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Abstract
In this paper, we consider a fast and efficient numerical method for the modified 
Cahn–Hilliard equation  with a logarithmic free energy for microstructure 
evolution. Even though it is physically more appropriate to use a logarithmic 
free energy, a quartic polynomial approximation is typically used for the 
logarithmic function due to a logarithmic singularity. In order to overcome 
the singularity problem, we regularize the logarithmic function and then apply 
an unconditionally stable scheme to the Cahn–Hilliard part in the model. We 
present computational results highlighting the different dynamic aspects from 
two different bulk free energy forms. We also demonstrate the robustness of 
the regularization of the logarithmic free energy, which implies the time-step 
restriction is based on accuracy and not stability.

Keywords: Cahn–Hilliard equation, logarithmic free energy, phase-field 
method, elastic inhomogeneity, unconditionally gradient stable scheme, 
multigrid

(Some figures may appear in colour only in the online journal)

1. Introduction

Elastic strain energy can be generated during a solid-state phase transformation and it is impor-
tant in determining the transformation path and the corresponding microstructure evolution [1]. 
The microscopic phase-field model was created by Khachaturyan [2] and developed by Chen et 
al [3–6]. The model describes the spatial distribution of chemical species by atom occupation 
probability based on Onsager and Ginzburg–Landau theory. Many approaches have been pro-
posed for modeling the elastic effect on precipitate morphology with a significant elastic inho-
mogeneity [7–12]. The main purpose of this paper is to present a fast and efficient numerical 
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method for the modified Cahn–Hilliard (CH) equation with a logarithmic free energy for the 
two-dimensional microstructure evolution with strong elastic inhomogeneity:

μ∂
∂

= Δc

t
M , (1)

μ ϵ= + ∂
∂

− ΔF

c

F

c
c

d

d
,ch el 2 (2)

where c  =  c(x, y, t) is the mole fraction at position (x, y) and time t. M is a mobility, Fch(c) is 
the chemical energy density, Fel(c, u) is the elastic energy density, u  =  (u(x, y), v(x, y)) is the 
displacement and ϵ is the gradient energy coefficient [13, 14]. The original logarithmic chemi-
cal energy density Fch [15] is given as

θ θ= + − − + −F c c c c c c
2

[ ln (1 ) ln(1 )] (1 ),ch
log

c (3)

where θ and θc are temperature and critical temperature, respectively. Even though it is physi-
cally more appropriate to use the logarithmic free energy, a quartic polynomial approximation 
is typically used for the logarithmic function due to a logarithmic singularity. Many research-
ers [16–23] have used a quartic polynomial

= − −α βF c c c c c( ) 2.5( ) ( )ch
poly

eq
2

eq
2 (4)

as a substitute for the original logarithmic free energy Fch
log since the polynomial approxima-

tion is much easier to deal with numerically. Here, αceq, 
βceq are two local minima. For example, 

the derivatives of the logarithmic energy function have singular points at 0 and 1. To overcome 
the numerical difficulties associated with the original logarithmic free energy function, we 
employ a regularization procedure for the logarithmic free energy [24]:
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where δ < αc( )eq  is a small positive number. F c( )ch
poly  and the regularized free energy δF c( )log  are 

shown in figure 1.
The elastic energy density has the following form

= − + + − +

+ + +

F c C C e c E E e c C E

C E E C E E

u( , ) ( ) ( )( ( )) 2

0.5 ( ) ,

el 11 12 11 22 44 12
2

11 11
2

22
2

12 11 22

where C11, C12 and C44 are the cubic elastic parameters and are dependent on the order param-
eter c. Here, = + −C C c C c(1 )k k k

1 0  for k  =  11, 12 and 44, where Ck
0 and Ck

1 are elastic con-
stants of matrix and precipitate, respectively. The eigenstrain is e(c)  =  η(c  −  cs), which obeys 
Vegard’s law. Here, cs is the average composition and η is a constant.
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where u1  =  u, u2  =  v, x1  =  x and x2  =  y. From the definition, we get
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Under the condition for plain strain and the quasi-static approximation, we have

+ + + = +C u C v C u C v C C e c( ) ( ) [( ) ( )] ,x y x y x y x11 12 44 44 11 12 (8)

+ + + = +C v C u C v C u C C e c( ) ( ) [( ) ( )] ,y x y x y x y11 12 44 44 11 12 (9)

where the subscripts, x and y, denote partial derivatives with respect to the corresponding 
arguments.

This paper is organized as follows. In section 2, we describe the numerical method used to 
solve the Cahn–Hilliard equation with elasticity term. To show the efficiency of the scheme, 
numerical examples are presented in section 3. Lastly, conclusions are drawn in section 4.

2. Numerical solutions

In this section, we present fully discrete schemes for the CH equations and the displacement 
equation. Let Nxand Ny be positive even integers, h  =  L1/Nx  =  L2/Ny be the uniform mesh 
size and Ωh={(xi, yj): xi  =  (i  −  0.5)h, yj  =  (j  −  0.5)h, 1  ⩽  i  ⩽  Nx, 1  ⩽  j  ⩽  Ny } be the set of 
cell-centers. Let cij, μij, uij and vij be approximations of c(xi, yj), μ(xi, yj), u(xi, yj) and v(xi, 

Figure 1. Chemical energy densities: F c( )ch
poly  and δF c( )log  with θ  =  0.62, θc  =  1 and 

δ  =  0.04. The local minima are approximately =αc 0.053eq  and =βc 0.947eq . Here, we 
plot −F c( ) 0.014ch

poly  for a comparison reason.
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yj), respectively. Periodic boundary conditions are applied along both axes. We use the non-
linearly stabilized splitting scheme [25, 26] for c in equations (1) and (2) as
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where +F c( )n
ch
C 1  and F c( )n

ch
E  denote contractive and expansive parts of Fch, respectively. By the 

regularized logarithmic free energy δF c( )log , we define the two parts as follows.
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For the given polynomial energy density (4), we use the following equations:
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In equation (11), the elastic energy density ∂ ∂F c cu( , )/ij
n
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el  is discretized as
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where = − + −K C C C C11
1
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0  and displacement vector u  =  (u, v) satisfies equations (8) and 

(9). Next, we discretize equations (8) and (9) as
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2

 for k  =  11, 12, and 44.

All discrete equations are solved by multigrid method which is the efficient solver among 
the iterative method. For more details about multigrid method, see [27].

3. Numerical results

In this section, we perform several numerical tests. Throughout the numerical experiments, 
unless otherwise specified, we use the gradient energy coefficient ϵ  =  1.2247, the composi-
tion expansion coefficient η  =  0.05, spatial step size h  =  1, temporal step size Δt  =  1 and the 
computational domain Ω  =  (0, 256)  × (0, 256). For chemical free energy function, we use 
θ θ= = = =α βc c1, 0.62, 0.053, 0.947c eq eq  and δ  =  0.04. To match interfacial transition width, 
we scaled the logarithmic free energy as δF c2 ( )log .

3.1. Spinodal decomposition

Figure 2 represents a phase diagram showing the binodal and spinodal lines with logarith-
mic function (3) and polynomial function (4). As shown in figure 2, there are three curves in 
the phase diagram. Among these curves, the uppermost one is known as binodal curve. The 
region above the binodal is stable. The other two curves are known as the spinodal curves of 
the logarithmic and the polynomial free energies. The curve is made by the critical points of 
the free energy function. The region between the binodal and spinodal curves is designated by 
metastable and the remaining region is called unstable [28].

To see the different evolutionary dynamics of the CH equation with the logarithmic and 
the polynomial free energies, we perform numerical phase separation tests with three different 
average concentrations m1  =  0.1, m2  =  0.2 and m3  =  0.3 (see figure 2). For numerical simula-
tion, we use the polynomial free energy (4) with = =α βc c0.053, 0.947eq eq  and the regularized 

D Jeong et alModelling Simul. Mater. Sci. Eng. 23 (2015) 045007
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logarithmic free energy (5) with θc  =  1, θ  =  0.62, δ  =  0.04 and ϵ  =  0.000 625. Δt  =  0.01, 
h  =  1/256 and Ω  =  (0, 1)  × (0, 1) are used.

Figure 3 shows the temporal evolution for solving the original CH equation without the elas-
tic free energy term. In this test, the initial conditions are set to (a) c(x, y, 0)  =  m1  +  0.2rand(x, 
y), (b) c(x, y, 0)  =  m2  +  0.2rand(x, y) and (c) c(x, y, 0)  =  m3  +  0.2rand(x, y), where rand(x, y) 
is a random number distributed uniformly in [−1, 1]. Here, the first column is the initial condi-
tions. The second and the third columns are the numerical results at t  =  1 with the logarithmic 
and the polynomial free energies, respectively. In figure 3(a), the average concentration is 
m1  =  0.1, which is in the metastable region of both free energies. The result shows the initial 
perturbation was damped and the concentration became uniform. In figure  3(b), m2  =  0.2, 
which is in the spinodal region of the logarithmic free energy and in the metastable region of 
the polynomial free energy. In this case, we can observe phase separation only with the loga-
rithmic energy. In figure 3(c), m3  =  0.3, which is in the spinodal region of both free energies. 
Both logarithmic and polynomial free energies made phase separation.

3.2. Comparison of logarithmic and polynomial free energies

Next, we include the elastic free energy term and compare results from two different bulk free 
energies. We take an initial condition as a circular precipitate with composition =βc 0.947eq  
and matrix with =αc 0.053eq , i.e.

ϵ
=

− − − + −

+
+

β α

β α

c x y
c c x y

c c

( , , 0)
2

tanh
40 ( 128) ( 128)

2 2

2
.

eq eq
2 2

eq eq

 (16)

We denote Ck
0 and Ck

1 (k  =  11, 12, 44) as elastic constants of the precipitate and 
matrix phases, respectively. In this simulation, we use the following elastic constants: 

= = = = =C C C C C232, 153, 117, 204.35, 180.6511
0

12
0

44
0

11
1

12
1  and =C 35.144

1 . Figures 4(a)–(c) 
show c  =  0.5 level contours of the concentration field at t  =  200, 1000 and 2000, respectively. 
Evolution of compositional profiles as a function of time for a soft precipitate along (d) the 

Figure 2. Phase diagram showing the binodal and spinodal lines with logarithmic and 
polynomial functions.
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x-direction at y  =  128 and (e) the diagonal direction, x  =  y. The result indicates that the loga-
rithmic free energy makes the precipitate be more elongated.

3.3. Convergence test

From now on, we will use the logarithmic free energy in the subsequent numeri-
cal experiments. In this section, we will perform a convergence test. We take the 
same initial condition (16). In this simulation, we use the following elastic constants: 

= = = = =C C C C C232, 153, 117, 204.35, 180.6511
0

12
0

44
0

11
1

12
1  and =C 35.144

1 . Figure  5 shows 
c  =  0.5 level contours at t  =  2000 with Δt  =  0.1, 1, 10 and 100. And the gray region is a con-
tour image of c  =  0.5 level when Δt  =  0.1. We can confirm that the results converge as the 
time step size is refined. The results with Δt  =  1 and Δt  =  0.1 are almost identical.

3.4. Temporal evolutions of a soft precipitate

To verify the proposed numerical scheme, we perform the same numerical tests in [13, 29]. 
The shapes of a single coherent precipitate in elastically inhomogeneous systems have been 
studied with boundary integral method [7, 11, 12], discrete atom method [8, 9], conjugate 
gradient method [10] and perturbation method [13, 30]. As the first example, we investigate 
the shape evolution of a single precipitate and its dependence on elastic inhomogeneity. The 
initial condition is taken to be equation  (16). And we use the following elastic constants: 

= = = = =C C C C C232, 153, 117, 204.35, 180.6511
0

12
0

44
0

11
1

12
1  and =C 35.144

1 .

Figure 3. Temporal evolution for solving the original CH equation without the elastic 
free energy term. The initial conditions are (a) c(x, y, 0)  =  m1  +  0.2rand(x, y), (b) c(x, 
y, 0)  =  m2  +  0.2rand(x, y) and (c) c(x, y, 0)  =  m3  +  0.2rand(x, y). Here, the first column 
is the initial conditions. The second and the third columns are the numerical results at 
t  =  1 with the logarithmic and the polynomial free energies, respectively.

(a)

(b)

(c)
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Figures 6(a)–( f ) show the snapshots of a circular precipitate with shear modulus κ  =  0.3 
at time t  =  6, 100, 200, 500, 1000 and 2000, respectively. And figure 6(g) represents the over-
lapped time evolution of c(x, y) with the initial circle. Here, the arrow indicates the increasing 
time. As shown in figure 6, we can see that the initial circular shape evolves to a star shape 
which is cubically anisotropic as time goes on.

Figure 4. (a)–(c) are c  =  0.5 level contours at t  =  200, 1000 and 2000, respectively. 
Evolution of compositional profiles as a function of time for a soft precipitate along (d) 
the x-direction at y  =  128 and (e) the diagonal direction, x  =  y.

polynomial
logarithm

(a)

polynomial
logarithm

(b)

polynomial
logarithm

(c)

0 64 128 192 256
0

0.2

0.4

0.6

0.8

1
c poly(t=6)

log(t=6)
poly(t=2000)
log(t=2000)

(d)

0 100 200 300 362.03
0

0.2

0.4

0.6

0.8

1
c poly(t=6)

log(t=6)
poly(t=2000)
log(t=2000)

(e)

Figure 5. c  =  0.5 level contours at t  =  2000 with Δt  =  0.1, 1, 10 and 100.

∆t = 0.1
∆t = 1
∆t = 10
∆t = 100
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Figure 7 shows the composition c(x, y) distributions along x-direction and the diagonal 
direction passing through the center of the precipitate with respect to time. In figure 7, solid 
and dashed lines represent the results at t  =  6 and t  =  2000, respectively. And the arrow indi-
cates the time evolution.

3.5. Effect of elastic inhomogeneity κ

With the same initial condition (16), we investigate the effect of elastic inhomogeneity κ. We 
take the same elastic constants = =C C232, 15311

0
12
0  and =C 11744

0  as in [13, 31], which have 
a cubically anisotropic system. In order to show the effect of elastic inhomogeneity, we keep 
the same bulk modulus B  =  C11  +  C12 and the same ratio of anisotropy δ  =  2 C44/(C11  −  C12), 
while changing the ratio of shear modulus κ = C C/44

1
44
0  in the matrix and precipitate phases, 

respectively [13].

Figure 6. Temporal evolutions of a soft precipitate with shear modulus κ  =  0.3. (a)–
( f ) Snapshots of c(x, y) at time t  =  6, 100, 200, 500, 1000 and 2000, respectively. (g) 
Overlapped evolution of c(x, y) with the initial circle. Here, the arrow indicates the 
increasing time.

(a)

(d)

(b)

(e)

(c)

(f) (g)

Figure 7. Evolution of compositional profiles as a function of time for a soft precipitate 
along (a) the x-direction and (b) the diagonal direction. Here, the arrow indicates the 
increasing time. Dashed and solid lines represent the results at t  =  6 and t  =  2000, 
respectively.
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Figures 8(a)–( f ) show the numerical results at time t  =  2000 with the ratio of shear modu-
lus κ  =  1.7, 1.35, 1, 0.6 and 0.3, respectively. The decrease of κ means that κ=C C44

1
44
0 , that is, 

the stiffness of the precipitate is less than the matrix [8, 9, 12]. Therefore, the precipitate phase 
is easy to deform to star shape when κ  <  1 as shown in figures 8(d)–( f ).

3.6. Effect of the anisotropy ratio δ

We investigate the effect of the anisotropy ratio δ. In this numerical test, we use the elastic con-
stants δ δ δ δ= + = − = = + = −C C C C C230 70/ , 230 70/ , 70, 230 70/ , 230 70/M M P P

11
0

12
0

44
0

11
0

12
0  

and =C 7044
0 , which are the same values as in [13]. For the numerical simulation, we use the 

same bulk and shear moduli, while changing the ratio of shear modulus in precipitate and 
matrix phases [13]. In this test, we set (δP, δM) as (1, 1), (1.14, 0.89), (1.34, 0.79), (1.63, 0.72), 
(2.05, 0.66) and (2.8, 0.61), respectively. And the initial state is taken to be

= +c x y x y( , , 0) 0.5 0.1rand( , ). (17)

Figure 9 shows the numerical results with different anisotropy ratio δ at time t  =  2000. As the 
ratio between δP and δM is getting larger, the precipitate phase becomes decomposed to several 
cuboid whose edges are concave [13].

3.7. Numerical stability test

The proposed numerical method is based on the unconditionally gradient stable split-
ting scheme [25, 26]. To show the robustness of the proposed scheme, we perform the 
numerical test with different time step size Δt. In this test, we set the same initial con-
dition (17) in case of figure  9( f ). In this numerical test, we use the elastic constants 

Figure 8. Morphologies of a circular precipitate with different shear modulus κ at time 
t  =  2000. Here, (a)–(d) use the ratio of shear modulus κ = 1.7, 1.35, 1, 0.6 and 0.3, 
respectively.

(a) (b) (c)

(d) (e) (f)
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= = = = =C C C C C344.7541, 115.2459, 70, 256, 20511
0

12
0

44
0

11
1

12
1  and =C 7044

1 . Figures 10(a)–
(d) show the numerical results after 300 iterations with Δt  =  1, 10, 100 and 1000, respectively. 
From this test, we can confirm that our proposed numerical scheme allows the sufficiently 
large time step size Δt without blow-up of the numerical solution.

4. Conclusion

We proposed a fast, efficient and robust numerical method for the modified Cahn–Hilliard 
equation with a logarithmic free energy for microstructure evolution. Even though it is physi-
cally more appropriate to use a logarithmic free energy, a quartic polynomial approxima-
tion has been typically used for the logarithmic function due to a logarithmic singularity. In 

Figure 9. Morphologies of c(x, y) with different ratio of elastic anisotropy (δP, δM) at 
time t  =  2000: (a) (1, 1), (b) (1.14, 0.89), (c) (1.34, 0.79), (d) (1.63, 0.72), (e) (2.05, 
0.66) and ( f ) (2.80, 0.61).

(a) (b) (c)

(d) (e) (f)

Figure 10. Numerical results after 300 iterations with (a) Δt  =  1, (b) Δt  =  10, (c) 
Δt  =  100 and (d) Δt  =  1000.

(a) (b) (c) (d)
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order to overcome the singularity problem, we regularized the logarithmic function and then 
apply an unconditionally stable scheme to the Cahn–Hilliard part in the model. We presented 
computational results highlighting the different dynamic aspects from two different bulk free 
energy forms. We also demonstrated the robustness of the regularization of the logarithmic 
free energy, which implies the time-step restriction is based on accuracy and not stability.
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