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We propose an explicit hybrid numerical method for the efficient 3D volume reconstruction from unorganized point clouds
using a phase-field method. The proposed three-dimensional volume reconstruction algorithm is based on the 3D binary image
segmentation method. First, we define a narrow band domain embedding the unorganized point cloud and an edge indicating
function. Second, we define a good initial phase-field function which speeds up the computation significantly. Third, we use
a recently developed explicit hybrid numerical method for solving the three-dimensional image segmentation model to obtain
efficient volume reconstruction from point cloud data. In order to demonstrate the practical applicability of the proposed method,
we perform various numerical experiments.

1. Introduction

In this paper, we propose an efficient and robust algorithm for
volume reconstruction from a point cloud. Reconstructing
the three-dimensional model from a point cloud is important
in medical applications. Surface reconstruction from a point
cloud is a process of finding a surface model that approxi-
mates an unknown surface for a given set of sample points
lying on or near the unknown surface [1].

Hoppe et al. developed an algorithm to reconstruct a
surface in the three-dimensional space from unorganized
points scattered on or near the unknown surface. The algo-
rithm is based on the idea of determining the zero level
set of a signed distance function [2]. Kazhdan proposed
a surface reconstruction method which takes an oriented
point set and returns a solid model. The method uses Stokes’
theorem to calculate the characteristic function (one inside
the model and zero outside of it) of the solid model [3]. To
reconstruct implicit surfaces from scattered unorganized data
set, Li et al. presented a novel numerical method for surface
embedding narrow volume reconstruction fromunorganized

points [4, 5]. Yang et al. proposed a 3D reconstruction tech-
nique from nonuniform point clouds via local hierarchical
clustering [6]. Zhao et al. developed a fast sweeping level
set and tagging methods [7]. Yezzi Jr. et al. proposed a new
medical image segmentation based on feature-based metrics
on a given image [8].

Beneš et al. used the Allen-Cahn equation with a forcing
term to achieve image segmentation [9]. Caselles et al.
proposed a model for active contours which could extract
smooth shapes and could be adapted to find several contours
simultaneously [10]. Methods using geometric active contour
were introduced in [11–14]. Zhang et al. developed a weighted
sparse penalty and a weighted grouping effect penalty in
modeling the subspace structure [15]. Chen used an ICKFCM
method (ICA analysis and KFCM algorithm) in medical
image segmentation andmade a good result in extracting the
complicated images [16]. Zhang et al. proposed a novel fuzzy
level set method based on finding the minimum of energy
function to locate the true object boundaries effectively [17].
Other numerical studies based on level set method were also
introduced in [18, 19].
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Figure 1: Schematic of defined distance function. (a) Point cloud data, (b) mesh grid covering the point cloud and local mesh grid, (c) local
mesh gridΩ𝑙 embedding a point X𝑙, (d) narrow band domain, and (e) edge indicator function, 𝑔(x).
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In this article, we propose an explicit hybrid algorithm
for volume reconstruction from a point cloud. Therefore, it
does not need implicit solvers such as multigrid methods.
The computation is fast and efficient because the proposed
algorithm uses a narrow band domain and a good initial
condition.

This paper is organized as follows. In Section 2, we
describe a mathematical model and a numerical solution
algorithm for volume reconstruction from a point cloud.
We present the numerical results for several examples in
Section 3. In Section 4, we conclude.

2. Mathematical Model and Numerical
Solution Algorithm

Now, we propose an explicit hybrid numerical method for
volume reconstruction from a point cloud using a phase-field
method. For X𝑙 = (𝑋𝑙, 𝑌𝑙) in the two-dimensional space or
X𝑙 = (𝑋𝑙, 𝑌𝑙, 𝑍𝑙) in the three-dimensional space, 𝑆 = {X𝑙 |1 ≤ 𝑙 ≤ 𝑁} denote the point cloud in the two- or the three-
dimensional space, respectively.The geometric active contour
model based on the mean curvature motion is given by the
following evolution equation [20]:

𝜕𝜙 (x, 𝑡)
𝜕𝑡
= 𝑔 (x) [−𝐹 (𝜙 (x, 𝑡))𝜖2 + Δ𝜙 (x, 𝑡) + 𝜆𝐹 (𝜙 (x, 𝑡))] ,

(1)

where 𝑔(x) is an edge indicator function, 𝐹(𝜙) = 0.25(𝜙2 −
1)2, and 𝜖 is a constant which is related to the phase
transition width. Note that here we use a different edge
indicator function and efficient explicit numerical algo-
rithm.

For simplicity of exposition, we first discretize (1) in the
two-dimensional space Ω = (𝑎, 𝑏) × (𝑐, 𝑑). Let ℎ = (𝑏 −𝑎)/(𝑁𝑥 − 1) = (𝑑 − 𝑐)/(𝑁𝑦 − 1) be the uniform mesh size,
where 𝑁𝑥 and 𝑁𝑦 are the number of grid points. Let Ωℎ ={x = (𝑥𝑖, 𝑦𝑗) : 𝑥𝑖 = 𝑎 + (𝑖 − 1)ℎ, 𝑦𝑗 = 𝑐 + (𝑗 − 1)ℎ, 1 ≤𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦} be the discrete domain. Let 𝜙𝑛𝑖𝑗 be
approximations of 𝜙(𝑥𝑖, 𝑦𝑗, 𝑛Δ𝑡), where Δ𝑡 is the time step.
Let 𝑑(x) = dist(x, 𝑆) = min1≤𝑙≤𝑁|X𝑙 − x| be the distance to the
data 𝑆, where X𝑙 = (𝑋𝑙, 𝑌𝑙). In fact, we will use the distance
function as an edge indicator function, 𝑔(x). In practice, for𝑙 = 1, . . . , 𝑁, we define a local domain Ω𝑙 which embeds
the point X𝑙 and set the minimum value at the grid point
between the point and the grid point. For example,Ω𝑙 is a 3×3
grid.Then, the computational narrowband domain is defined
as

Ωnb =
𝑁⋃
𝑙=1

Ω𝑙. (2)

Outside the narrow band domain, we set a large value to the
edge indicator function, see Figure 1 for the procedure.

In this study, we apply the simplest sequential splitting
procedure. We split (1) into two equations by using the
operator splitting method:

𝜕𝜙 (x, 𝑡)
𝜕𝑡 = 𝑔 (x) [Δ𝜙 (x, 𝑡) + 𝜆𝐹 (𝜙 (x, 𝑡))] , (3)

𝜕𝜙 (x, 𝑡)
𝜕𝑡 = −𝑔 (x) 𝐹 (𝜙 (x, 𝑡))𝜖2

= 𝑔 (x) 𝜙 (x, 𝑡) − 𝜙3 (x, 𝑡)𝜖2 .
(4)

For a good initial configuration, we set 𝜙0𝑖𝑗 = 1 inside on the
narrow band domain and set 𝜙0𝑖𝑗 = −1 outside the narrow
band domain.

Given 𝜙𝑛, we solve (3) on the narrow band domain Ωnb
by using the explicit Euler method:

𝜙∗𝑖𝑗 − 𝜙𝑛𝑖𝑗
Δ𝑡 = 𝑔𝑖𝑗 [Δ 𝑑𝜙𝑛𝑖𝑗 + 𝜆𝐹 (𝜙𝑛𝑖𝑗)] , (5)

where 𝜙∗𝑖𝑗 is the intermediate value which is defined at point
(𝑥𝑖, 𝑦𝑗). The initial values at inside and outside region of the
narrowbanddomainΩnb act asDirichlet boundary condition
in computing the discrete Laplace operator, Δ 𝑑.

Then, we analytically solve (4) by the method of separa-
tion of variables [21, 22]. That is, 𝜙𝑛+1𝑖𝑗 = 𝜓(Δ𝑡) by analytically
solving

𝑑𝜓 (𝑡)
𝑑𝑡 = 𝑔𝑖𝑗

𝜓 (𝑡) − 𝜓3 (𝑡)
𝜖2

with the initial condition 𝜓 (0) = 𝜙∗𝑖𝑗.
(6)

The analytic solution is given as

𝜙𝑛+1𝑖𝑗 = 𝜙∗𝑖𝑗
√𝑒−2𝑔𝑖𝑗Δ𝑡/𝜖2 + (𝜙∗𝑖𝑗)2 (1 − 𝑒−2𝑔𝑖𝑗Δ𝑡/𝜖2)

. (7)

Therefore, (5) and (7) consist of an efficient and robust
algorithm for volume reconstruction from a point cloud. We
should note that the proposed numerical solution algorithm
is fully explicit.Therefore, we do not need an iterativemethod
such as multigrid method to solve the governing equation.
Also, the implementation of the algorithm is straightforward.

3. Computational Experiments

3.1. Two-Dimensional Experiments

3.1.1. Motion by Mean Curvature. To test the proposed num-
erical scheme, we perform a numerical experiment. The test
is motion by mean curvature. If we set 𝑔(x) = 1 and 𝜆 = 0,
then the governing equation (1) becomes the original Allen-
Cahn equation [23], which is a reaction-diffusion equation
describing the process of phase separation in a binary alloy
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Figure 2: Temporal evolutions of the radius with Δ𝑡 = 0.15ℎ2 up to 𝑡 = 5000Δ𝑡 in the two-dimensional space. (a) Zero level contour and (b)
radius 𝑅(𝑡) of circle with respect to time.
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Figure 3: Temporal evolution of the interface: (a) initial condition, (b) 100 iterations, and (c) 1000 iterations.

mixture. In the two-dimensional case, as 𝜖 approaches zero,
the zero level set of 𝜙 evolves with the following velocity:

𝑉 = −𝜅 = − 1𝑅, (8)

where 𝑉 is the normal velocity, 𝜅 is the curvature, and 𝑅 is
the radius of curvature at the point of the zero level set [24].
Then, (8) is rewritten by 𝑑𝑅(𝑡)/𝑑𝑡 = −1/𝑅(𝑡) with 𝑅(0) = 𝑅0.
Therefore, analytic solution is given as 𝑅(𝑡) = √𝑅20 − 2𝑡.

On the computational domain Ω = (0, 1) × (0, 1),
we investigate the motion by mean curvature of the circle
in the annulus narrow band domain: {(𝑥, 𝑦) | 0.35 ≤
√(𝑥 − 0.5)2 + (𝑦 − 0.5)2 ≤ 0.43} as shown in Figure 2(a). We
define an initial condition as

𝜙 (𝑥, 𝑦, 0) = tanh 𝑅0 − √(𝑥 − 0.5)
2 + (𝑦 − 0.5)2

√2𝜖 . (9)

In this numerical simulation, we use the following parame-
ters: 𝑅0 = 0.4, 𝜖 = 0.011, ℎ = 1/256, Δ𝑡 = 0.15ℎ2, and 𝑇 =5000Δ𝑡. Figures 2(a) and 2(b) show the temporal evolution of
the initial circle and its radius with respect to time, respect-
ively. For verification of our numerical results, we include the
results of the analytic solution. As shown in Figure 2, the
initial circle shrinks under the motion by mean curvature.

3.1.2. The Basic Working Mechanism of the Algorithm. The
edge indicator function 𝑔(x) is close to zero where the point
cloud exists. Therefore, the evolution will stop or slow down
in the neighborhood of the point cloud. In (1), 𝜕𝜙/𝜕𝑡 =
−𝐹(𝜙)/𝜖2 + Δ𝜙makes the phase-field shrink until it reaches
the point cloud by themean curvature flow. If the geometry of
the point cloud is not convex, then the term 𝜆𝐹(𝜙)makes the
level set of the phase-field further shrink. For more details,
please refer to [20]. To confirm the working mechanism of
the algorithm, the temporal evolution of the interface in the
two-dimensional space is shown in Figure 3. Here, we use
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Figure 4: Construction of the three-dimensional distance function 𝑑(x) and the narrow band domain: (a) point cloud data and mesh, (b)
cross section of point cloud and a local meshΩ𝑙 of single pointX𝑙, (c) local mesh gridΩ𝑙 embedding a pointX𝑙, and (d) narrow band domain
which is determined by the distance function.

the following parameters: 𝜖 = 0.0096, ℎ = 1/200, and Δ𝑡 =2.8284𝑒 − 5.
3.2. Three-Dimensional Experiments. Next, we discretize (1)
in the three-dimensional space, that is, Ω = (𝑎, 𝑏) × (𝑐, 𝑑) ×(𝑒, 𝑓). Let ℎ = (𝑏 − 𝑎)/(𝑁𝑥 − 1) = (𝑑 − 𝑐)/(𝑁𝑦 − 1) = (𝑓 −𝑒)/(𝑁𝑧 − 1) be the uniform mesh size, where𝑁𝑥,𝑁𝑦, and𝑁𝑧
are the total number of grid points. LetΩℎ = {x = (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) :𝑥𝑖 = 𝑎+ (𝑖 − 1)ℎ, 𝑦𝑗 = 𝑐 + (𝑗 − 1)ℎ, 𝑧𝑘 = 𝑒 + (𝑘 − 1)ℎ, 1 ≤ 𝑖 ≤𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦, 1 ≤ 𝑘 ≤ 𝑁𝑧} be the discrete domain. We
define 𝜙𝑛𝑖𝑗𝑘 as approximations of 𝜙(𝑥𝑖, 𝑦𝑗, 𝑧𝑘, 𝑛Δ𝑡), where Δ𝑡 is
the time step size. Let 𝑑(x) = dist(x, 𝑆) = min1≤𝑙≤𝑁|X𝑙 − x| be
the distance to the data 𝑆, where X𝑙 = (𝑋𝑙, 𝑌𝑙, 𝑍𝑙).

Figure 4 represents construction of the three-dimensional
distance function 𝑑(x) and the narrow band domain. In
Figures 4(a) and 4(b), we can see the given point cloud
data on computational grid and a local mesh Ω𝑙 of single
point X𝑙. Here, we calculate the distance between the given
point X𝑙 and the grid points x on the local mesh Ω𝑙. The
distance function 𝑑(x) is defined by the shortest one among
the distance.Then, we obtain the narrow band domain which
is determined by the distance function.

Now, we can straightforwardly extend the two-dimen-
sional numerical solutions (5) and (7) to the following three-
dimensional solutions:

𝜙∗𝑖𝑗𝑘 − 𝜙𝑛𝑖𝑗𝑘
Δ𝑡 = 𝑔𝑖𝑗𝑘 (Δ 𝑑𝜙𝑛𝑖𝑗𝑘 + 𝜆𝐹 (𝜙𝑛𝑖𝑗𝑘)) ,

𝜙𝑛+1𝑖𝑗𝑘 = 𝜙∗𝑖𝑗𝑘
√𝑒−2𝑔𝑖𝑗𝑘Δ𝑡/𝜖2 + (𝜙∗

𝑖𝑗𝑘
)2 (1 − 𝑒−2𝑔𝑖𝑗𝑘Δ𝑡/𝜖2)

.

(10)

3.2.1. Reconstruction from Various Point Clouds. First, we
reconstruct volume of Happy Buddha from the given scat-
tered points (𝑁 = 1621848) as shown in Figure 5(a) [25]. For
numerical test, we use the following parameters: 𝜖 = 0.0069,ℎ = 0.0048, Δ𝑡 = ℎ/(200√3),𝑁𝑥 = 250,𝑁𝑦 = 500,𝑁𝑧 = 250,Ω = (0, 1.2) × (0, 2.4) × (0, 1.2), and 𝜆 = 100. In the first
and second rows in Figure 5, we can see the front and back
views of Happy Buddha. By the proposed scheme, we obtain
the numerical solution 𝜙 after 200 iterations (see Figure 5(c))
with the initial condition in Figure 5(b).

Next, we reconstruct volume of Armadillo model from
the given scattered points (𝑁 = 129732) as shown in
Figure 6(a) [25]. For numerical test, we use the following
parameters: 𝜖 = 0.0127, ℎ = 0.0088, Δ𝑡 = ℎ/(200√3), 𝑁𝑥 =220,𝑁𝑦 = 250,𝑁𝑧 = 200, Ω = (0, 2.2) × (0, 2.5) × (0, 2), and𝜆 = 1000. In the first and second rows in Figure 6, we can
see the front and back views of Armadillo model. By the
proposed scheme, we obtain the numerical solution 𝜙 after
400 iterations (see Figure 6(c)) with the initial condition in
Figure 6(b).

As the final example, we reconstruct volume of Stanford
Dragon from the given scattered points (𝑁 = 656469) as
shown in Figure 7(a) [25]. For numerical test, we use the
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Figure 5: Front and back views of Happy Buddha: (a) point clouds, (b) initial condition of 𝜙, and (c) numerical solution 𝜙 after 200 iterations.

following parameters: 𝜖 = 0.00432, ℎ = 0.003, Δ𝑡 =ℎ/(200√3), 𝑁𝑥 = 400, 𝑁𝑦 = 320, 𝑁𝑧 = 240, Ω = (0, 1.2) ×(0, 1) × (0, 0.8), and 𝜆 = 100. In the first and second rows
in Figure 7, we can see the front and back views of Stanford
Dragon. By the proposed scheme, we obtain the numerical
solution 𝜙 after 400 iterations (see Figure 7(c)) with the initial
condition in Figure 7(b).

3.2.2. Effect of 𝜆. In this section, we investigate the effect of 𝜆
parameter on the three-dimensional volume reconstruction.
The parameter makes the level set of 𝜙 shrink to the given
points. We use the same parameters in Figure 7 except for
the 𝜆 value. As shown in Figure 8, if the value of 𝜆 is small,
then the surface is oversmoothed by the motion by mean
curvature.On the other hand, if it is too large, then the surface
is rough.

4. Conclusions

In this article, we developed an explicit hybrid numerical
algorithm for the efficient 3D volume reconstruction from

unorganized point clouds using a modified Allen-Cahn
equation. The 3D volume reconstruction algorithm is based
on the 3D binary image segmentation method.The proposed
algorithm has potential to be used in various practical
industry such as 3D model printing from scattered scanned
data.The computational results confirmed that the algorithm
is very efficient and robust in reconstructing 3D volume from
point clouds.
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