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• We investigate numerically the nonlinear dynamics of a 3D chemotaxis–fluid system without linearization and axisymmetry.
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a b s t r a c t

Oxytactic bacteria like Bacillus subtilis are denser than water and swim up an oxygen gradient as they
require certain minimum concentration of oxygen to be active. Due to upswimming, bacteria accumulate
in a layer below the water surface and the density of an initially uniform suspension becomes greater
near the water surface than the water bottom.When the upper bacteria-rich boundary layer is too dense,
it becomes unstable and an overturning instability develops, leading to the formation of falling bacterial
plumes. Bioconvection in modestly diluted cell suspensions is described by equations for concentrations
of bacteria and oxygen together with the Navier–Stokes equations and the continuity equation. In
this paper, we investigate numerically falling bacterial plumes caused by bioconvection in a three-
dimensional chamber by solving the full chemotaxis–fluid coupled system. In numerical simulations of
the system, the admissible time step is restricted by stability criteria due to a high Schmidt number,
which corresponds to highly viscous fluids or low diffusion rates of bacteria. In order to avoid a too strong
restriction on the time step, we use an operator splitting-type Navier–Stokes solver: the advection term is
solved using a semi-Lagrangianmethod and the diffusion term is solved using the backward Eulermethod.
We present numerical examples showing the formation of falling bacterial plumes out of random initial
data and the convergence towards stationary bacterial plumes. And the merging of neighboring plumes
is observed for a specific parameter set.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

In this paper, we consider the formation of falling plumes in a
three-dimensional chamber that contains a suspension of oxytactic
bacteria like Bacillus subtilis [1–3]. These bacteria are denser than
water, consume oxygen, and swim up an oxygen gradient as they
require certain minimum concentration of oxygen to be active.
The upper surface of the chamber is open to the atmosphere and
oxygen is replenished by diffusion from that surface. In a shallow
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chamber, the oxygen concentration throughout the chamber is
high enough to allow all bacteria to swim actively. But, if the
chamber is deep, the oxygen concentration below a certain depth
is very low (since the diffusivity of oxygen in water is very small
and bacteria consume oxygen) and, therefore, bacteria in the lower
region of the chamber become inactive. Due to upswimming,
bacteria accumulate in the upper layer of water and the density
of an initially uniform suspension becomes greater at the top than
the bottom. When the upper bacteria-rich boundary layer is too
dense, it becomes unstable and an overturning instability develops,
leading to the formation of falling bacterial plumes. The plumes
transport bacteria and oxygen from the upper boundary layer,
which is rich in bacteria and oxygen, to the lower region of the
chamber, which is depleted of both bacteria and oxygen.
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Fig. 1. Time sequence of photographs of a deep chamber containing a suspension of oxytactic bacteria like Bacillus subtilis. The successive times are shown at the upper left
of each photograph.
Source: Photograph reproduced from Hillesdon et al. [1].
Fig. 1 shows time sequence of photographs of a deep chamber
containing a suspension of bacteria reproduced from Hillesdon
et al. [1]. The initial suspension is well mixed and quasi-
homogeneous (Fig. 1(a)). First, a bacteria-rich upper boundary
layer develops near the surface as bacteria swim up an oxygen
gradient (Fig. 1(b)). Later, in Fig. 1(c)–(e), we can see the formation
of falling bacterial plumes as the upper layer becomes unstable.
The bacteria-rich plumes, which descend from the surface, carry
oxygen from the surface and, in Fig. 1(f), some of the inactive
bacteria in the lower region have been resuscitated by the oxygen
carried by the descending plumes.

Bioconvection [4–7] in modestly diluted cell suspensions is
described by equations for concentrations of bacteria and oxygen
are coupled with the incompressible Navier–Stokes equations
and the continuity equation. Hillesdon and Pedley [8] analyzed
the linear stability for this chemotaxis–fluid coupled system and
Metcalfe and Pedley [9] discussed the weakly nonlinear stability.
Lorz [10] obtained a local existence result for the system and
related systems. Duan et al. [11] proved global existence for the
system with the simpler Stokes equations for weak potential
or small initial oxygen concentration. Di Francesco et al. [12]
investigated existence issues and asymptotic behavior of a model
with nonlinear cell diffusion in the bacteria equation.

Harashima et al. [13] simulated gravitactic bioconvection in two
dimensions and studied the evolution of bioconvection from an
initially uniform state. Ghorai and Hill [14–16] investigated the
structure and stability of two-dimensional gyrotactic plumes in
tall, narrow chambers with either stress-free sidewalls or periodic
sidewalls using a conservative finite-difference scheme. They also
studied gyrotactic bioconvection in an axisymmetric chamber [17].
Chertock et al. [18] derived a high-resolution vorticity-based
hybrid finite-volume finite-difference scheme to understand the
interplay of gravity and chemotaxis in the formation of two-
dimensional plumes. All the computations in [13–18] were based
on continuum models. Hopkins and Fauci [19] simulated two-
dimensional bioconvection using point particles rather than a
continuum model and examined the general effects of a variety
of different responses by the micro-organisms, including geotaxis,
gyrotaxis, and chemotaxis.

Although there have been many numerical studies in two
dimensions [13–19], bioconvection in three dimensions has not
been well simulated due to computational difficulties, except the
works of Ghorai andHill [20] and of Karimi and Paul [21]. However,
they concerned with gyrotaxis only (not chemotaxis) and used a
low Schmidt number (= 20), in which the Schmidt number is a
dimensionless number defined as the ratio of viscosity and mass
diffusivity. Note that a typical value of the Schmidt number for
Bacillus subtilis in water is 500 [3,18].

Although it is relatively easy to solve the two-dimensional
problem, bioconvection is intrinsically three-dimensional. In this
paper, we therefore investigate a realistic three-dimensional
bioconvection model. This work, for the first time to the
authors’ knowledge, considers the nonlinear dynamics of a three-
dimensional chemotaxis–fluid system without linearization and
axisymmetry. And, to avoid a too strong restriction on the
admissible time step in numerical simulations of the system due
to a high Schmidt number, we use an operator splitting-type
Navier–Stokes solver: the advection term is solved using a semi-
Lagrangian method and the diffusion term is solved using the
backward Euler method.

The paper is organized as follows. In Section 2, we introduce the
governing equations and perform the nondimensionalization of
the governing equations. In Section 3, a numerical solution is given.
We present numerical examples showing the formation of falling
bacterial plumes out of random initial data and the convergence
towards stationary bacterial plumes in Section 4. And the merging
of neighboring plumes is observed for a specific parameter set.
Finally, conclusions are drawn in Section 5.

2. Governing equations

Several related coupled chemotaxis–fluid model systems have
been proposed and studied in [1–3,18] to describe bioconvection
of a suspension of oxytactic bacteria in an incompressible fluid
under the assumptions that the contribution of bacteria to the
bacteria–fluid suspension is sufficiently small (since the density
of the bacteria suspension is approximately equal to the density
of the fluid) and that more detailed cell–cell interactions (such
as hydrodynamic interaction) are neglected. The system, in which
equations for concentrations of bacteria (n) and oxygen (c) are
coupled with the incompressible Navier–Stokes equations (using
the Boussinesq approximation) and the continuity equation, is as
follows:

nt + u · ∇n = Dn1n − χ∇ · [nr(c)∇c], (1)
ct + u · ∇c = Dc1c − nκr(c), (2)
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ρ(ut + u · ∇u) = −∇p + η1u + nVb(ρb − ρ)g, (3)
∇ · u = 0, (4)

where ∆ := ∂2
x + ∂2

y + ∂2
z is the Laplacian, n and c are concen-

trations of bacteria and oxygen, respectively, u = (u, v, w) is the
fluid velocity, and p is the fluid pressure. Dn and Dc are diffusion
constants for bacteria and oxygen, respectively, χ is the chemo-
tactic sensitivity (it may be interpreted as χ = av0/cair, where a
is a characteristic length, v0 is the chemotactic velocity, and cair is
the oxygen concentration of the air above the fluid), κ is the oxy-
gen consumption rate, and r(c) is the dimensionless cut-off func-
tion. The function r(c) is unity at large c and vanishes rapidly for
c below the cut-off c∗, and is approximated by the step function
r(c) = Θ(c− c∗) [3,18]. In the present work, to speed up the com-
putation, we regularize r(c) by

r(c) =
1
2


1 +

c − c∗
(c − c∗)2 + ϵ2


,

where ϵ > 0 is a constant close to zero. ρ is the fluid density,
η is the fluid viscosity, Vb and ρb are the bacterial volume and
density (bacteria are about 10% denser than water), respectively,
g = (0, 0, −g) is the gravity, and g is the gravitational acceleration.

In order tomatch the experiment depicted in Fig. 1, we consider
the following boundary conditions for Eqs. (1)–(4), which are to be
integrated in the three-dimensional region bounded by the planes
x = 0, Lx, y = 0, Ly, and z = 0, Lz : the boundary condition at
z = Lz describes the fluid–air surface, where there is no cell flux,
the oxygenwill be saturatedwith the air oxygen concentration cair,
and the surface is stress-free:

χnr(c)cz − Dnnz = 0, c = cair, uz = vz = w = 0
at z = Lz .

At z = 0, the cell and oxygen fluxes and the fluid velocity are
supposed zero:

nz = cz = 0, u = v = w = 0 at z = 0.
Finally, periodic boundary conditions at the four sides of the
domain, x = 0, Lx and y = 0, Ly, are imposed to avoid any impact
of these boundaries.

2.1. Nondimensionalization of the governing equations

In order to restate the dimensional chemotaxis–fluid coupled
system (1)–(4) in dimensionless form, we rescale the variables as
follows:

x′
=

x
L
, t ′ =

Dn

L2
t, c ′

=
c
cair

, n′
=

n
nr

,

u′
=

L
Dn

u, p′
=

L2

ηDn
p, g′

=
g
g
,

where L is a characteristic length and nr is the characteristic cell
density. This scaling is chosen for consistency and comparison
with previously published work [3,18]. After dropping the prime
notation in the rescaled variables, we obtain the following system:

nt + ∇ · (nu) = 1n − α∇ · [nr(c)∇c], (5)
ct + ∇ · (cu) = δ1c − βr(c)n, (6)
ut + u · ∇u = −Sc∇p + Sc1u + γ Sc ng, (7)
∇ · u = 0, (8)

where g = (0, 0, −1). The five dimensionless parameters α, β , γ ,
δ, and the Schmidt number Sc are

α :=
χcair
Dn

, β :=
κnrL2

cairDn
, γ :=

Vbnrg(ρb − ρ)L3

ηDn
,

δ :=
Dc

Dn
, Sc :=

η

Dnρ
.

Fig. 2. Location of the variables on a MAC mesh cell.

The resulting system (5)–(8) is considered on a rectangular
parallelepiped domain Ω = [0, lx] × [0, ly] × [0, lz] subject to the
initial data

n(x, y, z, 0) = n0(x, y, z), c(x, y, z, 0) = c0(x, y, z),
u(x, y, z, 0) = u0(x, y, z),

and the following boundary conditions: at the top and the bottom
of Ω we set

αnr(c)cz − nz = 0, c = 1, uz = vz = w = 0 at z = lz, (9)
nz = cz = 0, u = v = w = 0 at z = 0, (10)

while the periodic boundary conditions are applied at the four
sides of Ω (that is, at x = 0, lx and y = 0, ly).

3. Numerical solution

Let a three-dimensional computational domain be uniformly
partitionedwith spacing h. The cell center is located at (xi, yj, zk) =

((i−0.5)h, (j−0.5)h, (k−0.5)h) for i = 1, . . . ,Nx, j = 1, . . . ,Ny,
and k = 1, . . . ,Nz . Nx, Ny, and Nz are the numbers of cells in the
x-, y-, and z-directions, respectively. Cell vertices are located at
(xi+ 1

2
, yj+ 1

2
, zk+ 1

2
) = (ih, jh, kh). Pressures and concentrations of

bacteria and oxygen are stored at cell centers, and velocities are
stored at cell faces [22] (Fig. 2).

In order to model a suspension of swimming bacteria Bacillus
subtilis in water, we set the Schmidt number to Sc = 500 [3,18].
A high Schmidt number corresponds to highly viscous fluids or
low diffusion rates of bacteria. For highly viscous fluids, an explicit
treatment of the diffusion term 1u in Eq. (7) is subject to a severe
restriction on the time step 1t . In order to use a much larger
time step than an explicit method, we employ the ‘‘stable fluids’’
method of Stam [23]. Given the solution u(x, tm) where x =

(x, y, z) andm is a time step index, the solution at tm+1
= tm +1t

is solved in four steps. The steps are: letw0(x) = u(x, tm),

w0(x)
add force
−→ w1(x)

advect
−→ w2(x)

diffuse
−→ w3(x)

project
−→ w4(x).

The solution u(x, tm+1) is then given by the last velocity field:
u(x, tm+1) = w4(x). The first step is to simply add the external
force γ Sc ng : w1(x) = w0(x) + 1t (γ Sc n(x, tm)g). The second
step accounts for the effect of advection of the fluid on itself.
A disturbance in the velocity field propagates according to the
advection term −u · ∇u. In order to obtain the new velocity w2
at a point x, we backtrace the point x through the velocity field
w1 over a time 1t . This defines a path p(x, t) corresponding to a
partial streamline of the velocity field. The new velocity w2 at the
point x is then set tow2(x) = w1(p(x, −1t)). The third step solves
for the effect of viscosity and uses an implicit method:

w3(x) − Sc1t1w3(x) = w2(x). (11)
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(a) u − z. (b) x − w.

Fig. 3. Comparison of velocity component distribution along the (a) vertical and (b) horizontal centerlines of the plane y = 0.5 for 3D lid-driven cavity with Re = 100.
a b

Fig. 4. Comparison of the numerical steady-state solutions (a) n and (b) c with the analytical steady-state solutions.
Finally, the last step projects the velocity field onto the divergence
free field [24]. This step involves the solution of a Poisson equation

1q =
1

Sc1t
∇ · w3, (12)

followed by the correction w4 = w3 − Sc1t∇q. In Eqs. (11) and
(12), the diffusion operator ∆ can be discretized and the resulting
sparse linear system can be solved by a fast solver, such as a linear
multigrid method [25]. Also, a Gauss–Seidel relaxation scheme is
used as the smoother in the multigrid method.

The quantities n and c are evolved in time by solving the
chemotaxis equations (5) and (6) using a semi-implicit method:

nm+1
ijk − nm

ijk

1t
+ ∇h · (nu)mijk = ∆hnm+1

ijk − α∇h · [nr(c)∇hc]mijk,

cm+1
ijk − cmijk

1t
+ ∇h · (cu)mijk = δ∆hcm+1

ijk − β[r(c)n]mijk,

where

∇h · (φu)mijk =

um
i+ 1

2 ,j,k
(φm

i+1,j,k + φm
ijk) − um

i− 1
2 ,j,k

(φm
ijk + φm

i−1,j,k)

2h

+

vm
i,j+ 1

2 ,k
(φm

i,j+1,k + φm
ijk) − vm

i,j− 1
2 ,k

(φm
ijk + φm

i,j−1,k)

2h

+

wm
i,j,k+ 1

2
(φm

i,j,k+1 + φm
ijk) − wm

i,j,k− 1
2
(φm

ijk + φm
i,j,k−1)

2h
,

∆hφ
m+1
ijk

=
φm+1
i+1,j,k + φm+1

i,j+1,k + φm+1
i,j,k+1 − 6φm+1

ijk + φm+1
i−1,j,k + φm+1

i,j−1,k + φm+1
i,j,k−1

h2
for φ = n, c and

∇h · [nr(c)∇hc]mijk

=

nm
i+ 1

2 ,j,k
r

cm
i+ 1

2 ,j,k


(cmi+1,j,k − cmijk) − nm

i− 1
2 ,j,k

r

cm
i− 1

2 ,j,k


(cmijk − cmi−1,j,k)

h2

+

nm
i,j+ 1

2 ,k
r

cm
i,j+ 1

2 ,k


(cmi,j+1,k − cmijk) − nm

i,j− 1
2 ,k

r

cm
i,j− 1

2 ,k


(cmijk − cmi,j−1,k)

h2

+

nm
i,j,k+ 1

2
r

cm
i,j,k+ 1

2


(cmi,j,k+1 − cmijk) − nm

i,j,k− 1
2
r

cm
i,j,k− 1

2


(cmijk − cmi,j,k−1)

h2
,

where nm
i+ 1

2 ,j,k
= (nm

i+1,j,k+nm
ijk)/2 and the other terms are similarly

defined.

4. Numerical examples

4.1. Validation of the Navier–Stokes solver: the lid-driven cavity flow

In order to examine the performance of the Navier–Stokes
solver, described in the previous section, in the three-dimensional
computation of highly viscous fluids, we consider the standard lid-
driven cavity flow problem [26–30] for the following equations:

ut + u · ∇u = −∇p +
1
Re

1u,

∇ · u = 0,

where Re is the Reynolds number. The problem domain is a unit
cube with the top lid moving parallel to the x-axis. The velocity u
is set to zero on all faces except the upper facewhere the tangential
component u is set to 1. We use h = 1/64, 1t = 10h2, and
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a b

Fig. 5. (a) Vertical profiles of the oxygen c and cell n densities and (b) streamlines at t = 0.22 for α = 5, β = 5, δ = 0.25, γ = 418, and Sc = 7700.
a b

Fig. 6. Vertical profiles of (a) oxygen c and (b) cell n densities at t = 0.22 for α = 5, δ = 1, γ = 418, Sc = 7700, and β = 7.2296, 10, 20, 40.
a b

Fig. 7. Vertical profiles of (a) oxygen c and (b) cell n densities at t = 0.22 for β = 10, δ = 1, γ = 418, Sc = 7700, and α = 1, 2, 4, 5.952.
Re = 100. For the convergence criterion of steady flow, maximum
norm of velocity difference between the new and old time levels,
i.e. ∥um+1

− um
∥∞, is set to be less than 5 · 10−7.

For the purpose of validation, the u velocity profile along the
vertical centerline (u − z plot) and w velocity profile along the
horizontal centerline (x − w plot) of the plane y = 0.5 are
computed. Since there is no available analytical expression for the
solution, the numerical solutions of previous literature are adopted
as references to validate the present results. Fig. 3(a) and (b) show
the u − z and x − w comparisons with the results of Lo et al. [28],
Ding et al. [29], andHoldeman [30], respectively. It can be seen that
the velocity profiles agree well with those of the above authors.

4.2. Comparison of numerical and analytical steady-state solutions

It is known fromHillesdon et al. [1] that for suitable parameters
solutions of (5)–(8) converge to homogeneous-in-x, y steady-state
solutions of the following system:
1n = α∇ · [nr(c)∇c], δ1c = βr(c)n. (13)
The analytical solutions ns(z) and cs(z) of (13) can be explicitly
computed provided that c ≥ c∗ and, thus, r(c) = 1 in the entire
domain [1], and are given by

ns(z) =
δA2

β

α

2
sec2

α

2
Az


,

cs(z) = 1 −
2
α

ln


cos


α
2 Az


cos


α
2 A
  ,

where A is a constant and determined from the following transcen-
dental equation:

tan
α

2
A


=
β

δA

 1

0
ns(z) dz.

We now solve numerically the system (5)–(8) with α = 10,
β = 10, γ = 1000, δ = 5, and Sc = 500. The initial conditions are

n0(x, y, z) =
π

40
, c0(x, y, z) = 1, u0(x, y, z) = 0

on the domain Ω = [0, 2] × [0, 2] × [0, 1]. We take the cut-off
c∗

= 0.3, A = π/20, h = 1/64, 1t = 4 · 10−5, and ϵ = h. We
run the code until the numerical solution converges to its steady
state. Fig. 4(a) and (b) show the vertical profiles of the numerical
steady-state solutions n and c , respectively. It can be seen that the
numerical and analytical solutions are in good agreement.

4.3. Comparison with previous results

Hillesdon and Pedley [8] investigated how the parameter values
δ, βHP , and γHP affect the results (note that there is a difference in
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Fig. 8. (a) Cell density n(x, y, z, t) and (b)–(d) bioconvection patterns in the x–z cross section at y = 0, 0.5, and 1 at different times t = 0.32, 0.37, 0.42, 0.47, and
0.52 (from top to bottom). In (a), yellow, green, and blue isosurfaces correspond to n(x, y, z, t) = 0.5, 0.75, and 1, respectively. In (b)–(d), color contours represent the cell
concentration n(x, y, z, t)with red representing large concentrations and blue representing small concentrations, and arrows represent the velocity components u(x, y, z, t)
and w(x, y, z, t) at y = 0, 0.5, and 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the definition of parameters compared to [8], i.e.,α → γHP ,β/δ →

βHP , and γ → ΓHP ). We here consider an example presented in [8]

for γ = 418 and Sc = 7700. We take the cut-off c∗

= 0.3 and the
following initial conditions:
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Fig. 9. (a) Cell density n(x, y, z, t) and (b) bioconvection pattern in the x–z cross section at y = 1 at different times t = 0.2, 0.27, 0.34, 0.39, and 0.78 (from top to bottom).
In (a), yellow, green, and blue isosurfaces correspond to n(x, y, z, t) = 0.5, 0.75, and 1, respectively. In (b), color contours represent the cell concentration n(x, 1, z, t)
with red representing large concentrations and blue representing small concentrations, and arrows represent the velocity components u(x, 1, z, t) and w(x, 1, z, t). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Effect of δ. For δ = 5, (a) cell density n(x, y, z, t) and (b) bioconvection pattern in the x–z cross section at y = 1 at different times t = 3.9, 4.4, and 4.9 (from top to
bottom). In (a), yellow, green, and blue isosurfaces correspond to n(x, y, z, t) = 0.5, 0.75, and 1, respectively. In (b), color contours represent the cell concentration n(x, 1, z, t)
with red representing large concentrations and blue representing small concentrations, and arrows represent the velocity components u(x, 1, z, t) and w(x, 1, z, t). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
n0(x, y, z) =

1 if z > 0.501 − 0.01(sin((x − 0.5)π)
+ sin((y − 0.5)π)),

0.5 otherwise,

c0(x, y, z) = 1, u0(x, y, z) = 0

on the domain Ω = [0, 2]× [0, 2]× [0, 1], which prescribes small
sinusoidal modulations of the lower edge of the upper layer with
cell concentration higher than at the bottom. The grid spacing and
time step used in our calculations are h = 1/64 and1t = 4 ·10−5,
respectively, and we use ϵ = h.

Fig. 5(a) shows the vertical profiles of the computed quasi-
homogeneous-in-x, y oxygen c and cell n densities at t = 0.22 for
α = 5, β = 5, and δ = 0.25. These are in qualitative agreement
with the Figure 14 in [8]. Note that the vertical profile of the cell
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Fig. 11. Effect of δ. For δ = 25, (a) cell density n(x, y, z, t) and (b) bioconvection pattern in the x–z cross section at y = 1 at different times t = 2.9, 3.4, and 3.9 (from top to
bottom). In (a), yellow, green, and blue isosurfaces correspond to n(x, y, z, t) = 0.5, 0.75, and 1, respectively. In (b), color contours represent the cell concentration n(x, 1, z, t)
with red representing large concentrations and blue representing small concentrations, and arrows represent the velocity components u(x, 1, z, t) and w(x, 1, z, t). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Effect of δ. For δ = 50, (a) cell density n(x, y, z, t) and (b) bioconvection pattern in the x–z cross section at y = 1 at different times t = 1.9, 2.4, and 2.9 (from top to
bottom). In (a), yellow, green, and blue isosurfaces correspond to n(x, y, z, t) = 0.5, 0.75, and 1, respectively. In (b), color contours represent the cell concentration n(x, 1, z, t)
with red representing large concentrations and blue representing small concentrations, and arrows represent the velocity components u(x, 1, z, t) and w(x, 1, z, t). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
density shows an increase of cells towards the bottom, which is
due to the cut-off of the chemotactic convection for oxygen levels
below c ≤ c∗. And the bioconvection pattern is well captured by
the streamlines shown in Fig. 5(b).

Next, we vary the value of β for α = 5 and δ = 1. The
vertical profiles of the oxygen c and cell n densities at t = 0.22
for β = 7.2296, 10, 20, 40 are shown in Fig. 6. The increase in the
value of β (α and δ fixed) indicates that the oxygen consumption
increases relative to the oxygen diffusion. Thus, as the value of
β increases, the oxygen density at the same vertical position
decreases (Fig. 6(a)) and the cell upswimming increases (Fig. 6(b)).
These are in qualitative agreement with the Figure 9 in [8].

We also vary the value of α for β = 10 and δ = 1. The vertical
profiles of the oxygen c and cell n densities at t = 0.22 forα = 1, 2,
4, 5.952 are shown in Fig. 7. The increase in the value of α (β and δ

fixed) indicates that the directed cell swimming increases relative
to the diffusive swimming. Thus, as the value of α increases, the
cell density near the surface increases, the cells vacate the lower
regions of the chamber more rapidly (Fig. 7(b)), and less overall
oxygen consumption occurs in these regions (Fig. 7(a)). These are
in qualitative agreement with the Figure 12 in [8].

4.4. Bacterial bioconvection in three dimensions

In the following subsections, we describe numerical experi-
ments with the system (5)–(8) on the rectangular parallelepiped
domain subject to various initial conditions and the boundary con-
ditions (9) and (10). In these examples, we set the coefficients
α = 10, β = 10, γ = 1000, δ = 5, and the Schmidt number
Sc = 500 to model a suspension of swimming bacteria Bacillus
subtilis in water [3,18], and take the cut-off c∗

= 0.3. The grid
spacing and time step used in our calculations are h = 1/32 and
1t = 10−4, respectively, and we use ϵ = h.

4.4.1. Time evolution of randomly perturbed homogeneous initial
data

We here consider homogeneous initial data with a random
perturbation in the cell concentration:
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Fig. 13. For n0
3D(x, y, z), (a) cell density n(x, y, z, t) and (b)–(c) bioconvection patterns in the x–z cross section at y = 1 and the y–z cross section at x = 1 at different

times t = 0.01, 0.2, 0.24, 0.29, and 0.59 (from top to bottom). In (a), yellow, green, and blue isosurfaces correspond to n(x, y, z, t) = 0.5, 0.75, and 1, respectively. In (b) (or
(c)), color contours represent the cell concentration n(x, 1, z, t) (or n(1, y, z, t)) with red representing large concentrations and blue representing small concentrations, and
arrows represent the velocity components u(x, 1, z, t) and w(x, 1, z, t) (or v(1, y, z, t) and w(1, y, z, t)). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
n0(x, y, z) = 0.8 + 0.2rand( ), c0(x, y, z) = 1,
u0(x, y, z) = 0,
where rand() is a random number uniformly distributed in the
interval [0, 1]. The computational domain is Ω = [0, 6]× [0, 2]×
[0, 1].

Fig. 8(a) shows the time evolution of the cell density n.
The concentration n(x, y, z, t) at different times is plotted as
isosurfaces, and yellow, green, and blue isosurfaces correspond to
n(x, y, z, t) = 0.5, 0.75, and 1, respectively. The cell concentration
at the top (bottom) of the chamber increases (decreases) with
time due to cells swimming upwards and accumulating at the top,
and thus we observe several instabilities at a high-concentration
layer below the fluid–air surface at t = 0.32. These instabilities
developed into three falling plumes at t = 0.37 and all plumes
hit the bottom of the chamber at t = 0.42. The cells in the
bottom of the plumes move into the periphery of the plumes,
swim, and are advected by the fluid towards the fluid–air surface,
and thus we observe smaller plumes and thicker cell-rich layer
at t = 0.47 than those at t = 0.42. After t = 0.52, the
patterns seem to be stationary are observed. Fig. 8(b)–(d) show
the bioconvection patterns in the x–z cross section at y = 0, 0.5,
and 1, respectively, for each of the rows of Fig. 8(a). Color contours
represent the cell concentration n(x, y, z, t) at y = 0, 0.5, and 1
with red representing large concentrations and blue representing
small concentrations. Arrows represent the velocity components
u(x, y, z, t) and w(x, y, z, t) at y = 0, 0.5, and 1. Fig. 8(b)–(d)
illustrate that in regions of large concentrations the fluid velocity
is downward, as indicated by the falling plumes.
4.4.2. Time evolution of deterministic initial data
In this section, we study the time evolution of solutions of (5)–

(8) from the following purely deterministic initial data:

n0(x, y, z) =

1 if z > 0.499 − 0.01(sin((x − 0.5)π)
+ sin((y − 0.5)π)),

0.5 otherwise,

c0(x, y, z) = 1, u0(x, y, z) = 0

on the domain Ω = [0, 4] × [0, 2] × [0, 1].
Fig. 9(a) and (b) showcell density n(x, y, z, t) and bioconvection

pattern in the x–z cross section at y = 1 at different times,
respectively. At around t = 0.2, the solution starts developing
instabilities, and at t = 0.27, two plumes are emerging according
to the small perturbations in the initial cell concentration. These
plumes hit the bottom of the chamber at t = 0.34 and slightly
bounce upwards at t = 0.39. From t = 0.39 to t = 0.78, there
is only a small change in the shape or size of the plumes. After
t = 0.78, the plumes become steady.

4.4.3. Effect of increased δ

In order to investigate howa variation in the parameter δ affects
the time evolution of the cell density, we perform tests with the
following initial data:

n0(x, y, z) =

1 if z > 0.499 − 0.05(sin((x − 0.5)π)
+ sin((y − 0.5)π)),

0.5 otherwise,
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Fig. 14. For n0
2D(x, y, z), (a) cell density n(x, y, z, t) and (b)–(c) bioconvection patterns in the x–z cross section at y = 1 and the y–z cross section at x = 1 at different

times t = 0.01, 0.2, 0.24, 0.29, and 0.59 (from top to bottom). In (a), yellow, green, and blue isosurfaces correspond to n(x, y, z, t) = 0.5, 0.75, and 1, respectively. In (b) (or
(c)), color contours represent the cell concentration n(x, 1, z, t) (or n(1, y, z, t)) with red representing large concentrations and blue representing small concentrations, and
arrows represent the velocity components u(x, 1, z, t) and w(x, 1, z, t) (or v(1, y, z, t) and w(1, y, z, t)). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
c0(x, y, z) = 1, u0(x, y, z) = 0 on the domain
Ω = [0, 4] × [0, 2] × [0, 1]

and with various values of δ : δ = 5, 25, and 50 with Dn fixed.
The remaining parameters are α = 10, β = 10, γ = 1000, and
Sc = 500.

Figs. 10–12 show the results with δ = 5, 25, and 50, respec-
tively. In each figure, (a) and (b) show cell density n(x, y, z, t) and
bioconvection pattern in the x–z cross section at y = 1 at differ-
ent times, respectively. For δ = 5 (Fig. 10), the time evolution of
the plumes is similar to the case of Fig. 9. However, for δ = 25
and 50 (Figs. 11 and 12, respectively), the results are different sig-
nificantly. The increased diffusive oxygen replenishment, caused if
the case whereDc is increased is considered, results in reduced cell
upswimming throughout the chamber and relatively more cells
are situated in the lower regions of the chamber. We also observe
that the two instabilities are approaching each other and merge
into one instability. This is a fluid-dynamic effect (similar to the
merging of Rayleigh–Bénard convection cells [31–34]) rather than
a chemotaxis effect.

4.4.4. Comparison of 2D and 3D bioconvection
In order to compare 2D and 3D bioconvection, we take

c0(x, y, z) = 1, u0(x, y, z) = 0, and the following two initial con-
ditions for the cell density:

n0
3D(x, y, z) =

1 if z > 0.499 − 0.05(sin((x − 0.5)π)
+ sin((y − 0.5)π)),

0.5 otherwise
and

n0
2D(x, y, z) =


1 if z > 0.499 − 0.05 sin((x − 0.5)π),
0.5 otherwise

on the domain Ω = [0, 2] × [0, 2] × [0, 1].
Figs. 13 and 14 show the results with n0

3D(x, y, z) and n0
2D(x,

y, z), respectively. In each figure, (a), (b), and (c) show cell density
n(x, y, z, t) and bioconvection patterns in the x–z cross section at
y = 1 and the y–z cross section at x = 1 at different times, re-
spectively. In the case of 3D (n0

3D(x, y, z), Fig. 13), the cells move
into the center of the plume in both x and y directions due to 3D
bioconvection and, thus, the plume hits the bottom of the chamber
more rapidly than the case of 2D (n0

2D(x, y, z), Fig. 14).

5. Conclusions

We investigated numerically the nonlinear dynamics of a three-
dimensional chemotaxis–fluid system without linearization and
axisymmetry. We used an operator splitting-type Navier–Stokes
solver to avoid a too strong restriction on the time step due
to a high Schmidt number. Through numerical examples, we
observed the formation of falling plumes and the convergence
towards numerically stable stationary plumes. And the merging
of neighboring plumes was observed for a specific parameter
set.
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