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Abstract. We analyze the effective time step size of a nonlinear convex splitting scheme
for the Cahn–Hilliard (CH) equation. The convex splitting scheme is unconditionally
stable, which implies we can use arbitrary large time-steps and get stable numerical
solutions. However, if we use a too large time-step, then we have not only discretiza-
tion error but also time-step rescaling problem. In this paper, we show the time-step
rescaling problem from the convex splitting scheme by comparing with a fully implicit
scheme for the CH equation. We perform various test problems. The computation re-
sults confirm the time-step rescaling problem and suggest that we need to use small
enough time-step sizes for the accurate computational results.
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1 Introduction

We consider the effective time step size of a nonlinear convex splitting scheme for the
following Cahn–Hilliard (CH) equation [1]:

φt(x,t)=∆[F′(φ(x,t))−ǫ2∆φ(x,t)], x∈Ω, t>0, (1.1)

n·∇φ(x,t)=n·∇µ(x,t)=0, x∈∂Ω, (1.2)

φ(x,0)=φ0(x), x∈Ω, t>0, (1.3)

where F(φ)=0.25(φ2−1)2, ǫ is the gradient energy coefficient, Ω=∏
d
i=1(0,Li), d=1,2,3,

and n is the outer normal vector. The CH equation is a phenomenological model of
the process of a phase separation in a binary mixture [1]. Its physical applications have
been extended to many scientific fields such as image inpainting, spinodal tumor growth
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simulation, decomposition, topology optimization, diblock copolymer, microstructures
with elastic inhomogeneity, and multiphase fluid flows, see a recent review paper [15]
for the relevant references. The CH equation can be derived by a gradient flow with the
following total energy functional:

E(φ)=
∫

Ω

(

F(φ)+
ǫ2

2
|∇φ|2

)

dx. (1.4)

That is,

φt=−gradE(φ)=−∆

(

δE(φ)
δφ

)

, (1.5)

where δE(φ)/δφ=F′(φ)−ǫ2∆φ is the variational derivative. For a review of the physical,
mathematical, and numerical derivations of the CH equation, see a review paper [16].
Also, for the basic principles and practical applications of the CH Equation, see [15].

Because there has been no closed-form solution for the CH equation with arbitrary ini-
tial conditions, we need to resort to numerical approximations to solve the equation. The
explicit Euler scheme has severe time-step restriction. Both the fully implicit and Crank–
Nicolson schemes have also solvability time-step restriction. To overcome these time-step
restrictions, Eyre proposed the following convex splitting method for the Cahn–Hilliard
equation [9]:

φn+1−φn

∆t
=−

[

gradEc(φ
n+1)−gradEe(φ

n)
]

, (1.6)

where gradE(φ)= gradEc(φ)−gradEe(φ). For the nonlinear stabilized splitting scheme,
we define gradEc(φ) =−∆[(φn+1)3−ǫ2∆φn+1] and gradEe(φn) = −∆φn. Let us rewrite
Eq. (1.6) in terms of the fully implicit Euler scheme:

φn+1−φn

∆t
=−gradEc(φ

n+1)+gradEe(φ
n+1)−gradEe(φ

n+1)+gradEe(φ
n)

=−gradE(φn+1)−gradEe(φ
n+1)+gradEe(φ

n)

=−gradE(φn+1)+∆(φn+1−φn). (1.7)

Then, the scheme (1.6) can be written as follows:

(1−∆t∆)

(

φn+1−φn

∆t

)

=−gradE(φn+1). (1.8)

The main purpose of this article is to investigate a mode-dependent effective time-step
of a nonlinear convex splitting scheme for the CH equation using the fully implicit Eu-
ler algorithm. The convex splitting method is the most popular numerical schemes in
the phase-field method to overcome the time-step restriction [6, 20]. Furthermore, in re-
cent years, the convex splitting numerical schemes have been extensively studied for
the Cahn–Hilliard model coupled with a certain fluid such as the Cahn–Hilliard–Hele–
Shaw [23], Cahn–Hilliard–Brinkman [7], Cahn–Hilliard–Navier–Stokes [8, 11] equations.
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The difference between the effective and real time-steps have been reported when
using the convex splitting method in the last decade [17,22]. To overcome this weakness,
there have been extensive works of second order accurate convex splitting method for
the CH equation [2, 10, 12, 18, 20, 25] and a mode-dependent effective time step form was
derived for the linear convex splitting scheme [3, 4]; however, there is no analysis about
the nonlinear convex splitting one in authors’ knowledge.

This paper is organized as follows. In Section 2, we provide numerical analysis for
the effective time step of a nonlinear convex splitting scheme for the CH equation. In
Section 3, we perform computational experiments to confirm the numerical analysis. In
Section 4, conclusions are given.

2 Numerical analysis

2.1 One-dimensional space

Now, we consider the spatial discretization. Let us denote the computational domain
Ωh={xi :xi=(i−0.5)h} where h=L/N is the spatial step size and N is the number of grid
points. The approximation of φn on Ωh is φn

i = φ((i−0.5)h,n∆t). For the homogenous
Neumann boundary condition, we define:

φn
0 =φn

1 , φn
N+1=φn

N . (2.1)

The discrete Laplace operator ∆h is defined by

∆hφn
i =

φn
i+1−2φn

i +φn
i−1

h2
. (2.2)

Then, we can derive the formulation of the eigenvector and its corresponding eigenvalue
for ∆h [14], i.e., ∆hvj =λjvj, where vj =(v1j,··· ,vNj) for j=1,··· ,N, and

vij =











√

1
N if j=1,

√

2
N cos

(2i−1)(j−1)π
2N otherwise,

(2.3)

λj =− 4

h2
sin2 (j−1)π

2N
. (2.4)

Let wj=vj/aj =(w1j,··· ,wNj) where a1=
√

1/n and aj =
√

2/n for j>1. For convenience,
we define

w0,j=cos
−(j−1)π

2N
=cos

(j−1)π

2N
=w1,j, (2.5)

wN+1,j=cos
(2N+1)(j−1)π

2N
=cos

(2N−1)(j−1)π

2N
=wN,j. (2.6)
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Note that the discrete Fourier cosine series and its inverse transform are [19]

φn
i =

N

∑
j=1

φ̂n
j cos

(2i−1)(j−1)π

2N
=

N

∑
j=1

φ̂n
j wij, (2.7)

φ̂n
j =

1

N

N

∑
i=1

φn
i cos

(2i−1)(j−1)π

2N
=

1

N

N

∑
i=1

φn
i wij, (2.8)

where φ̂n
j is the Fourier coefficient. Then, for i=1,··· ,N,

φn
i+1−2φn

i +φn
i−1

h2
=

N

∑
j=1

φ̂n
j

wi+1,j−2wij+wi−1,j

h2

=
N

∑
j=1

(

1

N

N

∑
k=1

φn
k wkj

)

wi+1,j−2wij+wi−1,j

h2
. (2.9)

Here,

wkjwi+1,j=cos
(2k−1)(j−1)π

2N
cos

(2(i+1)−1)(j−1)π

2N

=cos
(2k−1)(j−1)π

2N

[

cos
(2i−1)(j−1)π

2N
cos

2(j−1)π

2N

−sin
(2i−1)(j−1)π

2N
sin

2(j−1)π

2N

]

=cos
(2k−1)(j−1)π

2N
cos

2(j−1)π

2N
cos

(2i−1)(j−1)π

2N

−cos
(2k−1)(j−1)π

2N
sin

(2i−1)(j−1)π

2N
sin

2(j−1)π

2N

=
1

2

[

cos
(2(k+1)−1)(j−1)π

2N
+cos

(2(k−1)−1)(j−1)π

2N

]

wij

+
1

2
wkj

[

cos
(2i+1)(j−1)π

2N
−cos

(2(i−1)−1)(j−1)π

2N

]

=
1

2

(

wk+1,j+wk−1,j

)

wij+
1

2
wkj

(

wij−wi−1,j

)

(2.10)

and similarly

wkjwi−1,j=
1

2

(

wk+1,j+wk−1,j

)

wij−
1

2
wkj

(

wij−wi−1,j

)

. (2.11)
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Note that it also holds for i=1 and N using the boundary conditions (2.1), (2.5), and (2.6).
Therefore, (2.9) can be rewritten as

N

∑
j=1

(

1

N

N

∑
k=1

φn
k wkj

)

wi+1,j−2wij+wi−1,j

h2
=

N

∑
j=1

(

1

N

N

∑
k=1

φn
k

(

∆hwkj

)

)

wij

=
N

∑
j=1

λj

(

1

N

N

∑
k=1

φn
k wkj

)

wij

=
N

∑
j=1

λjφ̂
n
j wij. (2.12)

Then,

(1−∆t∆h)

(

φn+1
i −φn

i

∆t

)

=
N

∑
j=1

(1−∆tλj)

(

φ̂n+1
j −φ̂n

j

∆t

)

wij. (2.13)

Moreover, the scheme (1.8) can be rewritten as follows:

N

∑
j=1

(1−∆tλj)

(

φ̂n+1
j −φ̂n

j

∆t

)

wij=−
N

∑
j=1

F
(

gradE
(

φn+1
))

wij, (2.14)

where F(·) represents the fourier coefficient. Hence, the mode-dependent effective time
step ∆te is

∆te =
∆t

1−λj∆t
, (2.15)

for each basis wj in the Fourier space.

2.2 Two-dimensional space

The analysis of a mode-dependent effective time step based on the eigenfunction decom-
position and eigenvalue estimation can be extended to the two- and three-dimensional
spaces. Here, we present the analysis only for the two-dimensional space since it is sim-
ilar enough to extend to the three-dimensional space straightforwardly. First, similar
to the one-dimensional space, we define the computational domain Ωh = {xi,yj : xi =
(i−0.5)h, yj = (j−0.5)h} where h = L1/Nx = L2/Ny is the uniform spatial step size, Nx

and Ny are the number of grid points in x- and y-directions, respectively, and the approx-
imation of φn on Ωh is φn

ij = φ((i−0.5)h,(j−0.5)h,n∆t). For the homogenous Neumann

boundary condition, we define:

φn
i,0=φn

i,1, φn
i,Ny+1=φn

i,Ny
for i=1,··· ,Nx, (2.16)

φn
0,j=φn

1,j, φn
Nx+1,j=φn

Nx,j for j=1,··· ,Ny. (2.17)
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The discrete Laplace operator ∆h for the two-dimensional space is defined by

∆hφn
ij=

φn
i+1,j+φn

i−1,j−4φn
ij+φn

i,j+1+φn
i,j−1

h2
. (2.18)

Note that the eigenvector and its corresponding eigenvalue for (2.18) can be derived us-
ing the Kronecker (tensor) product (Refer to [13]). If we denote the element of tensor
product vi⊗vj as vik⊗jl , the formulation of the eigenvector and the eigenvalues are

vik⊗jl =vikvjl =



































√

1
NxNy

if k=1 and l=1,
√

2
NxNy

cos (2i−1)(k−1)π
2Nx

if k>1 and l=1,
√

2
NxNy

cos
(2j−1)(l−1)π

2Ny
if k=1 and l>1,

√

4
NxNy

cos (2i−1)(k−1)π
2Nx

cos
(2j−1)(l−1)π

2Ny
otherwise,

(2.19)

λkl =λk+λl =− 4

h2

[

sin2 (k−1)π

2Nx
+sin2 (l−1)π

2Ny

]

. (2.20)

Recall that the discrete Fourier cosine series and its inverse transform are

φn
ij =

Nx

∑
k=1

Ny

∑
l=1

φ̂n
klwik⊗jl, φ̂n

kl =
1

Nx Ny

Nx

∑
i=1

Ny

∑
j=1

φn
ijwik⊗jl. (2.21)

Since

φn
i+1,j+φn

i−1,j−4φn
ij+φn

i,j+1+φn
i,j−1

h2
=

φn
i+1,j−2φn

ij+φn
i−1,j

h2
+

φn
i,j+1−2φn

ij+φn
i,j−1

h2
, (2.22)

we can apply Eqs. (2.9), (2.10), and (2.11) into each terms. Then, for i = 1,··· ,Nx and
j=1,··· ,Ny,

∆hφn
ij=

Nx

∑
k=1

Ny

∑
l=1

(

1

Nx Ny

Nx

∑
p=1

Ny

∑
q=1

φn
pqwpkwql

)

wi+1,k−2wik+wi−1,k

h2
wjl

+
Nx

∑
k=1

Ny

∑
l=1

(

1

NxNy

Nx

∑
p=1

Ny

∑
q=1

φn
pqwpkwql

)

wik

wj+1,l−2wjl+wj−1,l

h2

=
Nx

∑
k=1

Ny

∑
l=1

(

1

Nx Ny

Nx

∑
p=1

Ny

∑
q=1

φn
pq

wp+1,k−2wpk+wp−1,k

h2
wql

)

wikwjl

+
Nx

∑
k=1

Ny

∑
l=1

(

1

NxNy

Nx

∑
p=1

Ny

∑
q=1

φn
pqwpk

wq+1,l−2wql+wq−1,l

h2

)

wikwjl

=
Nx

∑
k=1

Ny

∑
l=1

(

1

Nx Ny

Nx

∑
p=1

Ny

∑
q=1

φn
pq∆hwpk⊗ql

)

wikwjl =
Nx

∑
k=1

Ny

∑
l=1

λkl φ̂
n
klwik⊗jl. (2.23)
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Similar to Eqs. (2.13) and (2.14), we can calculate the mode-dependent effective time step
∆te in a two-dimensional space as follows:

∆te =
∆t

1−λjk∆t
, (2.24)

for each basis wj⊗wk in the Fourier space.
In this paper, we study a mode-dependent effective time step of a nonlinear convex

splitting scheme (2.25) for the CH equation using the fully implicit Euler algorithm (2.26):
for i=1,··· ,Nx and j=1,··· ,Ny

φn+1
ij −φn

ij

∆t
=∆h[(φ

n+1
ij )3−φn

ij−ǫ2∆hφn+1
ij ], (2.25)

φn+1
ij −φn

ij

∆t
=∆h[(φ

n+1
ij )3−φn+1

ij −ǫ2∆hφn+1
ij ]. (2.26)

3 Computational results

3.1 One-dimensional cases

If we choose ǫ= ǫm =mh/[2
√

2tanh−1(0.9)], then we have approximately mh transition
layer across interface [5]. Unless otherwise specified, we use N=128, h=1/N, and ǫ=ǫ6.
For the numerical solution algorithm, we use a nonlinear multigrid method [21, 24].

Fig. 1 plots eigenvalues λj =− 4
h2 sin2 (j−1)π

2N for j=1,··· ,N. The values are monotoni-
cally decreasing.

Fig. 2 shows the effective time step ∆te =∆t/(1−λj∆t) for three different time steps

∆t=2h2, 0.2h2, 0.02h2, where λj =− 4
h2 sin2 (j−1)π

2N for j=1,··· ,N. The result indicates that
the effect time step varies with large scale as the time step size increases.

20 40 60 80 100 120

−6

−5

−4

−3

−2

−1

0
x 10

4

j

λj

Figure 1: Plot of eigenvalues λj =− 4
h2 sin2 (j−1)π

2N for i=1,··· ,N.
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Figure 2: The effective time step ∆te =∆t/(1−λj∆t) for three different ∆t= 2h2, 0.2h2, 0.02h2, where λj =

− 4
h2 sin2 (j−1)π

2N for i=1,··· ,N.
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Figure 3: Initial condition is φ(x,0)= 0.01cos(24πx) on Ω=(0,1). Results after 20 time step iterations: (a)

∆t= 2h2 for both the schemes. (b) ∆t= 2h2 for the convex scheme and ∆te = ∆t/(1−λ25∆t) for the fully
implicit scheme.

Let us consider an initial condition: φ(x,0)= 0.01cos(24πx) on Ω=(0,1), which im-
plies j= 25 is used. Fig. 3 shows the results after 20 time step iterations: (a) ∆t= 2h2 is
used for both the schemes. We can observe time delay for the nonlinear convex splitting
scheme compared to the fully implicit Euler scheme. (b) ∆t=2h2 is used for the convex
scheme and ∆te =∆t/(1−λ25∆t) is used for the fully implicit scheme. The results from
the two different schemes are almost identical.

Next, we consider a high-frequency mode, i.e., a damping mode: φ(x,0)=0.3cos(34πx).
Fig. 3(a) shows the results after 5 time step iterations with ∆t=2h2 for both the schemes.
Similar to the previous test, we can observe time delay for the nonlinear convex splitting
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Figure 4: Initial condition is φ(x,0) = 0.3cos(34πx) on Ω = (0,1). Results after 5 time step iterations: (a)

∆t= 2h2 for both the schemes. (b) ∆t= 2h2 for the convex scheme and ∆te = ∆t/(1−λ35∆t) for the fully
implicit scheme.
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(a)
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x
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Figure 5: Initial condition is φ(x,0)=0.03cos(34πx)+0.02cos(24πx)+0.1cos(6πx). (a) Snapshot at T=25∆t,

where ∆t=2h2. (b) Snapshot at T=2500∆t, where ∆t=0.02h2.

scheme. Fig. 3(b) shows a good agreement between the two results with ∆t=2h2 for the
convex scheme and ∆te =∆t/(1−λ35∆t) for the fully implicit scheme.

Fig. 5 shows snapshots of the profiles using two schemes and two time steps. The
initial condition is φ(x,0)=0.03cos(34πx)+0.02cos(24πx)+0.1cos(6πx). If we use a large
time step (∆t = 2h2), then due to the time step re-scaling there is delay of the temporal
evolution for the nonlinear splitting scheme compared to the fully implicit scheme (see
Fig. 5(a)). However, if we use a small enough time step (∆t=0.02h2), then we can observe
the agreement between two results as shown in Fig. 5(b).
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3.2 Two-dimensional space

Fig. 6 plots eigenvalues λkl = λk+λl =− 4
h2

[

sin2 (k−1)π
2Nx

+sin2 (l−1)π
2Ny

]

for k= 1,··· ,Nx and

l=1,··· ,Ny.

Figs. 7(a), (b), and (c) show the effective time step ∆te=∆t/(1−λkl ∆t) for three differ-

ent ∆t= h2, 0.2h2, 0.02h2, respectively, where λkl =λk+λl =− 4
h2

[

sin2 (k−1)π
2Nx

+sin2 (l−1)π
2Ny

]

for k=1,··· ,Nx and l=1,··· ,Ny. The result indicates that the effect time step varies with
large scale as the time step size increases.

Let us consider an initial condition: φ(x,y,0)=0.01cos(20πx)cos(20πy) on Ω=(0,1)×
(0,1), which implies k= l = 21 is used. Figs. 8(a), (b), and (c) show the initial condition,
results after 200 time step iterations with ∆t=h2 for the implicit and the convex splitting
schemes, respectively. Fig. 8(d) is the difference between the results from the convex
scheme with ∆t = h2 and the fully implicit scheme with ∆te = ∆t/(1−λ21,21∆t), which
implies that the results from the two different schemes with the two different time step
sizes are almost identical. We can observe time delay for the nonlinear convex splitting
scheme compared to the fully implicit Euler scheme.
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Figure 6: Plot of eigenvalues λkl =λk+λl =− 4
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2Nx

+sin2 (l−1)π
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Figure 7: (a), (b), and (c) are the effective time step ∆te = ∆t/(1−λkl∆t) for three different ∆t =

h2, 0.1h2, 0.01h2, respectively, where λkl = λk+λl = − 4
h2

[

sin2 (k−1)π
2Nx

+sin2 (l−1)π
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]

for k = 1,··· ,Nx and

l=1,··· ,Ny.
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Figure 8: (a) is the initial condition, φ(x,y,0)=0.01cos(20πx)cos(20πy) on Ω=(0,1)×(0,1). (b) and (c) are

results after 200 time step iterations with ∆t=h2 for the implicit and the convex splitting schemes, respectively.
(d) is the difference between the results from the convex scheme with ∆t=h2 and the fully implicit scheme with
∆te=∆t/(1−λ21,21∆t).

Next, let us consider an initial condition: φ(x,y,0)= 0.3cos(30πx)cos(30πy) on Ω=
(0,1)×(0,1), which implies k= l=31 is used. Figs. 9(a), (b), and (c) show the initial con-
dition, results after 200 time step iterations with ∆t= h2 for the implicit and the convex
splitting schemes, respectively. Fig. 9(d) is the difference between the results from the
convex scheme with ∆t = h2 and the fully implicit scheme with ∆te =∆t/(1−λ21,21∆t),
which demonstrates that the results from the two different methods with the two dif-
ferent time step sizes are almost identical. We can observe time delay for the nonlinear
convex splitting method compared to the fully implicit Euler method.

4 Conclusion

We investigated the effective time step size of a nonlinear convex splitting scheme for the
CH equation by comparing with the fully implicit Euler method. Although the nonlinear
convex splitting scheme is unconditionally stable, we need to use a small enough time
step to get an accurate numerical solution. As future research, it would be practical to
extend current study to the three-dimensional CH equation.
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Figure 9: (a) is the initial condition, φ(x,y,0)=0.3cos(30πx)cos(30πy) on Ω=(0,1)×(0,1). (b) and (c) are

results after 200 time step iterations with ∆t=h2 for the implicit and the convex splitting schemes, respectively.
(d) is the difference between the results from the convex scheme with ∆t=h2 and the fully implicit scheme with
∆te =∆t/(1−λ31,31∆t).
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