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Abstract
In this paper, we present a fast Monte Carlo simulation (MCS) algorithm for pricing
equity-linked securities (ELS). The ELS is one of the most popular and complex
financial derivatives in South Korea. We consider a step-down ELS with a knock-in
barrier. This derivative has several intermediate and final automatic redemptions when
the underlying asset satisfies certain conditions. If these conditions are not satisfied
until the expiry date, then it will be checked whether the stock path hits the knock-in
barrier. The payoff is given depending on whether the path hits the knock-in barrier. In
the proposed algorithm, we first generate a stock path for redemption dates only. If the
generated stock path does not satisfy the early redemption conditions and is not below
the knock-in barrier at the redemption dates, then we regenerate a daily path using
Brownian bridge. We present numerical algorithms for one-, two-, and three-asset
step-down ELS. The computational results demonstrate the efficiency and accuracy
of the proposed fast MCS algorithm. The proposed fast MCS approach is more than
20 times faster than the conventional standard MCS.
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1 Introduction

The equity-linked security (ELS) is the financial derivativewhose return on investment
is dependent on the performance of the linked underlying equity. It has been one of
the most popular financial derivatives since it was introduced to South Korea in 2003.
The value of annual issuance for this derivative is over half-trillion US dollars (Jo and
Kim 2013). In 2015, ELS was issued with about 0.65 trillion US dollars. However,
the collapse of China’s stock market took place in June 2015. The global stock market
was influenced by the black swan incident occurred two months later on August 24th.
On that day, the Dow Jones Industrial Average of the US plummeted by more than
1000 points as the two major composite indices of China plunged 8%. Furthermore,
Japanese and European stock indices dropped more than 4% (Tsai 2017). For this
reason, ELS has faced critical crisis during the second half of that year. Therefore,
there is a need for more detailed studies about the structure of ELS to manage risk
related to ELS. In this paper, we consider a step-down ELS with a knock-in barrier
and describe the one-, two-, and three-asset step-down ELS.

Figure 1 illustrates the option payoff in which there are two early repayments and
maturity repayment. Here, K1 ≥ K2 ≥ K3 and c1 < c2 < c3 are respectively
repayment criteria percentages of the underlying asset and coupon rates at times T1 <

T2 < T3. Let X(t) = 100S(t)/S(0), where S(t) is the underlying asset value at time
t . At the first early redemption time T1, if X(T1) ≥ K1, then the contract is closed
with a return of (1 + c1)F . Here, F is the face value. Otherwise, the contract will
be maintained until the second early redemption time T2. At time T2, it repeats the
first step. At maturity time T3, we check whether X(T3) ≥ K3 or not. If it is true,
then the contract is closed with (1 + c3)F return. Otherwise, we check whether the
underlying asset has hit the knock-in barrier D during the period [0, T3]. That is, if
min0≤t≤T3 X(t) ≤ D, then the return is X(T3)F/100. Otherwise, it is (1+d)F , where
d is a dummy rate. Figure 1 schematically illustrates the above payoff condition.

We now summarize the payoff function by using the characteristic function χi =
χAi , where Ai = {X ≥ Ki } (i = 1, 2, 3). We construct the payoff function of one-
asset step-down ELS as follows:

Fig. 1 Payoff structure of the
one-asset step-down ELS at
early redemptions and maturity
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If min0≤t≤T3 X(t) > D, then

Payoff = (1 + d)F;
Otherwise

Payoff = X(T3)F/X(0).

The closed-form exact solution for these type of options can be found with multiple
integrals (Deng et al. 2011). However, most of integrations are improper integrals. We
have to numerically solve the integrals and this computation is also challenging. Some
authors have proposed solutions, such as the lattice model, finite difference method
(Kalantari and Shahmorad 2019; Jeong et al. 2018), and Monte Carlo simulation
(MCS) (Ma et al. 2017; Leitao et al. 2017; Ghafarian et al. 2018). Among these,
MCS is typically employed for pricing an ELS, because it is a convenient method for
calculating complex derivatives and is simple to apply. Furthermore, several studies
have presented advancedMCSmethods. For example, a control variate method for the
pricing basket, spread, and average options has been studied (Shiraya and Takahashi
2017), and a more advanced weighted-least squares Monte Carlo simulation has been
investigated for pricing American put options (Fabozzi et al. 2017).

In this study, we propose a fast and efficient Monte Carlo simulation method using
Brownian bridge (Boyle et al. 1997; Boyle 1977) to evaluate the price and Greeks of
ELS. Brownian bridge is used to calculate the price of financial instruments (Shreve
2004; Baldi et al. 1999; Ruf and Scherer 2011).

This paper is organized as follows. In Sect. 2, we describe the proposed algorithm
in detail. In Sect. 3, we present numerical experiments to validate the fastness and
efficiency of the proposed MCS algorithm. In Sect. 4, conclusions are presented.

2 Fast Monte Carlo Simulation Algorithm

With the assumption of geometric Brownian motion of the underlying asset and risk-
neutrality,we generate the sample asset paths at times t = ti = iΔt using the following
formula:

S(ti+1) = S(ti )e
(r−0.5σ 2)Δt+σ

√
Δt Zi , (1)

where S(ti ) is the underlying asset price at time t = ti , r is the risk-free interest rate,
σ is the constant volatility, Δt is the time-step size, and Zi is a normally distributed
sample with mean zero and variance one (Higham 2004). From Eq. (1), we have

X(ti+1) = X(ti )e
(r−0.5σ 2)Δt+σ

√
Δt Zi . (2)

Now, let us examine nine possible cases for stock paths arising in the step-down
ELS. Table 1 lists the early redemption dates (T ), strike percentages (K ), and coupon
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868 H. Jang et al.

Table 1 Early redemption dates, strike percentages, and coupon rates for the step-down ELS

Redemption date T1 = 0.5 T2 = 1 T3 = 1.5 T4 = 2 T5 = 2.5 T6 = 3

Strike percentage K1 = 95 K2 = 95 K3 = 95 K4 = 90 K5 = 90 K6 = 90

Coupon rate c1 = 0.025 c2 = 0.05 c3 = 0.075 c4 = 0.1 c5 = 0.125 c6 = 0.15

Fig. 2 Nine possible random
path cases for the step-down
ELS

rates (c) for the step-downELS. The other parameters used are the face value F = 100,
knock-in barrier D = 65, dummy rate d = 0.15, the risk-free interest rate r = 0.0166,
volatility σ = 0.196, and time-step size Δt = 1/360.

Then, we can obtain the nine possible paths corresponding to each case of the
step-down ELS using Eq. (2). We mark each case as a circled number in Fig. 2. 1©–
5© are early redemption cases at t = T1, . . . , T5, respectively. Case 6© represents
the occurrence of obligatory redemption at maturity. Case 7© illustrates the situation
in which the dummy is paid because the stock path has not hit the knock-in barrier
(k.i.b) until maturity. If the stock path hits the knock-in barrier at least once without
redemption, then the principal will be lost, see the cases of 8© and 9©. We call this
method by the standard MCS in which we generate the random path on a daily basis.

Next, we describe how to evaluate the step-down ELS price using the Brownian
bridge construction. First, we generate discrete stock prices at early redemption and
maturity dates only. That is,

X(Ti+1) = X(Ti )e
(r−0.5σ 2)(Ti+1−Ti )+σ

√
Ti+1−Ti Zi , i = 0, . . . , 5, (3)

where X(T0) = 100 and T0 = 0.
Then, we check the early redemptions and the maturity condition. If all these con-

ditions are not satisfied and min{X(T1), X(T2), . . . , X(T6)} ≤ D, then the payoff is
X(T6)F/100. If min{X(T1), X(T2), . . . , X(T6)} > D, then we regenerate a full path
passing the generated prices at the checked days using the Brownian bridge approach,
see Fig. 3. Using the regenerated full path, if min1≤i≤T6/Δt X(ti ) ≤ D, then the return
is X(T6)F/100. Otherwise, it is (1 + d)F , where d is a dummy rate. To obtain the
option price, we take a weighted average of the return values from the sample paths.
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Fig. 3 Generation of the
Brownian bridge path

Brownian bridge
Redemption point

Let us consider the Brownian bridge procedure which forms the core of our pro-
posed algorithm (Shreve 2004; Pemantle and Mathew 1992). When we want more
information between the two points, we can apply the Brownian bridge approach to
generate a path connecting the specific two points. We define the standard Brownian
bridge from 0 to 0 on [0, T ] to be the process

X(t) = W (t) − t

T
W (T ), 0 ≤ t ≤ T , (4)

where W (t) is the Brownian motion and W (0) = 0. More generally, we define the
Brownian bridge from a to b (a, b ∈ R) on [Ti , Ti+1] as the process

Xa→b(t) = a + (b − a)(t − Ti )

Ti+1 − Ti
+ W (t − Ti ) − t − Ti

Ti+1 − Ti
W (Ti+1 − Ti ),

Ti ≤ t ≤ Ti+1. (5)

Let X(Ti ) and X(Ti+1) be the two given stock index values, then we generate a
path starting from Y (Ti ) = X(Ti ) with the time step Δt .

Y (t j+1) = Y (t j )e
w j , j = 0, . . . , (Ti+1 − Ti )/Δt − 1, (6)

where w j = (r −0.5σ 2)Δt +σ
√

Δt Z j and t j = Ti + jΔt . LetWj = ∑ j
i=0 wi , then

Y (t j+1) = Y (Ti )eWj , j = 0, . . . , (Ti+1−Ti )/Δt−1. In general,Y (Ti+1) �= X(Ti+1).
To construct a path connecting X(Ti ) and X(Ti+1), we apply the Brownian bridge
technique to Wj . Let

Bj = Wj + t j − Ti
Ti+1 − Ti

log
X(Ti+1)

Y (Ti+1)
, j = 0, . . . , (Ti+1 − Ti )/Δt − 1. (7)

Then, we obtain a full path connecting X(Ti ) and X(Ti+1) as

X(t j+1) = X(Ti )e
Bj , j = 0, . . . , (Ti+1 − Ti )/Δt − 1. (8)
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Fig. 4 Regenerated stock index
path and its Brownian bridge
process passing the two given
points

Regenerated path
Brownian bridge path

Fig. 5 Daily stock path for 3years

Figure 4 shows the regenerated stock index path and its Brownian bridge process
passing two given points. A sample path process with one time step (Δt = T ) in range
[0, T ] and a sample path process with a small time step (Δt < T ) using Brownian
bridge connecting two end points in range [0, T ] has the same mean and variance. For
example, the sample path process with one time step has amean W (T )−W (0)

T t+W (0) at
time t because this path is linear (0 ≤ t ≤ T ). Themeanof the sample path processwith
a small time step using Brownian bridge is obtained using the conditioning formula
(Glasserman 2013):

E[W (s)|W (u) = x,W (t) = y] = (t − s)x + (s − u)y

t − u
, (9)

Var [W (s)|W (u) = x,W (t) = y] = (s − u)(t − s)

t − u
. (10)

Therefore, the sample path process with a small time step using Brownian bridge

has mean W (T )−W (0)
T t + W (0). According to the formula, the variance is constant

regardless of the two end points of the connection. For this reason we may use the
proposed algorithm.

Further details concerning the fast Brownian bridge MCS algorithm are presented
in the following Algorithm 1 in pseudo code.

In summary, we highlight the fundamental difference between the proposed and
the conventional standard algorithms. In standard Monte Carlo simulation for ELS
pricing, we generate a full daily path for the 3years as shown in Fig. 5 and check early
repayments and knock-in barrier.
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Algorithm 1 Fast MCS algorithm for one-asset ELS
Require: Set initial price S0, maturity T , the number of checking days Nc , the number of sample paths Nm ,
the number of total time steps NT , time-step size Δt = T /NT , face value F , volatility σ of underlying
asset, risk-neutral interest rate r , early redemption dates Ti , coupon rates ci for early and final redemptions,
strike percentages Ki , dummy d, and knock-in barrier D. Set Mi = 0 and X(t) = 100S(t)/S0. Here,
1 ≤ i ≤ Nc and T0 = 0.
for k = 1 to Nm do

	 Generate stock path for Ti only as
for i = 0 to Nc − 1 do

X(Ti+1) = X(Ti ) exp((r − 0.5σ 2)(Ti+1 − Ti ) + σ
√
Ti+1 − Ti Zi ), Zi ∼ N (0, 1)

end for
	 Check the value of the stock path at checking days
if X(T1) ≥ K1 then M1 = M1 + (1 + c1)F
else if X(T2) ≥ K2 then M2 = M2 + (1 + c2)F

.

.

.

else if X(TNc ) ≥ KNc then MNc = MNc + (1 + cNc )F
else if min1≤i≤Nc {X(Ti )} ≤ D then MNc = MNc + FX(TNc+1)/100
else

	 Generate a daily stock path passing through X as
for i = 0 to Nc − 1 do

Set Y (Ti ) = X(Ti )
for j = Ti /Δt to Ti+1/Δt − 1 do

Y (t j+1) = Y (t j ) exp(w j ),

where w j = (r − 0.5σ 2)Δt + σ
√

Δt Z j , Z j ∼ N (0, 1), and t j = jΔt
end for
	 Apply the Brownian bridge
for j = Ti /Δt to Ti+1/Δt − 1 do

Y (t j+1) = Y (Ti ) exp(Wj ), Wj = ∑ j
p=Ti /Δt w(tp)

end for
for j = Ti /Δt to Ti+1/Δt − 1 do

X(t j ) = X(Ti ) exp(B j ), B j = Wj + t j−Ti
Ti+1−Ti

log
X(Ti+1)
Y (Ti+1)

end for
end for
if min1≤ j≤Nc/Δt {X(t j )} ≤ D then MNc = MNc + FX(TNc+1)/100
else

MNc = MNc + (1 + d)F
end if

end if
end for
	 Take average and discount to present value.

V 0 = ∑Nc
i=1 e

−rTi Mi /Nm

To speed up the computation, we use Brownian bridge. First, we generate a semi-
annual stock path for 3years, see Fig. 6 and check early repayments and knock-in
barrier. Second, only in the case of all the conditions are not satisfied, we generate a
daily path passing the semiannual stock path using Brownian bridge, see Fig. 7. This
process allows us to calculate the ELS price much faster than standard Monte Carlo
simulation.
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872 H. Jang et al.

Fig. 6 Semiannual stock path for 3years

Fig. 7 Daily path passing the semiannual stock path using Brownian bridge

3 Numerical Experiment

In this section, we present numerical tests such as the convergence test, computation
of the Greeks, and a comparison of the CPU time between the standard MCS and
Brownian bridge MCS. These tests demonstrate that the proposed algorithm is faster
than the standardMCSwith an equivalent accuracy.We use the same parameter values
as in Sect. 2.All computations are run inMATLABversionR2017a on a quad 3.60GHz
Intel PC with 8GB RAM.

3.1 Convergence Test

Figure 8 illustrates the convergence of the price of the ELS with respect to the number
of samples. Open circles and plus marks represent the distribution of the ELS price
obtained using the Brownian bridge MCS and standard MCS, respectively. We plot
100 simulation results using the different number of samples. We can observe that the
two methods converge to the same value as the number of samples increases.

Table 2 lists the mean and variance of the ELS price with the standard and Brow-
nian Bridge MCS approaches. Each simulation is performed with 105 samples. The
mean and variance are obtained with 500 simulations. The results demonstrate the
equivalence between Brownian bridge MCS and standard MCS in terms of accuracy.
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104 5*104 105  5*105 106
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97.9
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P
ric

e

Brownian bridge MCS
Standard MCS

Fig. 8 ELS price versus the number of samples. Here, we plot 100 simulation results for each case

Table 2 Mean and variance of
the ELS prices with two
different approaches

Case Mean Variance

Standard MCS 98.1675 0.0048

Brownian bridge MCS 98.1662 0.0053

3.2 Greeks

In this section, we calculate the delta (Δ = ∂V 0/∂S) and gamma (Γ = ∂2V 0/∂S2)
of the ELS. To compute these Greeks, we apply the central finite difference approx-
imation, i.e., Δ ≈ [V 0(S + ΔS) − V 0(S − ΔS)]/(2ΔS) and Γ ≈ [V 0(S − ΔS) −
2V 0(S) + V 0(S + ΔS)]/ΔS2, where V 0 is the ELS price, S is the underlying asset,
and ΔS = 3. We compare the results from the standard MCS and Brownian bridge
MCS. Figure 9a–c show the option price, deltas, and gammas of the ELS. The rows
from top to bottom are the results with M=104, 105, and M=106, respectively. As the
number of samples increases, we can see that the delta and gamma obtained from the
standard and Brownian bridge MCS approaches converge to the same values.

Figure 10a–c show the option price, deltas, and gammas of the ELS. The rows from
top to bottom are the results with M=104, 105, and M=106, respectively. In this test,
the same sample paths for the different underlying stock index values are used. We
can observe the stable Greek values.

3.3 Comparison of CPUTime

We consider the elapsed time required to calculate the ELS price using the Brownian
bridgeMCS and standardMCS approacheswith the number of samples set to : 104, 5×
104, 105, 5×105 and 106. We compare the elapsed times for the Brownian bridge and
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874 H. Jang et al.

(a) (b) (c)

Fig. 9 a, b, and c show the option price, deltas, and gammas of the ELS. The rows from top to bottom are
the results with M=104, 105, and M=106, respectively

(a) (b) (c)

Fig. 10 a, b, and c show the option price, deltas, and gammas of the ELS. The rows from top to bottom
are the results with M=104, 105, and M=106, respectively. Here, we used the same sample paths for the
different underlying stock index values
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Table 3 Comparison of the elapsed time (in seconds) for the two different approaches

M 104 5 × 104 105 5 × 105 106

Brownian bridge MCS 0.0243 0.1210 0.2411 1.2054 2.4101

Standard MCS 0.6882 3.4435 6.8884 34.4489 68.8472

Ratio 28.320 28.461 28.570 28.578 28.566

104 5*104 105 5*105 106

Number of samples

log10-3

log100

log103

Elapsed time

Brownian bridge MCS
Standard MCS
Elapsed time ratio

Fig. 11 Comparison of the elapsed time (in seconds) on a log scale

standard MCS approaches. Table 3 shows the elapsed times for the Brownian bridge
MCS and standard MCS with respect to the number of samples. Also it demonstrates
the ratio of the elapsed times for both the methods. Figure 11 shows the log scale plot
of the results in Table 3. This shows that the Brownian bridge MCS is approximately
more than 20 times faster than the standard MCS.

3.4 ELS with Two or Three Underlying Assets

In this section, we calculate the prices of ELS products with two and three underlying
assets using Algorithms 2 and 3, respectively.

Most ELS products traded in South Korea financial market are products with two
or three underlying assets. To calculate a derivative price with two or three assets, we
need to generate a pair or triple of random numbers with correlations. We generate
correlated random numbers Z∗

1 , Z
∗
2 from a standard bivariate normal distribution using

Cholesky factorization (Glasserman 2013):

Z∗
1 = Z1 + ρZ2, Z∗

2 =
√
1 − ρ2Z2,

123

Author's personal copy



876 H. Jang et al.

Algorithm 2 Fast MCS algorithm for two-asset ELS
Require: Set maturity T , the number of checking days Nc , the number of sample paths Nm , the number of
total time steps NT , time-step size Δt = T /NT , face value F , volatilities σ1, σ2, correlation coefficient
ρ, correlated random numbers Z∗

1 , Z
∗
2 , risk-neutral interest rate r , early redemption dates Ti , coupon

rates ci for early and final redemptions, strike percentages Ki , dummy d, and knock-in barrier D. Set
Mi = 0, X1(0) = X2(0) = 100, and worst performer WP(t) = min(X1(t), X2(t)). Here, 1 ≤ i ≤ Nc
and T0 = 0.
for k = 1 to Nm do

	 Generate stock path for Ti only as
for i = 0 to Nc − 1 do

Xl (Ti+1) = Xl (Ti ) exp((r − 0.5σl )(Ti+1 − Ti ) + σl
√
Ti+1 − Ti Z

∗
l ), Z∗

l ∼ N (0, 1)
for l = 1, 2
WP(Ti ) = min(X1(Ti+1), X2(Ti+1))

end for
	 Check the value of the stock path at checking days
if WP(T1) ≥ K1 then M1 = M1 + (1 + c1)F
else if WP(T2) ≥ K2 then M2 = M2 + (1 + c2)F

.

.

.

else if WP(TNc ) ≥ KNc then MNc = MNc + (1 + cNc )F
else if min1≤i≤Nc {WP(Ti )} ≤ D then MNc = MNc + FX(TNc+1)/100
else

	 Generate a daily stock path passing through WP as
for i = 0 to Nc − 1 do

Set Y1(Ti ) = X1(Ti ) and Y2(Ti ) = X2(Ti )
for j = Ti /Δt to Ti+1/Δt − 1 do

Yl (t j+1) = Yl (t j ) exp(w
j
l ),

w
j
l = (r − 0.5σ 2

l )Δt + σl
√

Δt Z∗
l , Z

∗
l ∼ N (0, 1) for l = 1, 2

end for
	 Apply the Brownian bridge
for j = Ti /Δt to Ti+1/Δt − 1 do

Yl (t j+1) = Yl (Ti ) exp(W
j
l ), W j

l = ∑ j
p=Ti /Δt wl (tp) for l = 1, 2

end for
for j = Ti /Δt to Ti+1/Δt − 1 do

Xl (t j ) = Xl (Tj ) exp(B
j
l ), B j

l = W j
l + t j−Ti

Ti+1−Ti
log

Xl (Ti+1)
Yl (Ti+1)

for l = 1, 2

WP(t j ) = min(X1(t j ), X2(t j ))
end for

end for

if min1≤ j≤Nc/Δt {WP(t j )} ≤ D then MNc = MNc + FX(TNc+1)/100
else

MNc = MNc + (1 + d)F
end if

end if
end for
	 Take average and discount to present value.

V 0 = ∑Nc
i=1 e

−rTi Mi /Nm

123

Author's personal copy



Fast Monte Carlo Simulation for Pricing Equity-Linked… 877

Table 4 Comparison of the elapsed time (in seconds) for 2 asset with strike prices K1 = 90, K2 = 90,
K3 = 90, K4 = 85, K5 = 85, K6 = 80, knock-in barrier D = 65, volatilities σ1 = 0.24, σ2 = 0.22,
the correlation coefficient ρ = 0.5, and the risk-free interest free r = 0.02

M 104 5 × 104 105 5 × 105 106

Brownian bridge MCS 0.0246 0.1240 0.2498 1.2592 2.5238

Standard MCS 0.6352 3.1772 6.3552 31.8028 63.6232

Ratio 25.8471 25.6123 25.4406 25.2555 25.2092

where Z1 and Z2 are independent standard normal distribution. Here, ρ is the corre-
lation coefficient between the two underlying assets. We generate the two correlated
asset paths using the following formula:

X1(ti+1) = X1(ti )e
(r−0.5σ 2)Δt+σ1

√
Δt Z∗

1i ,

X2(ti+1) = X2(ti )e
(r−0.5σ 2)Δt+σ2

√
Δt Z∗

2i .

Next, we define the worst performer (WP(ti )) of the two asset paths:

WP(ti ) = min(X1(ti ), X2(ti )) (11)

Then, using the worst performer, we can calculate the ELS price with two underlying
assets in the same way as we calculated the ELS price for the one underlying asset.
Table 4 shows the elapsed time of the ELS prices with two underlying assets calculated
by the standardMCS and the proposed algorithm. This shows that the Brownian bridge
MCS is approximately 25 times faster than the standardMCS. For the interested reader,
we provide a MATLAB source code in “Appendix”.

Next, the ELS price of the three underlying assets is calculated in a similar way
to the ELS price of the two underlying assets. We can generate correlated random
numbers Z∗

1 , Z
∗
2 , Z

∗
3 from a standard multivariate normal distribution using Cholesky

factorization (Glasserman 2013):

Z∗
1 = Z1 + ρ12Z2 + ρ13Z3, Z∗

2 =
√

1 − ρ2
12Z2 + ρ23 − ρ12ρ13

√

1 − ρ2
12

Z3,

Z∗
3 =

√

1 − ρ2
13 − (ρ23 − ρ12ρ13)2

1 − ρ2
12

Z3,

where Z1,Z2,Z3 are independent standard normal distribution. Here, ρ12, ρ13, and ρ23
are the correlation coefficients between the three underlying assets.

We create the three correlated asset paths using the following formula:

X1(ti+1) = X1(ti )e
(r−0.5σ 2)Δt+σ1

√
Δt Z∗

1i ,

X2(ti+1) = X2(ti )e
(r−0.5σ 2)Δt+σ2

√
Δt Z∗

2i ,
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Algorithm 3 Fast MCS algorithm for three-asset ELS
Require: Set maturity T , the number of checking days Nc , the number of sample paths Nm , the number
of total time steps NT , time-step size Δt = T /NT , face value F , volatilities σ1, σ2, σ3, correlation
coefficients ρ12, ρ13, ρ23, correlated random numbers Z∗

1 , Z
∗
2 , Z

∗
3 , risk-neutral interest rate r , early

redemption dates Ti , coupon rates ci for early and final redemptions, strike percentages Ki , dummy d,
and knock-in barrier D. Set Mi = 0, X1(0) = X2(0) = X3(0) = 100, and worst performer WP(t) =
min(X1(t), X2(t), X3(t)). Here, 1 ≤ i ≤ Nc and T0 = 0.
for k = 1 to Nm do

	 Generate stock path for Ti only as
for i = 0 to Nc − 1 do

Xl (Ti+1) = Xl (Ti ) exp((r − 0.5σl )(Ti+1 − Ti ) + σl
√
Ti+1 − Ti Z

∗
l ), Z∗

l ∼ N (0, 1)
for l = 1, 2, 3
WP(Ti ) = min(X1(Ti+1), X2(Ti+1), X3(Ti+1))

end for
	 Check the value of the stock path at checking days
if WP(T1) ≥ K1 then M1 = M1 + (1 + c1)F
else if WP(T2) ≥ K2 then M2 = M2 + (1 + c2)F

.

.

.

else if WP(TNc ) ≥ KNc then MNc = MNc + (1 + cNc )F
else if min1≤i≤Nc {WP(Ti )} ≤ D then MNc = MNc + FX(TNc+1)/100
else

	 Generate a daily stock path passing through WP as
for i = 0 to Nc − 1 do

Set Y1(Ti ) = X1(Ti ), Y2(Ti ) = X2(Ti ) and Y3(Ti ) = X3(Ti )
for j = Ti /Δt to Ti+1/Δt − 1 do

Yl (t j+1) = Yl (t j ) exp(w
j
l ),

w
j
l = (r − 0.5σ 2

l )Δt + σl
√

Δt Z∗
l , Z

∗
l ∼ N (0, 1) for l = 1, 2, 3

end for
	 Apply the Brownian bridge
for j = Ti /Δt to Ti+1/Δt − 1 do

Yl (t j+1) = Yl (Ti ) exp(W
j
l ), W j

l = ∑ j
p=Ti /Δt wl (tp) for l = 1, 2, 3

end for
for j = Ti /Δt to Ti+1/Δt − 1 do

Xl (t j ) = Xl (Tj ) exp(B
j
l ), B j

l = W j
l + t j−Ti

Ti+1−Ti
log

Xl (Ti+1)
Yl (Ti+1)

for l = 1, 2, 3

WP(t j ) = min(X1(t j ), X2(t j ), X3(t j )
end for

end for

if min1≤ j≤Nc/Δt {WP(t j )} ≤ D then MNc = MNc + FX(TNc+1)/100
else

MNc = MNc + (1 + d)F
end if

end if
end for
	 Take average and discount to present value.

V 0 = ∑Nc
i=1 e

−rTi Mi /Nm
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Table 5 Comparison of the elapsed time (in seconds) for 3 asset with strike prices K1 = 90, K2 =
90, K3 = 90, K4 = 85, K5 = 85, K6 = 80, knock-in barrier D = 65, volatilities σ1 = 0.25, σ2 =
0.24, σ3 = 0.23,the correlation coefficient ρ12 = 0.5, ρ13 = 0.5, ρ23 = 0.5, the risk-free interest free
r = 0.02

M 104 5 × 104 105 5 × 105 106

Brownian bridge MCS 0.0449 0.2226 0.4477 2.2468 4.5165

Standard MCS 0.9783 4.8933 9.7851 48.9536 97.9710

Ratio 21.7882 21.9798 21.8574 21.7877 21.6917

X3(ti+1) = X3(ti )e
(r−0.5σ 2)Δt+σ3

√
Δt Z∗

3i .

Then, we define the worst performer(WP(ti )) between three asset paths:

WP(ti ) = min(X1(ti ), X2(ti ), X3(ti )). (12)

Then, using the worst performer, we can calculate the ELS price with three underly-
ing assets. Table 5 shows comparison results of elapsed times. This demonstrates that
the Brownian bridge MCS is approximately 21 times faster than the standard MCS.

4 Conclusion

In this article, we presented a fast Brownian bridge MCS algorithm for pricing a
step-down ELS with a knock-in barrier. In the proposed algorithm, we first generate a
stock path for redemption dates only. If the generated stock path does not satisfy the
conditions for early redemption and the path has not been below the knock-in barrier at
the redemption dates, then we recreate a daily path using Brownian bridge that passes
values at the redemption dates. We have provided the detailed numerical algorithms
for a one-asset step-down ELS. The computational results demonstrated the efficiency
and the accuracy of proposed fast MCS algorithm. The new algorithm is more than
20 times faster than a conventional one with an equivalent accuracy. In future work,
we will implement the proposed method on mobile devices.
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Appendix

In this appendix, we provide a MATLAB source code for two asset ELS pricing.
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% Tow asset ELS pricing by using Brownian Bridge

S0=100; % Initial price
T=3; % Maturity
ddt=0.5; Nc=T/ddt; % The number of checking days
oneyear=360; NT=oneyear*T; % The number of total time steps
dt=1/oneyear; % time-step size
Nm=1.0e6; % The number of sample paths
F=100; % Facevalue
sigma1=0.25; sigma2=0.24; % Volatility of underlying assets
r=0.02; % risk-neutral interest rate
Ti=ceil(3*oneyear*cumsum(ones(1,Nc))/Nc); % Early redemption dates
% Coupon rates for early and final redemptions
ci=[0.05 0.10 0.15 0.20 0.25 0.30];
Ki=[0.90 0.90 0.90 0.85 0.85 0.80]*S0; % Strike percentages
d=ci(end); % Dummy
D=0.65*S0; % Knock-in barrier
rho=0.5;c=chol([1 rho;rho 1]);
payment=(1+ci)*F;
day=[1 Ti+1];
tot_payoff=zeros(1,Nc);
coef11=(r-0.5*sigma1ˆ2)*ddt;coef21=sigma1*sqrt(ddt);
coef12=(r-0.5*sigma2ˆ2)*ddt;coef22=sigma2*sqrt(ddt);
coef13=(r-0.5*sigma1ˆ2)*dt;coef23=sigma1*sqrt(dt);
coef14=(r-0.5*sigma2ˆ2)*dt;coef24=sigma2*sqrt(dt);
X1=zeros(1,Nc+1);X1(1)=S0;X2=X1;WP=zeros(1,Nc);
n=180;t=0:n;tn=t/n;
Z=randn(2,Nc,Nm);Z=reshape(Z,[2,Nc*Nm]);
w=c*Z;w=reshape(w,[2,Nc,Nm]);
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for m=1:Nm
re_array=1;
M=zeros(1,Nc);
for i=1:Nc
X1(i+1)=X1(i)*exp(coef11+coef21*w(1,i,m));
X2(i+1)=X2(i)*exp(coef12+coef22*w(2,i,m));
WP(i)=min(X1(i+1),X2(i+1));
if WP(i)>=Ki(i)
M(i)=payment(i);
re_array=0;
break
end
end
if re_array==1
if min(WP)<=D
M(end)=WP(end);
else
for k=1:Nc
re_w=c*randn(2,n);
win1=[0 cumsum(coef13+coef23*re_w(1,:))];
win2=[0 cumsum(coef14+coef24*re_w(2,:))];
wb1=log(X1(k+1)/X1(k)); wb2=log(X2(k+1)/X2(k));
win1=((wb1-win1(n+1))*tn)+win1;
win2=((wb2-win2(n+1))*tn)+win2;
Re_X1=X1(k)*exp(win1);
Re_X2=X2(k)*exp(win2);
Re_WP=min(Re_X1,Re_X2);
if min(Re_WP)<=D
M(end)=F*WP(end)/S0;
break
elseif k==Nc
M(end)=F*(1+d);
end
end
end
end
tot_payoff=tot_payoff+M;
end
BB2_price=sum(tot_payoff/Nm.*exp(-r*Ti/oneyear))
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