.1h(4.835θ2 + 0.005m2 − 3.752θm− 4.01θ + 4.078m+ 0.693).

Here, we use
ε = ε(0.6, 4), h = 1/64 and ∆t = 0.1h2
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Figure 15: Consumed CPU time for the CH and CAC equations. The insets are the evolutions at specific
moments.

in the domain Ω = (0, 1). We take the following initial condition:

φ(r, 0) =

{
0.9, if r ≤ qh,
−0.9, otherwise.

The equilibrium states with respect to different initial conditions are shown in Fig. 16,
where the first row and second row represent the results of CH and CAC equations,
respectively. In each row, the figures from the left to right are the results in 1D, 2D,
and 3D, respectively. As we can observe, the minimum number of q which yields a
non-constant solution increases as the space dimension increases from 1D to 3D, i.e.,
q = 2, q = 8, and q = 15 for the CH equation, q = 2, q = 8, and q = 14 for the CAC
equation.

4. Conclusions

In this work, we numerically studied the effect of space dimensions on the equi-
librium solutions of the CH and CAC equations in one, two, and three dimensions. In
general, to obtain non-constant solutions, more grid points are needed with increasing
space dimensions for both the equations. However, this tendency is more evident in
the CH equation than in the CAC equation, especially in the three-dimensional space.
Therefore, although both the equations conserve the total mass, we may prefer one
model over the other one depending on the intended physical applications. We con-
clude that the three-dimensional CAC equation can be applied to model a two-phase
fluid with a droplet [30].

We note that the fractional power in time-fractional phase-field equations can affect
the relaxation time reaching the equilibrium as observed in [31]. The effect of the
fractional power in time-fractional CH and CAC equations can be considered as the
scope of future research.



662 H. G. Lee, J. X. Yang, J. Park and J. Kim

0 0.1 0.2 0.3 0.4 0.5 0.6

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6

-1

-0.5

0

0.5

1

Figure 16: Numerical equilibrium solutions with respect to different values of q. The first row and the
second row are the results of CH and CAC equations. The figures from the left to right in each row are the
results in 1D, 2D, and 3D, respectively.
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