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• We propose an explicit hybrid numerical method for solving the Allen–Cahn equation.
• The proposed method is based on an operator splitting method.
• We show the stability condition of the proposed numerical scheme.
• We show the pointwise boundedness of the solution under a solvability condition.
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a b s t r a c t

In this paper, we propose an explicit hybrid numerical method for solving the Allen–
Cahn equation, which models antiphase domain coarsening process in a binary mixture.
The proposed method is based on an operator splitting method. First, we solve the linear
diffusion part using the explicit Euler method. Second, we solve the nonlinear term using
the closed-form analytical solution. We show the stability condition of the proposed
numerical scheme. We also show the pointwise boundedness of the numerical solution
for the Allen–Cahn equation under a solvability condition. Numerical experiments such as
linear stability analysis, traveling wave, motion by mean curvature, image segmentation,
and crystal growth are presented to demonstrate the performance of the proposedmethod.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we propose an explicit hybrid numerical method for solving the Allen–Cahn (AC) equation [1]:
∂φ(x, t)
∂t

= −
F ′(φ(x, t))

ϵ2
+∆φ(x, t), x ∈ Ω, t > 0, (1)

n · ∇φ(x, t) = 0 on ∂Ω,

where Ω ⊂ Rd (d = 1, 2, 3) is a domain with outer unit normal vector n. Here, φ(x, t) is the difference between the
concentrations of the two mixtures’ components, F (φ) = 0.25(φ2

− 1)2, and ϵ is a positive constant. The AC equation was
originally introduced as a mathematical model for antiphase domain coarsening in a binary alloy and is the L2-gradient flow
of the following total free energy functional:

E(φ) =

∫
Ω

(
F (φ)
ϵ2

+
1
2
|∇φ|

2
)
dx.
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The AC equation has been successfully used to model a class of problems such as crystal growth [2], image inpainting [3],
image segmentation [4,5], mean curvature flows [6,7], and themixture of two incompressible fluids [8,9] to name just a few.

The AC equation is a nonlinear equation. Except some special cases, in general, the analytic solution is not available.
Thus, we have to resort to numerical methods to obtain an approximate solution. There have beenmany numerical methods
developed to solve theAC equation (see e.g., [10–23] and the reference therein). Yang [24] considered stabilized semi-implicit
splitting schemes. For the stabilized first-order scheme, Yang showed that it is unconditionally stable. An unconditionally
gradient stable scheme [25] and a hybrid splitting scheme [26] were proposed. A first and a second order semi-analytical
Fourier spectral methods for the Allen–Cahn equation were presented in [19]. A second-order operator splitting method
for the AC equation with nonlinear source terms was proposed in [27]. The authors in [12] investigated the first- and
second-order implicit–explicit schemes that inherit the nonlinear stability, the free-energy functional decreases in time,
of the continuous model for solving the AC equation. The authors in [7] developed and analyzed two fully discrete interior
penalty discontinuous Galerkin methods for the AC equation. An unconditionally stable hybrid finite element method for
solving the Allen–Cahn equation was presented in [22]. In [28], an explicit numerical method and its fast implementation
were proposed for the AC equation. The method combines decompositions of compact spatial difference operators with
exponential time integrators and discrete FFT-based algorithms. Recently, Aderogba and Chapwanya [29] designed explicit
nonstandard finite difference schemes for the nonlinear AC equation.

In the AC equation, we must solve a Poisson-type equation. Almost all previous stable numerical schemes are either
implicit or semi-implicit. On the other hand, if wewant to get an accurate numerical solution, we have to use a small enough
time step. In these limits, it is better to use a fully explicit scheme. However, it has a severe time step restriction if we use
the fully explicit scheme. In this paper, we propose an explicit hybrid numerical scheme for the AC equation, which has a
practical stability. This paper is organized as follows. In Section 2, we describe numerical analysis such as solvability and the
boundedness of the numerical solution. We present the numerical results for several examples in Section 3. In Section 4, we
conclude.

2. Numerical solution and its analysis

We present an explicit hybrid numerical scheme for the AC equation. For simplicity, we discretize the AC equation in
the one-dimensional spaceΩ = (a, b). Higher-dimensional discretizations are similarly defined. Let N be a positive integer,
h = (b − a)/N be the uniform mesh size, and Ωh = {xi = a + (i − 0.5)h, 1 ≤ i ≤ N} be the set of cell-centers. Let φn

i be
approximations of φ(xi, n∆t), where∆t = T/Nt is the time step, T is the final time, and Nt is the total number of time steps.
Let a discrete differentiation operator be ∇hφ

n
i+1/2 = (φn

i+1 − φn
i )/h, then the zero Neumann boundary condition is defined

as ∇hφ
n
1/2 = ∇hφ

n
N+1/2 = 0.We then define a discrete Laplacian by∆hφi = (∇hφi+1/2 −∇hφi−1/2)/h. We denote the discrete

maximum norm by ∥φn
∥∞ = max1≤i≤N |φn

i |, where φn
= (φn

1 , φ
n
2 , . . . , φ

n
N ).

2.1. Numerical algorithm of the proposed explicit hybrid scheme

The proposed explicit hybrid scheme consists of two steps as follows. First, we solve the following diffusion equation
φ∗

i − φn
i

∆t
= ∆hφ

n
i for 1 ≤ i ≤ N, (2)

and then we get φn+1
i = ψ(∆t) by analytically solving

ψt =
ψ − ψ3

ϵ2
with the initial condition ψ(0) = φ∗

i .

That is,

φn+1
i =

φ∗

i√
[1 − (φ∗

i )2]e−2∆t/ϵ2 + (φ∗

i )2
for 1 ≤ i ≤ N.

This scheme is explicit, therefore we do not need to solve a system of discrete equations and it is very fast. We note that
if we use the forward Euler method for the nonlinear step, i.e.,

φn+1
i = φ∗

i +
∆t
ϵ2

[φ∗

i − (φ∗

i )
3
],

then |φn+1
i | > 1 for∆t > ϵ2/[|φ∗

i |(|φ
∗

i | + 1)], φ∗

i ̸= 0, and |φ∗

i | ̸= 1. Therefore, the forward Euler method requires that the
time step size∆t should be O(ϵ2).

2.2. Stability of the proposed explicit hybrid scheme

Solvability of the proposed scheme is trivial since it is explicitly well defined. By using the discrete von Neumann stability
analysis, we have the stability condition for the first step, which is expressed as follows from Eq. (2):

∆t ≤ 0.5h2/d, (3)

where d is the dimension of the computational space [30].
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Fig. 1. Growth rates of numerical and exact solutions with respect to different wave numbers k. Inserted small figures illustrate temporal evolutions of
numerical solution when k = 2 and k = 10.

2.3. Boundedness of the proposed explicit hybrid scheme

Let us assume ∥φn
∥∞ ≤ 1 for some n. By the discrete maximum principle for the numerical solution of Eq. (2) under the

stability condition (3), we have ∥φ∗
∥∞ ≤ 1. If φ∗

i = 0, then φn+1
i = 0; otherwise, i.e., if 0 < |φ∗

i | ≤ 1, then

|φn+1
i | =

1√
1 + ((φ∗

i )−2 − 1)e−2∆t/ϵ2
≤ 1.

Therefore, if ∥φ0
∥∞ ≤ 1, then ∥φn

∥∞ ≤ 1 for all n = 1, 2, . . . .We should note that the stability and boundedness of the
proposed numerical scheme are independent of the value of ϵ.

3. Numerical experiments

In this section, we perform several numerical tests such as linear stability analysis, traveling wave, motion by mean
curvature, image segmentation, and crystal growth. Beforewe start, we define the interfacial length parameter ϵm as follows.

ϵm = mh/[2
√
2tanh−1(0.9)] ≈ 0.24015mh,

which implies that we have approximately mh transition layer width [25]. For all tests, we use ϵ = ϵm for some integer m,
unless otherwise specified.

3.1. Linear stability analysis

We perform a linear stability analysis [25,31]. By linearizing the AC equation (1) around φ ≡ 0, we have

φt =
φ

ϵ2
+ φxx. (4)

If we assume φ(x, t) = α(t) cos(kπx), where k is a wave number, then we get the following from Eq. (4) as

α′(t) cos(kπx) =
α(t) cos(kπx)

ϵ2
− (kπ )2α(t) cos(kπx).

Thus, α(t) = α(0)eλt ,where λ = 1/ϵ2 − (kπ )2 is a growth rate. We also define the numerical growth rate by

λ̄ =
1
T
log
(

∥φNt ∥∞

α(0)

)
.

The initial data is given by φ(x, 0) = α(0) cos(kπx) on the computational domainΩ = (0, 1) with parameters ϵ = 0.02,
N = 256, α(0) = 0.01,∆t = 0.25h2, and the final time T = 100∆t .

Fig. 1 represents the linear stability test by the proposed scheme. As shown in Fig. 1, numerical result λ̄ (circled markers)
and exact result λ (solid line) for different wave numbers k (k = 1, 2, . . . , 10) are in good agreement.

3.2. Convergence of traveling wave solutions

One of the exact solutions of the AC equation is the traveling wave solution φ(x, t) = 0.5−0.5 tanh[(x−2− st)/(2
√
2ϵ)],

where s = 3/(
√
2ϵ) is the speed of the traveling wave [25,32]. Now, we investigate the performance of the proposed

numerical scheme on the traveling wave problem. For the numerical tests, we use the different spatial step sizes h = h0,
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Fig. 2. Convergence of numerical traveling wave solutions at t = T with an initial profile φ(x, 0) = 0.5 − 0.5 tanh[(x − 2)/(2
√
2ϵ)], where ϵ = 0.08.

Fig. 3. Temporal evolutions of the radius with∆t = 0.1h2 until t = 250h2 in the two-dimensional space. (a) Zero level contours and (b) radius R(t) of circle
with respect to time. Here, arrow represents the direction of time evolution.

0.5h0, 0.25h0, and 0.125h0 onΩ = (0, 15). Other parameters used are h0 = 15/64,∆t = 0.01h2, T = 6.4h2
0, and ϵ = 0.08.

In Fig. 2, the dashed line shows the initial condition φ(x, 0) = 0.5 − 0.5 tanh[(x − 2)/(2
√
2ϵ)]. Also, the analytic traveling

wave solution at t = T is represented by the solid line. On a set of increasingly finer grids and time steps, we obtain the
convergence of the numerical solution to the exact solution.

3.3. Motion by mean curvature

It was formally proved that, as ϵ → 0, the zero level set of φ evolves according to the geometric law

V = −κ = −

(
1
R1

+
1
R2

)
, (5)

where V is the normal velocity of the surface at each point, κ is its mean curvature, and R1, R2 are the principal radii of
curvatures at the point of the surface [1]. In the two-dimensional space, Eq. (5) becomes V = −1/R.

An initial condition is given as a circle with center (0.5, 0.5) and radius R0 = 0.4 on the computational domain
Ω = (0, 1) × (0, 1), that is,

φ(x, y, 0) = tanh
R0 −

√
(x − 0.5)2 + (y − 0.5)2

√
2ϵ8

.

Let R0 and R(t) be the initial radius and the radius at time t of the circle, respectively. Then Eq. (5) becomes dR(t)/dt =

−1/R(t). Therefore, analytic solution is given as R(t) =

√
R2
0 − 2t . For the numerical test, we use ϵ8, h = 1/64,∆t = 0.1h2,

and T = 250h2. Fig. 3(a) and (b) show the temporal evolution of the initial circle and its radius with respect to time. For
verification of our numerical results, we include the results of the analytic solution. As shown in Fig. 3, the initial circle
shrinks under the motion by mean curvature.

We also test the same simulation on the three-dimensional space Ω = (0, 1) × (0, 1) × (0, 1). The initial condition is
given as

φ(x, y, z, 0) = tanh
R0 −

√
(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2

√
2ϵ8

.
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Fig. 4. Temporal evolutions of the radius with∆t = 0.1h2 up to t = 250h2 in the three-dimensional space. (a) Zero level isosurfaces and (b) radius R(t) of
sphere with respect to time. Here, arrow represents the direction of time evolution.

Fig. 5. Image segmentationprocess at (a) 0 iteration (b) 240 iterations, and (c) 400 iterations. Here, original image is reprinted fromRef. [33]with permission.
Numerical parameters are used by σ = 1.5, β = 5e4, ϵ8 , h = 0.01,∆t = 0.2h2 , and 71 × 67 mesh grid.

We use the same parameter values as the two-dimensional case except T = 120h2. Fig. 4 illustrates temporal evolutions of
the sphere with the analytic solution, which is defined by R(t) =

√
R2
0 − 4t . The behavior of numerical solutions is similar to

the previous two-dimensional results and is in good agreement to the exact solution under the motion by mean curvature.

3.4. Image segmentation

Now, we consider an image segmentation problem for the application of the AC equation. Let x = (x, y) be the two-
dimensional coordinate. The geometric active contour model based on the mean curvature motion is given by the following
evolution equation [33]:

∂φ(x, t)
∂t

= g(f0(x))
(

−
F ′(φ(x, t))

ϵ2
+∆φ(x, t)

)
+ βg(f0(x))F (φ(x, t)). (6)

Here, f0(x) = (f (x) − fmin)/(fmax −fmin), where fmax and fmin are the maximum and minimum values of the given slice image
f (x), respectively. And g(f0(x)) = 1/[1 + |∇(Gσ ∗ f0)(x)|2] is the edge stopping function which acts to stop the evolution
when the contour reaches the edge, where (Gσ ∗ f0)(x) =

∫
Ω
Gσ (x − y)f0(y)dy is the convolution of the given image f0 with

the Gaussian function Gσ (x) =
1

2πσ2 e
−

x2+y2

2σ2 . Also, free energy F (φ) is given as F (φ) = 0.25(φ2
− 1)2, and ϵ is a constant

which is related to the phase transition width.
Fig. 5 illustrates the basic process of the image segmentation using Eq. (6). In this test, we use σ = 1.5, β = 5e4, ϵ8,

h = 0.01, ∆t = 0.2h2, and 71 × 67 mesh grid. With a given medical image, which is obtained in Ref. [33], we define the
scaled image f0(x) and initialize φ(x, 0) as φ(x, 0) = 1 if x is inside the square contour and φ(x, 0) = −1 otherwise (see
Fig. 5(a)). As shown in Fig. 5(b) and (c), the initial data evolves until it reaches the boundary of the image through themotion
by mean curvature and extra term in Eq. (6). Note that the extra term βg(f0(x))F (φ(x, t)) makes the contour evolve beyond
the non-convex and disconnected regions. For more details, please refer to [33].
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3.5. Crystal growth

Simulation of crystal growth processes has been of growing interest because of its importance in many technological
applications [34]. We consider the solidification of a pure substance from its supercooled melt in both two- and three-
dimensional spaces. Let us introduce an order parameter φ which is 1 in the solid phase and −1 in the liquid phase. The
interface is defined by φ = 0. The governing equations are given as

ϵ2(φ)
∂φ

∂t
= ∇ · (ϵ2(φ)∇φ) + [φ − λU(1 − φ2)](1 − φ2)

+

(
|∇φ|

2ϵ(φ)
∂ϵ(φ)
∂φx

)
x
+

(
|∇φ|

2ϵ(φ)
∂ϵ(φ)
∂φy

)
y
, (7)

∂U
∂t

= D∆U +
1
2
∂φ

∂t
, (8)

where ϵ(φ) is the anisotropic function, λ is the dimensionless coupling parameter, and U is the dimensionless temperature
field. For the four-fold symmetry, ϵ(φ) is defined as

ϵ(φ) = (1 − 3δ4)

(
1 +

4δ4
1 − 3δ4

φ4
x + φ4

y

|∇φ|
4

)
.

Here, δ4 is a parameter for the anisotropy of interfacial energy. If δ4 = 0, then Eq. (7) becomes an Allen–Cahn type equation.
Therefore,we can apply the proposed explicit hybrid scheme.Wepropose the following operator splitting scheme for Eqs. (7)
and (8): First, we solve the part of Eq. (7) as

ϵ2(φn
ij )
φ∗

ij − φn
ij

∆t
= [∇ · (ϵ2(φ)∇φ)]nij − λUn

ij (1 − (φn
ij )

2)2

+

[(
16δ4ϵ(φ)φx(φ2

xφ
2
y − φ4

y )

|∇φ|
4

)
x

]n

ij

+

[(
16δ4ϵ(φ)φy(φ2

xφ
2
y − φ4

x )

|∇φ|
4

)
y

]n

ij

,

where

[∇ · (ϵ2(φ)∇φ)]ij

=
ϵ2(φi+1,j) + ϵ2(φij)

2h2 (φi+1,j − φij) −
ϵ2(φij) + ϵ2(φi−1,j)

2h2 (φij − φi−1,j)

+
ϵ2(φi,j+1) + ϵ2(φij)

2h2 (φi,j+1 − φij) −
ϵ2(φij) + ϵ2(φi,j−1)

2h2 (φij − φi,j−1).

Because the remaining of Eq. (7) is an ordinary differential equation, we solve it analytically and the closed-form solution
is given as

φn+1
ij = φ∗

ij

/√e
−

2∆t
ϵ2(φnij ) + (φ∗

ij )2
(
1 − e

−
2∆t
ϵ2(φnij )

)
.

Next, we use the explicit Euler method for Eq. (8):

Un+1
ij − Un

ij

∆t
= D∆dUn

ij +
φn+1
ij − φn

ij

2∆t
,

where we have used the standard five point stencil for the discrete Laplacian operator, i.e.,∆dUij = (Ui−1,j + Ui+1,j − 4Uij +

Ui,j−1 + Ui,j+1)/h2.
In the two-dimensional simulation, a 512 × 512 mesh is used on the computational domainΩ = (−200, 200)2. We take

the initial state as

φ(x, y, 0) = tanh

(
5 −

√
x2 + y2

√
2

)
and U(x, y, 0) =

{
0 if φ > 0
∆ else.

We take ∆ = −0.55, δ4 = 0.05, and apply the homogeneous Neumann boundary conditions. The calculations are run
up to time T = 2000h2. To show the efficiency of the proposed scheme, we compare the numerical results with the explicit
and implicit hybrid methods at several times. Here, we use the implicit hybrid method which is proposed in Ref. [35].

Fig. 6 represents the temporal evolution of crystal growth at t = 800h2, 1200h2, 1600h2, and 2000h2. Here, EH and IH are
the abbreviations of the explicit hybrid and implicit hybridmethods, respectively. FromFig. 6, results from the implicit hybrid
method except∆t = 0.05h2 case show large gaps compared with the proposed explicit hybrid method with∆t = 0.05h2.
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(a) t = 800h2 . (b) t = 1200h2 .

(c) t = 1600h2 . (d) t = 2000h2 .

Fig. 6. Comparison of two-dimensional crystal growth by the proposed explicit hybrid and the previous implicit hybrid methods. Here, EH and IH denote
the explicit hybrid and implicit hybrid methods, respectively.

Table 1
Relative CPU time of the implicit hybrid method with time step ∆tim . Here, ∆tex = 0.05h2 is used.

Time step (∆tim) ∆tex 2∆tex 4∆tex 8∆tex 10∆tex 20∆tex
Relative CPU time 5.6638 2.9203 1.6194 0.9634 0.8025 0.4458

Table 1 represents the relative CPU time of the implicit hybrid method with respect to time step size∆tim to the explicit
hybrid method with ∆tex = 0.05h2. For a similar CPU time, for example, the case with ∆tim = 8∆tex, the result with the
explicit hybrid method is more accurate than that of the implicit hybrid method as shown in Fig. 6.

Next, we consider a three-dimensional crystal growth. The initial conditions are given as follows.

φ(x, y, z, 0) = tanh

(
5 −

√
x2 + y2 + z2
√
2

)
, U(x, y, z, 0) =

{
0 if φ > 0,
∆ else

on the domain Ω = (−100, 100)3 with a mesh grid 256 ×256 ×256. We take the same values as in the two-dimensional
test for the other parameters. The calculations are run up to time T = 600.

Fig. 7(a) and (b) show evolutions of the interface with the previous implicit hybrid method (∆t = 0.25h2) and the
proposed explicit hybrid method (∆t = 0.025h2), respectively. The CPU time takes about twice more than the previous
implicit hybrid method. However, as shown in Fig. 7, numerical results by the previous method are not accurate compared
to the proposed one. Therefore, to get an accuracy numerical result, we have to use a small enough time step size. In that
case, it is better to use the proposed explicit hybrid method. Table 2 lists the relative CPU time of the implicit hybrid method
and we get the similar CPU time results as with two-dimensional case.
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Fig. 7. Temporal evolution of three-dimensional crystal growth with (a) the previous implicit hybrid method (∆t = 0.25h2) and (b) the proposed explicit
hybrid method (∆t = 0.025h2), respectively.

Table 2
Relative CPU time of the implicit hybrid method. Here, ∆tex = 0.025h2 is used.

Time step (∆tim) ∆tex 2∆tex 4∆tex 8∆tex 10∆tex 20∆tex
Relative CPU time 3.2006 1.8657 1.1686 0.6349 0.5167 0.3061

4. Conclusions

In this paper, we presented an explicit hybrid numerical method for the Allen–Cahn equation. To get an accurate
numerical solution, we need to use a small enough time step size. In that sense, it is better to choose a fully explicit
scheme for a numerical method. Therefore, we proposed the new numerical approachwith the explicit scheme and splitting
method for accuracy and efficiency.We showed the stability condition of the proposed numerical scheme and the pointwise
boundedness of the numerical solution under a solvability condition. We carried out several numerical experiments such
as linear stability analysis, traveling wave, motion by mean curvature, image segmentation, and crystal growth. By various
numerical tests, we showed that the new numerical method is accurate and efficient.
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