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A COMPARISON STUDY OF EXPLICIT AND

IMPLICIT NUMERICAL METHODS FOR THE

EQUITY-LINKED SECURITIES

Minhyun Yoo, Darae Jeong, Seungsuk Seo, and Junseok Kim∗

Abstract. In this paper, we perform a comparison study of ex-
plicit and implicit numerical methods for the equity-linked secu-
rities (ELS). The option prices of the two-asset ELS are typically
computed using an implicit finite difference method because an ex-
plicit finite difference scheme has a restriction for time steps. Nowa-
days, the three-asset ELS is getting popularity in the real world
financial market. In practical applications of the finite difference
methods in computational finance, we typically use relatively large
space steps and small time steps. Therefore, we can use an accurate
and efficient explicit finite difference method because the implemen-
tation is simple and the computation is fast. The computational
results demonstrate that if we use a large space step, then the ex-
plicit scheme is better than the implicit one. On the other hand,
if the space step size is small, then the implicit scheme is more
efficient than the explicit one.

1. Introduction

Equity-linked securities (ELS) are auto-callable options whose return
on investment is dependent upon the path of the underlying equities
linked to the securities. ELS can be made from a few number of stocks
or stock indexes such as the KOSPI200 in Korea. ELS is a derivative
product in the market. ELS guarantees a debt and is similar to a barrier
option. ELS comprises a large portion of exchange volume in Korea
financial market. A distinguishing feature of ELS is the automatic early-
redemption condition before its maturity. Generally, in order to get price
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of ELS, Monte Carlo simulation (MCS) and finite difference method
(FDM) are used. Typically, we use the implicit scheme with operator
split method (OSM) or alternating direction implicit (ADI) because they
are stable. Although the implicit scheme with OSM has an advantage
in stability, it is costly to solve the tridiagonal matrix implicitly. In
particular, we need to solve the system three times in each time step
for the three-asset problems. In practice, we calculate one time step
with one day, which is about 1/365 and discretize the asset by one unit.
Therefore, the time step is small enough and space step is large enough.
Furthermore, if we want to calculate the Greeks of the option price,
especially theta which is the rate of change of the option value with
respect to changes in the time to maturity, then we have to use much
smaller time step. For these considerations, it is better to use an explicit
scheme with smaller time step, which gives much accurate solutions. The
program implementation is simple and fast. The main purpose of this
paper is to develop an explicit scheme on a non-uniform grid to solve
value of ELS.

The paper is organized as follows. We introduce Black–Scholes model
in Section 2. In Section 3, we present three-asset step-down ELS. Nu-
merical methods are presented in Section 4. In Section 5, we perform
numerical experiments. In Section 6, we take conclusion for this paper.

2. Black–Scholes model

To evaluate value of the ELS option, we consider the standard Black–
Scholes model [1], which can be written as

∂u(x, t)

∂t
= −1

2

d∑

i,j=1

ρijσiσjxixj
∂2u(x, t)

∂xi∂xj
− r

d∑

i=1

xi
∂u(x, t)

∂xi
+ ru(x, t),

for (x, t) ∈ Rd
+ × [0, T ].

Here, u(x, t) is the value of the option, where x = (x1, x2, . . . , xd), d
is the total number of underlying assets, xi is the value of the i-th
underlying assets, and t is the time. Also, r represents the riskless
interest rate, σi is the volatility of i-th the underlying assets, ρij is the
correlation coefficient between xi and xj , and T is the maturity time of
the option. Switching to the new coordinate X = log x [4] and using the
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transformation τ = T − t, the standard BS equation can be rewritten as

∂U(X, τ)

∂τ
=

d∑

i=1

(r − σ2
i

2
)
∂U(X, τ)

∂Xi
+

1

2

d∑

i,j=1

ρijσiσj
∂2U(X, τ)

∂Xi∂Xj
(1)

−rU(X, τ),

where U(X, τ) is the value of the option and X = (X1, X2, . . . , Xd).

3. Initial condition

In this section, we briefly describe the concept of step-down ELS
option and we introduce a three-asset step-down ELS option as an ex-
ample.

3.1. Step-down ELS

The payoff of ELS is determined by early redemption or final ma-
turity redemption. In one-asset step-down ELS, if an underlying asset
is in the predetermined exercise price at certain maturity dates accord-
ing to contract, then ELS gives designated return and is exterminated.
However, if the underlying asset is not in a certain price, the contract
is not exterminated and will be continued until next maturity. If the
contract continues at final maturity and the underlying asset is not in
final exercise barrier, the payoff is determined whether the contract hit
knock in barrier. If the underlying asset did not hit the knock in barrier,
the ELS gives predetermined return, dummy. Otherwise, the ELS will
make a loss in face value. The step-down means that the designated
strike price decreases.

In this paper, we consider a three-asset step-down ELS which is simi-
lar to a one asset step-down ELS, as we explained above. The difference
with a one asset ELS is that the base price is referred from the mini-
mum of three underlying assets at certain maturity dates. The payoff
structure of three-asset step-down ELS is as follows [3]:

• Early redemption occurs, and the contract is exterminated with
predetermined return if the value of the worst performer, which
means the minimum value of underlying assets is greater than or
equal to a given exercise price on a given date.

• If the early redemption do not occur until the final maturity, the
return depends upon whether Knock-In occurs or not.
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3.2. Example for three-asset step-down ELS

To help readers’ understanding of the step-down ELS option, we
include the example for three-asset step-down ELS. We consider the
parameters as the reference price E = 100, the riskless interest rate
r = 0.03, the volatilities of the underlying assets σ1 = σ2 = σ3 = 0.3,
the correlations of underlying assets ρ12 = ρ13 = ρ23 = 0.5, the face
value F = 100, the Knock-In barrier level KIb = 0.65E, the dummy
rate d = 0.3, and the final maturity time T = 1. At the early redemp-
tion, observation date (τi), exercise price (Ki), and return rate (ci) are
described in Table 1.

Observation date (τi) Exercise price (Ki) Return Rate (ci)
τ6 = T K6 = 0.85E c6 = 0.30
τ5 = 5T/6 K5 = 0.85E c5 = 0.25
τ4 = 4T/6 K4 = 0.90E c4 = 0.20
τ3 = 3T/6 K3 = 0.90E c3 = 0.15
τ2 = 2T/6 K2 = 0.95E c2 = 0.10
τ1 = T/6 K1 = 0.95E c1 = 0.05

Table 1. Observation date (τi), exercise price (Ki), and
return rate (ci) used in example for three-asset step-down
ELS.

Figure 1 illustrates the payoff of early obligatory redemption before
final maturity.
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Figure 1. Payoff at early redemption before final maturity.
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Along with the characteristics of the step-down ELS, we must take
two considerations of the payoffs at maturity. According to whether or
not the value of ELS hits the Knock-In barrier (KIb) during the contract,
we define two values V (X, τ) and U(X, τ). Then, the initial conditions
of U and V are set to

U(X1, X2, X3, 0) =





(1 + c6)F if S0 ≥ K6

(1 + d)F if KIb < S0 < K6

S0F/E otherwise,
(2)

and

V (X1, X2, X3, 0) =

{
(1 + c6)F if S0 ≥ K6

S0F/E otherwise,
(3)

where S0 = min(X1, X2, X3) which is the value of the worst performer.
In Fig. 2, we can see the corresponding payoffs of U and V when c6 = d.
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Figure 2. Payoffs of (a) U and (b) V at final maturity.

4. Numerical solution

In this section, we describe the numerical discretization of Eq. (1) us-
ing explicit scheme on the computational domain Ω = [1, Smax]

3, which
is log-transformed by the three-dimensional finite domain Ω̄ = [e, eSmax ].
Also, to prevent the spurious oscillatory solution by explicit scheme, we
derive the condition for time step size.
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4.1. Discretization of log-transformed BS equation

Let X, Y , and Z denote the log-transform of x-, y-, and z-variables,
respectively. Now, we discretize the log-transformed computational do-
main Ω = [1, Smax]

3 with non-uniform spatial step size hi−1 = Xi −
Xi−1 = Yi − Yi−1 = Zi − Zi−1 (see Fig. 3) and temporal step size
∆τ = T/Nτ . Here, X0 = 1, XNx = Smax, where Nx and Nτ are the
numbers of grid points in the X- and τ -directions, respectively.

0 1

X0 X1 · · · Xi−1 Xi Xi+1 · · ·

Smax

XNx

X

hi−1 hi

Figure 3. Nonuniform mesh on log-transformed grid X.

We denote the numerical solution by Un
ijk ≡ U(Xi, Yj , Zk, τ

n) for i =
1, 2, · · · , Nx, j = 1, 2, · · · , Ny, k = 1, 2, · · · , Nz, and n = 0, 1, · · · , Nτ .

Applying the explicit finite difference scheme to Eq. (1) gives
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Here, spatial differences on the non-uniform grid are defined by
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(
∂2U
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.

Other spatial differences can be similarly defined. Equation (4) is rewrit-
ten as follows:
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where C1 = r − 0.5σ2
1, C2 = r − 0.5σ2

2, and C3 = r − 0.5σ2
3.

4.2. Condition for the non-oscillatory solution

Now, we derive the conditions under which the explicit scheme for
Eq. (4) will not make spurious oscillations by using the idea in reference
[2]. Then, we rewrite Eq. (4) as
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Next, we substitute Un+1
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superscript n for (1− r∆τ) represents an exponent. Then, we obtain

βn+1
ijk = ∆τ

[−σ2
1 + (hi − hi−1)C1

(1− r∆τ)hihi−1
+

−σ2
2 + (hj − hj−1)C2

(1− r∆τ)hjhj−1
(7)

+
−σ2

3 + (hk − hk−1)C3

(1− r∆τ)hkhk−1
− r

(1− r∆τ)
+

1

∆τ(1− r∆τ)

]
βn
ijk

+
∆τ(σ2

1 − hiC1)

(1− r∆τ)hi−1(hi + hi−1)
βn
i−1,jk +

∆τ(σ2
1 + hi−1C1)

(1− r∆τ)hi(hi + hi−1)
βn
i+1,jk

+
∆τ(σ2

2 − hjC2)

(1− r∆τ)hj−1(hj + hj−1)
βn
ij−1,k +

∆τ(σ2
2 + hj−1C2)

(1− r∆τ)hj(hj + hj−1)
βn
ij+1,k

+
∆τ(σ2

3 − hkC3)

(1− r∆τ)hk−1(hk + hk−1)
βn
ijk−1 +

∆τ(σ2
3 + hk−1C3)

(1− r∆τ)hk(hk + hk−1)
βn
ijk+1

+
∆τρ12σ1σ2
(1− r∆τ)

(
βn
i+1,j+1k + βn

i−1,j−1,k − βn
i+1,j−1,k − βn

i−1,j+1,k

hihj + hihj−1 + hi−1hj + hi−1hj−1

)

+
∆τρ13σ1σ3
(1− r∆τ)

(
βn
i+1,jk+1 + βn

i−1,jk−1 − βn
i+1,jk−1 − βn

i−1,jk+1

hihk + hihk−1 + hi−1hk + hi−1hk−1

)

+
∆τρ23σ2σ3
(1− r∆τ)

(
βn
ij+1,k+1 + βn

ij−1,k−1 − βn
ij+1,k−1 − βn

ij−1,k+1

hjhk + hjhk−1 + hj−1hk + hj−1hk−1

)
.

Since all coefficients of βn
ijk in Eq. (7) are positive, the following condi-

tions should be satisfied.
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Also, when we solve the log-transformed BS equation on the adaptive
grid, we will use non-decreasing spatial step size, that is, hi−1 ≤ hi for
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all i. By setting the lower bound of spatial step size as hmin satisfying
hmin ≤ h1, condition (8) gives

−r∆τh2min + h2min −∆τσ2
1 −∆τσ2

2 −∆τσ2
3 > 0.(9)

Therefore, we have the following restriction condition for time step size

∆τ <
h2min

rh2min + σ2
1 + σ2

2 + σ2
3

.(10)

5. Numerical experiments

In this section, we implement numerical tests with our numerical
method. For numerical tests, we consider three-asset step-down ELS op-
tion as the example described in section 3.2. We compare non-oscillatory
explicit FDM and implicit FDM with respect to computational costs and
errors.

5.1. Numerical treatment for three-asset step-down ELS op-
tion pricing

Before evaluating the option value of the test problem which is stated
in section. 3.2, we first have to consider two cases according to the
initial payoff. Let U and V be the numerical solutions with payoffs
which knock-in event does not happen and happen, respectively. With
the initial payoffs (3) and (2) which are described in Fig. 2, we solve
Eq. (5). After solving Eq. (5) once, we replace the values of less than
KIb in U with the values of V [3]. And then, we update the value of
U by using the FDM scheme. These processes are repeated from 0 to T
every time step. Also, at the early redemption before τ = T , U and V
follow the conditions which are described in Table 1 and Fig. 1.

5.2. Numerical test

We perform numerical experiments for pricing three-asset step-down
ELS. The parameters we have used are listed in section 3.2. Also, the
computation domain is used as Ω = [1, 220]× [1, 220]× [1, 220]. In Figs.
4-5, we can see the initial payoff function and numerical result at τ = 1
of U and V , respectively.

Now, we compare the results from MCS and the FDM, the implicit
scheme with OSM and non-oscillatory explicit scheme. We focus on
the value of U(100, 100, 100). In this test, MCS is performed 106 sam-
ples with ∆τ = 1/1440 using antithetic variates of variance reduction,
and results from MCS are used as a reference value [7]. In order to
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Figure 4. Initial payoff functions of U and V .
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Figure 5. Final solution of U at X3 = 100 and τ = 1
using the (a) explicit and (b) implicit scheme.

reduce errors of simulation, we calculate the average of the 100 MCS
cases. The option value obtained from MCS is 99.39883385 as a ref-
erence value, and the MCS takes 1425 seconds at a time. For FDM
tests, a various of non-uniform mesh for each direction is used. We fix
∆τ for 1/360 in the implicit scheme and adjust ∆τ to prevent from
spurious oscillation of explicit scheme satisfying the number of early re-
demptions. [· · · a : h : b · · · ] in Tables 2–6 means that computational
mesh is [· · · a, a+h, a+2h, · · · , b−h, b, · · · ]. All tests were performed on
Intel(R) Core(TM)2 Duo E8400 CPU@3.00GHZ with 3.46GB of RAM
loaded MATLAB 2014a [6].

The option value of U(100, 100, 100) and absolute relative percent
error with the value of MCS and each FDM are shown in Tables 2–6,
where h is spatial step size for non-uniform mesh. Table 2 shows that
non-oscillatory explicit scheme is more superior than implicit scheme
with OSM in terms of computational cost and the error with MCS in
every spatial step. Note that the more space steps are taken, the faster
computational time is taken in our scheme. On the other hand, Tables
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3–6 present that explicit scheme has similar error with implicit scheme.
Overall, the explicit scheme is better than the implicit if we use a small
number of mesh points. However, if the spatial step size is small, then
the implicit scheme is more efficient than the explicit scheme.

h Nx Nτ U(100, 100, 100) |Error| CPU time (s)

Ex Im Ex Im Ex Im Ex Im
1 53 2952 360 99.5127665 99.7972266 0.115 0.401 356.31 380.28
2 30 720 360 100.1143215 100.3768134 0.720 0.984 14.77 70.59
2.5 26 468 360 99.5889818 99.7535851 0.191 0.357 5.97 47.05
4 19 180 360 99.9335293 100.2201858 0.538 0.826 0.87 17.82
5 17 114 360 99.4939679 99.8484540 0.096 0.452 0.39 12.84

Table 2. Error and the value of U(100, 100, 100) with
non-uniform mesh [1 60:h:105 120 140 160 180 200 220]
and various values of h.

h Nx Nτ U(100, 100, 100) |Error| CPU time (s)

Ex Im Ex Im Ex Im Ex Im
1 58 3240 360 99.3007165 99.5076075 0.099 0.109 521.20 497.00
2 33 804 360 99.8402938 99.9929402 0.444 0.598 21.81 92.21
2.5 28 516 360 99.3343135 99.4721610 0.065 0.074 8.38 57.03
4 20 192 360 99.7223972 99.9125133 0.326 0.517 1.09 20.25
5 18 126 360 99.3331324 99.5999701 0.066 0.202 0.51 15.07

Table 3. Error and the value of U(100, 100, 100) with
non-uniform mesh [1 60:h:110 120 140 160 180 200 220]
and various values of h.

h Nx Nτ U(100, 100, 100) |Error| CPU time (s)

Ex Im Ex Im Ex Im Ex Im
1 62 3540 360 99.2736916 99.4535276 0.126 0.055 698.88 567.67
2 35 864 360 99.8282844 99.9718300 0.432 0.576 25.77 100.68
2.5 29 564 360 99.3139919 99.4392444 0.085 0.041 10.26 56.00
4 21 210 360 99.8289262 99.8798644 0.433 0.484 1.22 18.69
5 18 138 360 99.3367150 99.5773001 0.062 0.180 0.59 14.77

Table 4. Error and the value of U(100, 100, 100) with
non-uniform mesh [1 60:h:115 130 160 180 200 220] and
various values of h.

Next, we similarly examine the option value U(100, 100, 100) with
respect to changing volatility and riskless interest rate. We use the
solution of MCS with variance reduction. Tables 9 and 10 show the
option price and error with changing the volatility and riskfree interest
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h Nx Nτ U(100, 100, 100) |Error| CPU time (s)

Ex Im Ex Im Ex Im Ex Im
1 67 3858 360 99.2574268 99.4495997 0.142 0.051 968.88 772.22
2 37 960 360 99.8051615 99.9397719 0.409 0.544 37.46 128.58
2.5 31 612 360 99.3026870 99.4189247 0.097 0.020 13.68 73.94
4 22 240 360 99.6713333 99.8074135 0.274 0.411 1.87 28.56
5 19 150 360 99.3420879 99.5610479 0.057 0.163 0.80 18.100

Table 5. Error and the value of U(100, 100, 100) with
non-uniform mesh [1 60:h:120 140 160 180 200 220] and
various values of h.

h Nx Nτ U(100, 100, 100) |Error| CPU time (s)

Ex Im Ex Im Ex Im Ex Im
1 76 4530 360 99.2486586 99.4362524 0.151 0.038 1680.97 1182.66
2 41 1128 360 99.7997143 99.9265827 0.403 0.531 62.67 180.23
2.5 34 720 360 99.3013973 99.4068576 0.098 0.008 21.54 119.73
4 23 270 360 99.6763125 99.7967114 0.279 0.400 2.37 32.32
5 20 180 360 99.3701114 99.5512304 0.029 0.153 1.03 21.45

Table 6. Error and the value of U(100, 100, 100) with
non-uniform mesh [1 60:h:130 160 180 200 220] and var-
ious values of h.

rate. Changes of volatility and interest rate require the different number
of time steps on non-oscillatory explicit scheme. On the other hand,
changes of interest rate have less of an effect on the number of time step
than the changes of volatility. The reference values when σ = 0.2 and
σ = 0.4 are 107.9563003 and 91.26505667, respectively. Also, 99.2936492
and 99.3253221 are reference values for r = 0.01 and r = 0.05.

h Nx Nτ U(100, 100, 100) |Error| CPU time (s)

Ex Im Ex Im Ex Im Ex Im
1 76 2016 360 107.5307753 107.5918473 0.394 0.338 743.42 1181.89
2 41 504 360 108.1769439 108.1757133 0.204 0.203 27.36 181.53
2.5 34 324 360 106.9965461 106.9837869 0.889 0.901 9.73 120.25
4 23 120 360 107.6745746 107.5635125 0.261 0.364 1.08 32.54
5 20 84 360 106.1369382 106.0404300 1.685 1.775 0.50 21.48

Table 7. Error and the value of U(100, 100, 100) with
non-uniform mesh [1 60:h:130 160 180 200 220] and var-
ious values of h (σ1 = σ2 = σ3 = 0.2).
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h Nx Nτ U(100, 100, 100) |Error| CPU time (s)

Ex Im Ex Im Ex Im Ex Im
1 76 8052 360 91.2959294 91.3952965 0.034 0.143 2967.50 1182.43
2 41 1998 360 91.4154188 91.4821136 0.165 0.238 108.08 181.15
2.5 34 1278 360 91.6447605 91.7211964 0.416 0.500 38.30 120.23
4 23 480 360 91.4875394 91.5294626 0.244 0.290 4.34 32.37
5 20 318 360 92.1941121 92.3904074 1.018 1.233 1.81 21.49

Table 8. Error and the value of U(100, 100, 100) with
non-uniform mesh [1 60:h:130 160 180 200 220] and var-
ious values of h (σ1 = σ2 = σ3 = 0.4).

h Nx Nτ U(100, 100, 100) |Error| CPU time (s)

Ex Im Ex Im Ex Im Ex Im
1 76 4530 360 99.2356163 99.4211794 0.058 0.128 1693.28 1185.89
2 41 1128 360 99.8251264 99.9435156 0.535 0.654 61.34 182.53
2.5 34 720 360 99.2864845 99.3809322 0.007 0.088 21.92 123.13
4 23 270 360 99.7009799 99.8016579 0.410 0.512 2.37 32.35
5 20 180 360 99.3540393 99.5158842 0.061 0.224 1.03 22.50

Table 9. Error and the value of U(100, 100, 100) with
non-uniform mesh [1 60:h:130 160 180 200 220] and var-
ious values of h (r = 0.01).

h Nx Nτ U(100, 100, 100) |Error| CPU time (s)

Ex Im Ex Im Ex Im Ex Im
1 76 4530 360 99.2343631 99.4185326 0.092 0.094 2967.50 1180.53
2 41 1128 360 99.7458733 99.8758164 0.423 0.554 108.08 181.59
2.5 34 720 360 99.2900989 99.4013105 0.035 0.077 38.30 123.88
4 23 270 360 99.6248616 99.7595838 0.302 0.437 4.34 32.48
5 20 180 360 99.3615993 99.5569768 0.037 0.233 1.81 22.58

Table 10. Error and the value of U(100, 100, 100) with
non-uniform mesh [1 60:h:130 160 180 200 220] and var-
ious values of h (r = 0.05).

6. Conclusions

In general, the implicit scheme is used with Thomas algorithm. How-
ever, there are several drawbacks for practical calculation. First, the
implicit scheme has more time complexity in terms of computations for
solving option values. Next, it is hard to use the methodology for multi-
dimensional problem since it is necessary to apply the OSM or ADI.
Hence we compared the explicit scheme satisfying non-oscillatory con-
dition and the implicit method for multi-dimensional financial options.
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Throughout the paper, the non-oscillatory explicit scheme is simple to
implement and superior if we use a small number of mesh points. On
the other hand, the implicit scheme is more efficient than the explicit
scheme if the spatial step size is small.
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