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Abstract: We extend the explicit hybrid numerical method for solving the Allen–Cahn (AC)
equation to the scheme for the nonlocal AC equation with isotropically symmetric interfacial energy.
The proposed method combines the previous explicit hybrid method with a space-time dependent
Lagrange multiplier which enforces conservation of mass. We perform numerical tests for the
area-preserving mean curvature flow, which is the basic property of the nonlocal AC equation.
The numerical results show good agreement with the theoretical solutions. Furthermore,
to demonstrate the usefulness of the proposed method, we perform a cell growth simulation in
a complex domain. Because the proposed numerical scheme is explicit, it is remarkably simple to
implement the numerical solution algorithm on complex discrete domains.

Keywords: nonlocal Allen–Cahn equation; explicit hybrid method; space-time dependent Lagrange
multiplier; operator splitting

1. Introduction

The phase-field model is one of the representatives of the interface capturing approach and
has been widely investigated in order to interpret the interfacial dynamics [1]. The Allen–Cahn
(AC) equation, which is a phenomenological model for antiphase domain coarsening in a binary
mixture [2], is one of the most popular phase-field models and is given as

∂φ(x, t)
∂t

= − F′(φ(x, t))
ε2 + ∆φ(x, t), x ∈ Ω, t > 0 , (1)

where Ω is a bounded domain in Rd (d = 1, 2, 3), t is time, φ(x, t) is an order parameter,
F(φ) = 0.25(φ2 − 1)2, and ε is a positive constant related to the interfacial energy. Here, we use
the homogenous Neumann boundary condition, i.e., n · ∇φ(x, t) = 0 for x ∈ ∂Ω, where n is the
unit outer normal vector on the domain boundary ∂Ω. The AC equation has been applied to phase
transition, image processing, motion by mean curvature, multiphase flows, and dendritic growth
(see e.g., [3–8] and the references therein). However, there are some mathematical problems that cannot
be solved using the original form of the classical AC equation. For instance, the long range interactions
in the interfacial dynamics is difficult to investigate using the original AC equation, therefore the
AC equation with nonlocal diffusion (fractional) operator was analyzed in [9]. Meanwhile, the AC
equation is not conservative, and Brassel and Bretin [10] proposed the nonlocal AC equation with the
time-dependent Lagrange multiplier which preserves the shape of interface in local coordinates unlike
the multiplier presented earlier in [11]. This equation has both nonlocal and local effects, even though
the mass conservation property can be achieved in the local AC equation; hence we adopt the nonlocal
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equation in [10] and propose an explicit hybrid method in this paper for the following nonlocal AC
equation with isotropically symmetric interfacial energy:

∂φ(x, t)
∂t

= − F′(φ(x, t))
ε2 + ∆φ(x, t) + β(t)

√
F(φ(x, t)), x ∈ Ω, t > 0, (2)

where β(t) =
∫

Ω F′(φ(x, t))dx/[ε2
∫

Ω

√
F(φ(x, t))dx] to possess the total mass conservation

property [12], i.e.,

d
dt

∫
Ω

φ dx =
∫

Ω
φt dx =

∫
Ω

[
− F′(φ)

ε2 + ∆φ + β(t)
√

F(φ)
]

dx

= − 1
ε2

∫
Ω

F′(φ)dx +
∫

∂Ω
n · ∇φ ds + β(t)

∫
Ω

√
F(φ)dx

= − 1
ε2

∫
Ω

F′(φ)dx + β(t)
∫

Ω

√
F(φ)dx = 0.

Please note that if β(t) = 0, then Equation (2) becomes the classical AC Equation (1). The nonlocal
AC equation with mass conservation has been investigated numerically and analytically [13–19].
In particular, the AC equation is of second order; hence the nonlocal AC model can partially replace
the Cahn–Hilliard type model, which is of fourth order and conserves mass but is relatively costly
to obtain numerical solutions. Therefore, the nonlocal AC equation can be used to apply various
mathematical models. In this regard, there is an advantage of presence of the mass conservation
property to implement mass conservative models such as the lattice Boltzmann (LB) method [13].
Proposing two simple LB methods, the authors in [13] conducted comparative studies of both the
local and nonlocal AC equations with mass conservation. Moreover, Zhang et al. [14] proposed an
unconditionally energy stable second-order non-iterative method to the anisotropic AC equation
based on scalar auxiliary variable approach. The authors treated the nonlinear terms as a source,
this linear stabilization provides stability for a large time step and hence computational efficiency.
Guan et al. [15] proposed the concrete convergence analysis about the discrete second-order convex
splitting scheme for the nonlocal AC equation. One of the widely used numerical methods to solve the
AC equation with mass conservation is the Fourier spectral method. The authors in [16] employed the
Fourier spectral method for nonlocal diffusion operators. Using the Fourier spectral approximation,
a hybrid algorithm was presented and applied to the nonlocal AC equation. Furthermore, a mass
conserving high-order method for solving the nonlocal AC equation was developed in [17]. The author
employed the spectral method in space and three stage multiple-order semi-implicit Runge–Kutta
method in time, and emphasized that the existing methods did not actually achieve mass conservation
property by numerical simulations. The authors in [18] presented a second-order fast explicit operator
splitting (FEOS) method based on the Fourier spectral method. The authors further provided
the convergence analysis, investigated the discrete maximum principle of the proposed scheme,
and presented various numerical experiments. Zhai et al. [19] solved the fractional nonlocal AC
equation numerically using the FEOS method with adaptive time-stepping algorithm. It was taken the
advantage of being able to adjust time step to multiscale temporal characteristic of the phase separation
and coarsening process. The nonlocal AC model can be applied to multiphase models coupled with
incompressible Navier–Stokes (NS) equations [20–22]. Specifically, under the framework of the LB
method, Ren et al. [20] incorporated the incompressible hydrodynamic equations with the conservative
AC equation and provided an effective solution for binary flow modeling, which had been difficult due
to the interface limitations and numerical dispersion. Aihara et al. [21] developed a new multiphase
method using the conservative AC equation and showed the accurate evaluation in the movement of
bubbles interacting with the liquid-liquid interface. Furthermore, Joshi and Jaiman [22] proposed a
nonlinear adaptive variational method to solve the coupled AC and NS equations for fluid-fluid phase
flows, which is formulated by the finite element approach. The proposed algorithm was proved to be
energy stable and nonlocal mass conserving through the spinodal decomposition.
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While much of the literature dealt with implicit schemes, the main purpose of this article is to
propose an explicit hybrid numerical method for Equation (2). Basically, it is easy to implement and
can be applied directly to various types of domain, thus it consumes relatively less computational cost
than implicit methods unless the long term simulation is conducted. Furthermore, the advantages to
employ the proposed explicit hybrid method can be maximized since the AC model is of second order
as mentioned above.

The article is organized as follows. In Section 2, we describe a numerical algorithm using an
operator splitting method. Several numerical results that demonstrate the accuracy and usefulness of
the proposed numerical method are presented in Section 3. Conclusions are made in Section 4.

2. Numerical Algorithm

We present the explicit hybrid numerical solution algorithm for solving the nonlocal AC equation,
which is an extension of the algorithm for the AC equation [4]. Let us consider a computational domain
Ω = (a, b)× (c, d) partitioned into a uniform mesh with space step size h = (b− a)/Nx = (d− c)/Ny,
where Nx and Ny are the numbers of cells in x- and y- directions, respectively. We denote by φn

ij
the numerical approximations of φ(xi, yj, n∆t). Here, (xi, yj) = (a + (i − 0.5)h, c + (j − 0.5)h) for
i = 1, . . . , Nx and j = 1, . . . , Ny and ∆t is the time step.

Let us rewrite Equation (2) before applying an operator splitting method as follows:

φt = f1(φ) + f2(φ) + f3(φ),

where f1(φ) = ∆φ, f2(φ) = −F′(φ)/ε2, and f3(φ) = β
√

F(φ). The explicit hybrid method consists of
three steps:

Step 1. φt = ∆φ, (3)

Step 2. φt = −
F′(φ)

ε2 , (4)

Step 3. φt = β
√

F(φ). (5)

First, the diffusion Equation (3) is solved by using the explicit Euler method.

φn+1,1
ij − φn

ij

∆t
= ∆dφn

ij, (6)

where ∆dφn
ij = (φn

i−1,j + φn
i+1,j + φn

i,j−1 + φn
i,j+1 − 4φn

ij)/h2 with the zero Neumann boundary condition

φn
0j = φn

1j, φn
Nx+1,j = φn

Nx j, for j = 1, . . . , Ny,

φn
i0 = φn

i1, φn
i,Ny+1 = φn

iNy
, for i = 1, . . . , Nx.

Next, we solve Equation (4) analytically. That is, we solve ∂ψ/∂t = (ψ− ψ3)/ε2 with the initial
condition ψ(0) = φn+1,1 using the method of separation of variables [23] to get φn+1,2 = ψ(∆t).
Refer to Appendix A for more details. Then,

φn+1,2
ij =

φn+1,1
ij√

e−
2∆t
ε2 +

(
φn+1,1

ij

)2
(

1− e−
2∆t
ε2

) . (7)

Finally, Equation (5) can be discretized as

φn+1
ij − φn+1,2

ij

∆t
= βn+1,2

√
F(φn+1,2

ij ). (8)
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From Equation (8), we get φn+1
ij = φn+1,2

ij + ∆tβn+1,2
√

F(φn+1,2
ij ). By the mass conservation,

the following holds

Nx

∑
i=1

Ny

∑
j=1

φ0
ij =

Nx

∑
i=1

Ny

∑
j=1

φn+1
ij =

Nx

∑
i=1

Ny

∑
j=1

(
φn+1,2

ij + ∆tβn+1,2
√

F(φn+1,2
ij )

)
.

Thus,

βn+1,2 =
1

∆t

Nx

∑
i=1

Ny

∑
j=1

(φ0
ij − φn+1,2

ij )
/ Nx

∑
i=1

Ny

∑
j=1

√
F(φn+1,2

ij ). (9)

3. Numerical Results

In this section, we perform numerical experiments such as the temporal evolution of three disjoint
disks and a growing cell inside a complex domain. For all tests, we use ε = εq = qh/[2

√
2 tanh−1(0.9)],

where qh is the width of the transition layer [24].

3.1. Evolution of Disks

The evolution equations for the radii of spheres in d-dimensional geometric flows are given in [25].
Let Ri(t) be the radius of the ith-sphere at time t for i = 1, 2, . . . , m. Then, the evolution equations are
given by

dRi(t)
dt

= κi −
1

∑m
j=1 |Γj|

m

∑
j=1

∫
Γj

κjds

= (d− 1)

− 1
Ri(t)

+
∑m

j=1 Rd−2
j (t)

∑m
j=1 Rd−1

j (t)

 , i = 1, 2, . . . , m, (10)

where κi is the sum of principal curvatures of interface Γi and |Γi| is the perimeter. In this test,
we consider three disjoint disks in two-dimensional space, i.e., d = 2 and m = 3. From Equation (10),
we have

dR1(t)
dt

= − 1
R1(t)

+
3

R1(t) + R2(t) + R3(t)
, (11)

dR2(t)
dt

= − 1
R2(t)

+
3

R1(t) + R2(t) + R3(t)
, (12)

dR3(t)
dt

= − 1
R3(t)

+
3

R1(t) + R2(t) + R3(t)
. (13)

Let us assume 0 < R1(0) ≤ R2(0) ≤ R3(0). Applying the explicit Euler method to
Equations (11)–(13) with a temporal step size δt, we get

R1(t + δt) = R1(t) + δt
(
− 1

R1(t)
+

3
R1(t) + R2(t) + R3(t)

)
, (14)

R2(t + δt) = R2(t) + δt
(
− 1

R2(t)
+

3
R1(t) + R2(t) + R3(t)

)
, (15)

R3(t + δt) = R3(t) + δt
(
− 1

R3(t)
+

3
R1(t) + R2(t) + R3(t)

)
. (16)
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For simplicity of notation, let Rk
i = Ri(kδt), (i = 1, 2, 3). To investigate the relationship among

R1, R2, and R3, we first consider

R0
2 >

R0
1 + R0

3
2

. (17)

By mathematical induction, if Rn
1 > 0, then it can be shown that

Rn
2 > Rn−1

2 and Rn
2 >

Rn
1 + Rn

3
2

for all n ≥ 1. (18)

Let us show Equation (18) is valid for n = 1.

R1
2 = R0

2 + δt

(
− 1

R0
2
+

3
R0

1 + R0
2 + R0

3

)

= R0
2 + δt

(
−R0

1 − R0
3 + 2R0

2

R0
2(R0

1 + R0
2 + R0

3)

)
> R0

2, (19)

R1
1 + R1

3 = R0
1 + R0

3 + δt

(
− 1

R0
1
− 1

R0
3
+

6
R0

1 + R0
2 + R0

3

)

= R0
1 + R0

3 + δt

(
−
(R0

1 + R0
3)

R0
1R0

3
+

6
R0

1 + R0
2 + R0

3

)

< R0
1 + R0

3 + δt

(
− 4

R0
1 + R0

3
+

6
R0

1 + R0
2 + R0

3

)
< R0

1 + R0
3 < 2R0

2 < 2R1
2, (20)

where we used the arithmetic–geometric–harmonic mean (AGHM). Next, assume that Equation (18) is
true for n = k. Using the similar process in Equation (19), we get

Rk+1
2 = Rk

2 + δt

(
− 1

Rk
2
+

3
Rk

1 + Rk
2 + Rk

3

)
> Rk

2, (21)

where 2Rk
2 > Rk

1 + Rk
3 is used. Furthermore, we get the other inequality as follows:

Rk+1
1 + Rk+1

3 = Rk
1 + Rk

3 + δt

(
− 1

Rk
1
− 1

Rk
3
+

6
Rk

1 + Rk
2 + Rk

3

)
< Rk

1 + Rk
3 < 2Rk

2 < 2Rk+1
2 (22)

with the similar process by using the AGHM. Therefore, Equation (18) holds for n = k + 1. That is,
R2(t) is increasing if Equation (17) is satisfied. As δt approaches 0, Equation (18) also holds for the
analytical solution of Equations (11)–(13) as follows:

R2(t2) > R2(t1) where t2 > t1 , R2(t) >
R1(t) + R3(t)

2
. (23)

To show Equation (18) numerically, we perform a test. In this test, we compare the result between
the numerical solution of Equation (2) and the reference solution of Equations (11)–(13). We use a



Symmetry 2020, 12, 1218 6 of 14

temporal step size ∆t = 0.1h2 on Ω = (0, 1.2)× (0, 1.2) with a mesh grid 256× 256 and ε = ε6 and set
the initial condition for three disjoint disks as follows:

φ(x, y, 0) = 2.0 + tanh
R0

1 −
√
(x− 0.3)2 + (y− 0.3)2

√
2ε

+ tanh
R0

2 −
√
(x− 0.85)2 + (y− 0.275)2

√
2ε

(24)

+ tanh
R0

3 −
√
(x− 0.6)2 + (y− 0.8)2

√
2ε

with R0
1 = 0.175, R0

2 = 0.205, and R0
3 = 0.225. For the reference solutions of R1(t), R2(t), and R3(t),

we solve Equations (11)–(13) numerically by adopting the explicit Euler method with a small temporal
step size δt = 0.01h2. We note that a high-order method such as fourth-order Runge–Kutta method [26]
can be used as a solver for ordinary differential systems. Figure 1a shows evolutions of the radii of the
three distinct disks at t = 0, 17,500∆t, and 22,100∆t. The disk with radius R1(t) becomes smaller as
time goes on, while the others get larger. Figure 1b shows that the reference solution and the numerical
solutions of three distinct radii up to t = 62,500∆t. As shown in Figure 1b, R1(t) disappears at about
t = 22,500∆t and R2(t) increases until t = 22,500∆t. Subsequently, R2(t) is strictly decreasing.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

(a)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

Figure 1. (a) Evolutions of the radii (R1(t), R2(t), and R3(t)) of three distinct disks at t = 0, 17,500∆t
and 22,150∆t. (b) Comparison of the numerical solutions of three radii (star, circle, and diamond
marks), the reference solution of three radii (solid line), and the reference solution of the average of
R1(t) and R3(t) (dashed line).

Another initial condition is

R0
2 =

R0
1 + R0

3
2

. (25)

Using the same process of Equations (19)–(22), we obtain

R1
2 = R0

2, Rn+1
2 > Rn

2 , and Rn
2 >

Rn
1 + Rn

3
2

for all n ≥ 1. (26)

We take the numerical test for Equation (25) with the initial condition (24) where R0
1 = 0.175,

R0
2 = 0.2, and R0

3 = 0.225 under the same conditions above. Figure 2a shows evolutions of the radii
of three distinct disks at t = 0, 19,000∆t, and 22,500∆t. The evolution of disks is similar to Figure 1a.
Figure 2b shows that the reference solution and the numerical solutions of three distinct radii up to
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time t = 55,000∆t. As shown in Figure 2b, R1(t) disappears at about t = 25,000∆t and R2(t) increases
until t = 25,000∆t. On the other hand, the initial condition

R0
2 <

R0
1 + R0

3
2

(27)

results in the opposite direction. That is,

Rn
2 < Rn−1

2 and Rn
2 <

Rn
1 + Rn

3
2

for all n ≥ 1. (28)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

(a)
0 0.02 0.04 0.06 0.08 0.1 0.12

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

Figure 2. (a) Evolutions of the radii (R1(t), R2(t), and R3(t)) of three distinct disks at t = 0, 19,000∆t and
22,500∆t. (b) Comparison of the numerical solutions of three radii (star, circle, and diamond marks),
the reference solution of three radii (solid line), and the reference solution of the average of R1(t) and
R3(t) (dashed line).

We conduct the numerical test for Equation (27) with the initial condition (24) where R0
1 = 0.175,

R0
2 = 0.18, and R0

3 = 0.225 under the same conditions above. Figure 3a shows evolutions of the
radii of three distinct disks at t = 0, 13,000∆t, and 26,000∆t. The disks with radius R1(t) and R2(t)
become smaller as time goes on, while the other gets larger. In Figure 3b, the reference solution and the
numerical solution of three distinct radii are shown up to time t = 33,000∆t. The radius R3(t) grows
monotonically with our numerical scheme while R1(t) and R2(t) decrease as time goes on.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

(a)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

Figure 3. (a) Evolutions of the radii (R1(t), R2(t), and R3(t)) of three distinct disks with R0
2 = 0.18

at t = 0, 13,000∆t, and 26,000∆t. (b) Comparison of the numerical solutions of three radii (star, circle,
and diamond marks), the reference solution of three radii (solid line), and the reference solution of the
average of R1(t) and R3(t) (dashed line).
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3.2. Comparison Test with a Conventional Method

We present a comparison test with an implicit hybrid scheme [27]:

φn+1,1
ij − φn

ij

∆t
= ∆dφn+1,1

ij , (29)

φn+1,2
ij =

φn+1,1
ij√

e−
2∆t
ε2 +

(
φn+1,1

ij

)2
(

1− e−
2∆t
ε2

) ,

φn+1
ij = φn+1,2

ij + ∆tβn+1,2
√

F(φn+1,2
ij ).

Here, βn+1,2 is the same as Equation (9). The authors in [27] used the multigrid method to solve
Equation (29) implicitly. We use a tolerance, tol = 10−10, for the V-cycle convergence in the multigrid
method. Generally, the implicit methods can use large time steps. However, when the time step is
large, then it is not accurate.

We consider the temporal evolution of two circles with different radii on Ω = (0, 2)× (0, 2) with
a mesh grid 128× 128. The reference time step size ∆tref = 0.1h2 and ε = ε6 are used. The initial
condition is given by

φ(x, y, 0) = 1.0 + tanh
0.3−

√
(x− 0.5)2 + (y− 0.5)2

√
2ε

+ tanh
0.5−

√
(x− 1.2)2 + (y− 1.2)2

√
2ε

.

Figure 4a shows the evolution of two disks using the proposed method. We use the explicit Euler
method with a small temporal step size δt = 0.01h2 to find the exact evolution of radii. The explicit
hybrid scheme and implicit hybrid scheme using time step ∆t = ∆tref show highly accurate results
compared to the exact radii. Next, we measure the CPU times to compare two schemes, the implicit
hybrid scheme and the proposed scheme. The simulations are performed on Intel Core i5-6400 CPU @
2.70 GHz processor and 4 GM RAM. The CPU time by using the proposed scheme with ∆t = ∆tref and
10, 000 time steps is approximately 43.946 s. Table 1 lists the CPU times by using the implicit hybrid
scheme with ∆t = ∆tref, 2∆tref, 4∆tref, 8∆tref, and 16∆tref. The final time is 10,000∆tref. The ratio is
defined as the ratio of the CPU time for the implicit hybrid scheme to that for the proposed scheme.
The implicit hybrid scheme with ∆t = ∆tref, 2∆tref, and 4∆tref is slower than the proposed scheme.
In contrast, the implicit hybrid scheme with ∆t = 8∆tref and 16∆tref is faster than the proposed scheme.
However, the results are less accurate than the explicit scheme as shown in Table 1. Therefore,
the results suggest that the proposed method is more accurate than the implicit scheme under similar
computational cost as shown in Figure 4b in the case of ∆t = 4∆tref.
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0 0.5 1 1.5 2
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Figure 4. (a) Evolutions of two disks with the explicit hybrid scheme at t = 0 (dotted line), 2000∆t
(dashed line), and 4000∆t (solid line). (b) Evolution of two radii.

Table 1. CPU times of the implicit hybrid method and ratios between the implicit hybrid scheme and
the proposed scheme. CPU time when using the explicit hybrid method and ∆t = ∆tref is 43.946 s.

∆t ∆tref 2∆tref 4∆tref 8∆tref 16∆tref

CPU time (sec) 198.452 94.984 48.499 29.000 17.124
Ratio 4.40 2.16 1.10 0.66 0.39

3.3. Cell Growth in a Complex Domain

In this section, we consider a growing cell inside a non-rectangular domain. To simulate cell growth,
we set the time-dependent parameter β(t) in Equation (2) as constant β. That is,

∂φ(x, t)
∂t

= − F′(φ(x, t))
ε2 + ∆φ(x, t) + β

√
F(φ(x, t)), x ∈ Ωin, t > 0, (30)

where Ωin is a complex domain. Figure 5 illustrates the discrete complex domain Ωh
in embedded in Ω

and Ωh
out = Ω/Ωh

in. The open and solid circles (◦, •) represent the grid points inside and outside the
complex domain, respectively.

Ω
h

in

Ω
h

out

Figure 5. Discrete complex domain Ωh
in.
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We present a numerical scheme for Equation (30) in a complex domain with the Dirichlet boundary
condition, i.e., φn

ij = −1 for (xi, yj) ∈ Ωh
out. We solve Equation (30) only in Ωh

in by using the operator
splitting method (6)–(8). Here, we replace Equation (8) by

φn+1
ij − φn+1,2

ij

∆t
= β

√
F(φn+1,2

ij ). (31)

Figure 6a–c shows the temporal evolutions of the initial disk in a complex domain which is
star-shaped at t = 0, 800∆t, and 1100∆t. The shape of the domain is created with the image in
Figure 6d. The initial condition on the embedding domain Ω = (0, 1)× (0, 1) is defined by

φ(x, y, 0) = tanh
0.15−

√
(x− 0.43)2 + (y− 0.5)2

√
2ε

.

Here, we use Nx = Ny = 125, h = 1/124, ∆t = 0.1h2, ε = ε12, and β = 2h to make the cell grow.

(a) t = 0 (b) t = 800∆t

(c) t = 1100∆t (d) Experiment

Figure 6. (a–c) Evolutions of cell growth in a star-shaped domain. (d) Figure of the experiment in [28],
which is reprinted with permission from Minc et al., Cell, 144, 414–426 (2011), c©2011, Elsevier.

In Figure 7a–c, we illustrate the temporal evolutions in a drop-shaped domain which we
created with Figure 7d at t = 0, 550∆t, and 750∆t. We use Nx = 92, Ny = 124, h = 1/(Nx − 1),
∆t = 0.1h2, ε = ε12, and β = 2h to make the cell grow. The initial condition on the embedding
domain Ω = (0, (Nx − 1)h)× (0, (Ny − 1)h) is defined by

φ(x, y, 0) = tanh
0.15−

√
(x− 0.5(Nx − 1)h))2 + (y− 0.4(Ny − 1)h)2

√
2ε

.
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We can obtain a similar computational result with a much simpler proposed scheme compared to
the previous complex method [29]. Moreover, while there is a restriction on the ratio of domain sizes
when we use a multigrid method, we do not have that restriction in the proposed method.

(a) t = 0 (b) t = 550∆t

(c) t = 750∆t (d) Experiment

Figure 7. (a–c) Evolutions of cell growth in a drop-shaped domain. (d) Figure of the experiment in [28],
which is reprinted with permission from Minc et al., Cell, 144, 414–426 (2011), c©2011, Elsevier.

4. Conclusions

We proposed the explicit hybrid numerical method for the nonlocal AC equation with isotropically
symmetric interfacial energy in this paper. In general, an explicit time-stepping scheme is not suitable
for solving large systems because it requires strong time step restrictions and this further causes
a stability problem. Because the AC model is of the second order, however, this gives a rationale
for solving such drawbacks. For example, the nonlocal AC equation can be applied to many fields
by replacing the Cahn–Hillard equation which is a fourth-order equation [30]. The AC model does
not take much time to evaluate numerical solutions; hence numerical solutions can be obtained at
a relatively adequate time as depicted in Table 1 even though one uses the explicit hybrid scheme.
Accordingly, robustness and accuracy can be also achieved simultaneously when a sufficiently small
size of time step is applied. Numerical tests are presented to demonstrate the basic property of the
nonlocal AC equation and usefulness of the proposed method. Moreover, we performed numerical
experiments for the area-preserving mean curvature flow. There have been good agreements between
the theoretical solutions and the computational results. Compared to the fully implicit scheme,
the proposed method is more accurate with similar elapsed time though the implicit scheme is still
suitable for long time simulation. In the last section, numerical simulations confirm that the proposed
method is not affected by the shapes of domain. Considering that it is common to employ square grids
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when an implicit numerical scheme is used for complex domains, the proposed algorithm is much
simpler and faster. This is the reason the proposed method is preferred over the existing methods,
and there are some direct applications of it such as smoothing the surface with volume objects [31],
direct computation in narrow band corresponding to surface [32], etc. Therefore, the proposed method
can be used efficiently with little input cost and get accurate numerical solutions.

Author Contributions: Conceptualization, J.K.; Methodology, J.K.; Software, C.L.; Validation, C.L., S.Y. and J.P.;
Formal Analysis, C.L., S.Y., J.P., and J.K.; Investigation, C.L., S.Y., J.P. and J.K.; Writing—Original Draft, C.L., S.Y.,
J.P., and J.K.; Writing—Review & Editing, C.L., S.Y., J.P., and J.K.; Visualization, C.L., S.Y., and J.P.; Supervision, J.K.;
Funding Acquisition, C.L. and J.K. All authors have read and agreed to the published version of the manuscript.

Funding: The first author (C. Lee) was supported by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2019R1A6A3A13094308).
The corresponding author (J.S. Kim) expresses thanks for the support from the BK21 PLUS program.

Acknowledgments: The authors thank the editor and the reviewers for their constructive and helpful comments
on the revision of this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

To get φn+1,2 = ψ(∆t), we solve

∂ψ

∂t
=

ψ− ψ3

ε2 , (A1)

with the initial condition ψ(0) = φn+1,1 using the method of separation of variables. Equation (A1)
can be written as (

2
ψ
+

1
1− ψ

− 1
1 + ψ

)
dψ =

2
ε2 dt.

Integrating the left side with respect to ψ and the right side with respect to t give

ln
(

ψ2

1− ψ2

)
=

2∆t
ε2 + ln C,

where C is an arbitrary constant. Thus,

ψ2

1− ψ2 = Ce
2∆t
ε2 . (A2)

Here, the constant C can be determined as C = ψ(0)2/(1− ψ(0)2). From Equation (A2), we get

ψ =

√√√√ Ce
2∆t
ε2

1 + Ce
2∆t
ε2

=

√
C

e−
2∆t
ε2 + C

.

Applying the given initial condition and φn+1,2 = ψ(∆t), therefore, we obtain

φn+1,2 =

√√√√ (φn+1,1)2

[1− (φn+1,1)2] e−
2∆t
ε2 + (φn+1,1)2

=
φn+1,1√

e−
2∆t
ε2 + (φn+1,1)2

(
1− e−

2∆t
ε2

) .
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