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SUMMARY

We propose an accurate and robust numerical method for the phase-field model of fluid vesicles. An equi-
librium shape of fluid vesicle is obtained by minimizing the bending energy with volume and surface area
constraints. We propose a hybrid numerical scheme that combines the Lagrange multiplier and penalty meth-
ods for two constraints. The numerical method is based on a nonlinearly stabilized splitting scheme and a
direct volume correction algorithm. A large penalty constant is generally required; however, it does not guar-
antee that the surface area converges to a given value. Thus, we propose an adaptive constraint algorithm for
the penalty method. Various numerical examples are performed to demonstrate the accuracy and robustness
of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Biological vesicle membranes are complex structures whose fundamental components include
lipids, proteins, and cholesterol; see Figure 1. These are widely studied in biology, biophysics,
and bioengineering because the biomembranes form the basic structural units and the membrane
morphology plays an important role in their biological function [1, 2].

There have been many experimental studies on the configurations and deformations of elastic
biomembranes [3–6]. The equilibrium configurations of a vesicle membrane are obtained by mini-
mizing the elastic bending energy with a prescribed volume and surface area. The constant surface
area is considered by the incompressibility of the membrane. And, the constant volume is considered
vesicle with the inside pressure and outside pressure balanced by the osmotic pressure [7].

The deformation of vesicle membranes was observed in a study of the elastic bending energy
using a phase-field approach [8–10] and in incompressible viscous fluid [11–13]. In the other way,
a dynamically triangulated membrane model has been employed to study fluid vesicles [14–16] and
red blood cells [17, 18]. In [8–10, 13, 19, 20], authors have studied numerical ideas for the simula-
tion of Willmore flow. By using Lagrange multipliers, the model in [7, 10, 20–23] can effectively
incorporate constraints for preserving the volume and surface area. In [8, 13, 19, 24], the authors
used penalty methods to enforce the volume and surface area constraints. In general, the methods
need large penalty constants; however, it has stability and convergence problems.

Numerical experiments of fluid vesicle are important to demonstrate the real phenomenon. The
surface area of fluid vesicle under specific flow conditions is usually not constant. However, the
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Figure 1. Schematic representation of (a) membrane, (b) lipid bilayer, and (c) single lipid.

incompressibility of the membrane restricts the flow field to have the two-dimensional divergence
free on the vesicle surface. Also, the constant volume requires the flow field to be three-dimensional
divergence free on the whole domain. Therefore, the fluid vesicle dynamics satisfy the volume
conservation with the given surface area.

We present a numerical method for the phase-field model of the Willmore flow with the volume
conservation and surface area constraint. This paper is organized as follows. In Section 2, we briefly
review the Lagrange multiplier and the penalty methods and propose a hybrid method. We describe
the numerical method for the Willmore flow and the adaptive method for the surface area con-
straint in Section 3. Numerical experiments are presented in Section 4, and conclusions are given in
Section 5.

2. PHASE-FIELD MODEL FOR A VESICLE MEMBRANE

The equilibrium shape of a vesicle membrane � is determined by minimizing the bending energy
[25, 26]

Eelastic D

Z
�

�H 2ds; (1)

where � is the bending rigidity and H is the mean curvature of the membrane surface. A phase-
field function �.x/ is defined in the computational domain � to represent the vesicle membrane as
� D ¹x W �.x/ D 0º, the inside of the membrane as ¹x W �.x/ > 0º, and the outside of the membrane
as ¹x W �.x/ < 0º; see Figure 2. The regions away from the membrane � are close to � D 1 or �1.

We assume that the phase-field function is a hyperbolic tangent profile as

�.r/ D tanh

�
r
p
2�

�
; (2)

where r is a local coordinate along the interface normal. A transition parameter � is taken to be a
finite but small positive value. We then have the equality

F.�/ D
.�2 � 1/2

4
D
�2

2
jr�j2: (3)

Figure 2. Schematic illustration of phase-field function for a vesicle membrane.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 78:63–75
DOI: 10.1002/fld



HYBRID METHOD FOR THE PHASE-FIELD MODEL OF FLUID VESICLES 65

The mean curvature is defined as H D r � .r�=jr�j/, and it can be expanded as

H D r
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(4)

where � D �3 � � � �2��. Let a regularized Dirac delta function [27] be given as ı.�/ D 3.�2 �
1/2=

�
4
p
2�
�

, then it satisfiesZ 1
�1

ı.�/ dr D
Z 1
�1

3.�2 � 1/2

4
p
2�

dr D 1: (5)

We define the elastic bending and surface area energies as

W.�/ D

Z
�

�H 2ı.�/ dx D
3�

2
p
2�3

Z
�

�2 dx; (6)

B.�/ D

Z
�

ı.�/ dx D
3

2
p
2�

Z
�

�
F.�/C

�2

2
jr�j2

	
dx: (7)

Note that, as � goes to zero, W.�/ and B.�/ approaches the bending energy Eelastic and surface area
of � , respectively. In addition, the volume is defined as

A.�/ D

Z
�

�.x/ dx: (8)

Because �.x/ is transited from �1 to 1, A.�/ is not a physical volume, however, it is related by
.A.�/Cj�j/=2. To minimize the bending energyW with the constraints for the volume and surface
area, we can apply several approaches such as the Lagrange multiplier and penalty methods. Now,
we review two numerical methods, the Lagrange multiplier and the penalty methods. Then, we
propose a method combined with the Lagrange multiplier and the penalty methods.

2.1. Lagrange multiplier method

The Lagrange multiplier method is a popular method for solving the nonlinear constrained problems.
To minimize the bending surface energy W.�/ with the prescribed volume A.�/ and surface area
B.�/ constraints, we apply the following gradient flow equation

�t D �
ıW.�/

ı�
� 	1

ıA.�/

ı�
� 	2

ıB.�/

ı�
; (9)

where ı=ı� denotes the first variation of the functional and 	1 and 	2 are the Lagrange multipliers
for the two constraints. Let � be sufficiently smooth and satisfy n � r� D n � r� D 0 on @�. We
then have

d

dt
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d
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We identify

ıW.�/

ı�
WD

3�
p
2�3
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F 00.�/� � �2��

�
;
ıA.�/
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ıB.�/
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3

2
p
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For convenience, let us define g.�/ D ıW.�/=ı� and f .�/ D ıB.�/=ı�, then we obtain the
following governing equation:

�t D �g.�/ � 	1 � 	2f .�/: (13)

For the volume and surface area conservation,
R
� �t dx D 0 and dB.�/=dt D 0, we have

	1

Z
�

dxC 	2

Z
�

f .�/ dxC
Z
�

g.�/ dx D 0; (14)

Z
�

f .�/ .g.�/C 	1 C 	2f .�// dx D 0: (15)

Lagrange multipliers 	1 and 	2 are obtained by solving Eqs. (14) and (15).

2.2. Penalty method

We use two penalty constants M1 and M2 to get a modified elastic bending energy as

E2.�/ D W.�/CM1.A.�/ � ˛/
2 CM2.B.�/ � ˇ/

2; (16)

where ˛ and ˇ are the given volume and surface area, respectively. The solution of the energy
minimization can be obtained from the solution of the gradient flow equation

�t D �
ıE2.�/
ı�

D �g.�/ � 2M1.A.�/ � ˛/ � 2M2.B.�/ � ˇ/f .�/: (17)

In general, we should use large penalty constants M1 and M2 to enforce the constraints.

2.3. Hybrid method

We propose a hybrid method by combining the penalty and the Lagrange multiplier methods. We
modify the original energy equation (16) by ignoring the penalty term for the area A.�/.

E.�/ D W.�/CM.B.�/ � ˇ/2: (18)

The governing equation can be derived from a constrained gradient flow.

�t D �g.�/ � 2M.B.�/ � ˇ/f .�/: (19)

Because Eq. (19) does not guarantee the volume conservation, we apply the Lagrange multiplier

.t/F.�/ as

�t D �g.�/ � 2M.B.�/ � ˇ/f .�/C 
.t/F.�/; (20)
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where 
.t/ is defined as


.t/ D

R
�
Œg.�/C 2M.B.�/ � ˇ/f .�/� dxR

�
F.�/dx

: (21)

We need to point out that the proposed multiplier is a space–time dependent Lagrange multiplier
for the volume constraints; however, it does not guarantee the membrane incompressibility. It is
sophisticated to supply the surface area where it is lost from dynamics or numerical calculations.

3. NUMERICAL METHODS

We shall discretize the computational domain� D .a1; b1/�.a2; b2/�.a3; b3/. LetNx; Ny , andN´
be the number of cells in the x-direction,y-direction, and ´-direction, respectively. And, we assume
the uniform mesh with a space step size h D .b1 � a1/=Nx D .b2 � a2/=Ny D .b3 � a3/=N´. The
grid points are located at cell-center as

xijk D .xi ; yj ; ´k/ D .a1 C .i � 0:5/h; a2 C .j � 0:5/h; a3 C .k � 0:5/h/: (22)

We then define the discrete domain as

�h D
®
xijk j i D 1; : : : ; Nx; j D 1; : : : ; Ny ; k D 1; : : : ; N´

¯
: (23)

Let �n
ijk

and �n
ijk

be approximations of �.xijk; tn/ and �.xijk; tn/, where tn D n�t and �t is a
time step. We implement the zero Neumann boundary condition for � by requiring that

Dx�� 12 ;j;k
D Dx�NxC 12 ;j;k

D Dy�i;� 12 ;k
D Dy�i;NyC 12 ;k

D D´�i;j;� 12
D D´�i;j;N´C 12

D 0;
(24)

where the discrete differential operators are

Dx�iC 12 ;j;k
D
�iC1;j;k � �ijk

h
; Dy�i;jC 12 ;k

D
�i;jC1;k � �ijk

h
;

andD´�i;j;kC 12
D
�i;j;kC1 � �ijk

h
:

(25)

We also implement the Neumann boundary condition for � in a similar manner. And, we use
the notation

rd�ijk D
�
Dx�iC 12 ;j;k

;Dy�i;jC 12 ;k
;D´�i;j;kC 12

�
(26)

to represent the discrete gradient of � at cell-edges. Correspondingly, the divergence at cell-centers,
using values at cell-edges, is rd � .c; d; e/ijk D Dxcijk C Dydijk C Dxeijk . We then define the
discrete Laplacian by �d�ijk D rd � rd�ijk . And, we define discrete l2 inner products by

.c; d/h D h
3

NxX
iD1

NyX
jD1

N´X
kD1

cijkdijk; (27)
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.rdc;rdd/e D h
3

0
@NxX
iD0

NyX
jD1

N´X
kD1

DxciC 12 ;j;k
DxdiC 12 ;j;k

C

NxX
iD1

NyX
jD0

N´X
kD1

Dyci;jC 12 ;k
Dydi;jC 12 ;k

C

NxX
iD1

NyX
jD1

N´X
kD0

D´ci;j;kC 12
D´di;j;kC 12

1
A :

(28)

We also define discrete norms as kck22 D .c; c/h and krck21 D .rdc;rdc/e .

3.1. Operator splitting method

We use an operator splitting method to solve Eq. (20). We first solve Eq. (19), then adjust the phase-
field to recover the volume using the Lagrangian multiplier. Figure 3 illustrates the schematic for
the proposed numerical algorithm.

Now, we describe the procedure for the numerical solution from n-th to .nC 1/-th time step.
Step 1) We discretize Eq. (19) by applying the nonlinearly stabilized splitting scheme [28, 29],

which involves a semi-implicit time and centered difference space discretizations as follows:

��
ijk
� �n

ijk

�t
D

3�
p
2�3

�
�2�d�

�
ijk � F

00.�nijk/�
�
ijk

�
�
3M .Bd .�

n/ � ˇ/
p
2�

��ijk; (29)

��ijk D
�
��ijk

�3
� �nijk � �

2�d�
�
ijk; (30)

where Bd .�n/ D
3

2
p
2�

h
.F.�n/; 1/h C

�2

2
krd�

nk21

i
. We also define discrete energy functionals as

Wd .�
n/ D

3�

2
p
2�3



F 0.�n/ � �2�d�n

22 ; Ad .�n/ D .�n; 1/h : (31)

We use a nonlinear full approximation storage multigrid method to solve the nonlinear discrete
system (29) and (30). To condense the description, we present only the relaxation step for the multi-
grid method. A detailed description of multigrid method can be found in [30, 31]. First, we rewrite
Eqs. (29) and (30) as

��
ijk

�t
C

"
3�
p
2�3

F 00
�
�nijk

�
C
9
p
2�

�h2
C
3M
p
2�
.Bd .�

n/ � ˇ/

#
��ijk

D
�n
ijk

�t
C

3�
p
2�

��
iC1;jk

C ��
i�1;jk

C ��
i;jC1;k

C ��
i;j�1;k

C ��
ij;kC1

C ��
ij;k�1

h2
;

(32)

Figure 3. Schematic configurations of the proposed method for one time step. Step 1: reduction of the
bending energy with a surface area constraint. Step 2: volume correction.
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�
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��ijk
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(33)

We linearize the nonlinear term
�
��
ijk

�3
with respect to �m

ijk
,that is,

�
��
ijk

�3
D

�
�m
ijk

�3
C

3
�
�m
ijk

�2 �
��
ijk
� �m

ijk

�
. After substituting this linearlization into Eq. (33), we obtain

�

�
3
�
�mijk

�2
C
6�2

h2

�
��ijk C �

�
ijk D ��

n
ijk � 2

�
�mijk

�3
� �2

��
iC1;jk

C ��
i�1;jk

C ��
i;jC1;k

C ��
i;j�1;k

C ��
ij;kC1

C ��
ij;k�1

h2
:

(34)

Step 2) The updated phase-field �nC1
ijk

is then obtained by

�nC1
ijk
D ��ijk C�t


�F
�
��ijk

�
; (35)

where 
� D .�n � ��; 1/h = Œ�t .F.�
�/; 1/h�. Hence, the proposed scheme satisfies the volume

conservation property by

�
�nC1; 1

�
h
D
�
��; 1

�
h
C�t
�

�
F.��/; 1

�
h
D .�n; 1/h : (36)

3.2. Adaptive method for the surface area constraint

A large fixed number is usually used for the penalty constant M ; however, choosing an opti-
mal number is not an easy task, and the surface area Bd .�/ does not converge to the desired
surface area. Thus, we propose an adaptive algorithm for ˇ to converge to the desired surface
area ˇd .

The main idea of the algorithm is that we adaptively change the value of ˇ by monitoring the
tendency of Bd .�/. First, we define the initial state ˇ0 D ˇd . For simplicity, we define the first and
second time derivatives as

dtB
n�1
d D

Bn
d
� Bn�2

d

2�t
and d2t B

n�1
d D

Bn
d
� 2Bn�1

d
C Bn�2

d

�t2
: (37)

Figure 4. Algorithm for the surface area constraint ˇnC1 at time tnC1.
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We denote Bnq as the extrema of the quadratic approximation at tn�1. If the condition
dtB

n�1
d
� d2t B

n�1
d

< 0 holds, then we correct the surface area constraint ˇnC1 as

ˇnC1 D ˇn C
1

1C j� j

�
ˇd � B

n
q

�
; (38)

where � D
�
Bnq � B

n�1
q

�
=�t . Otherwise, ˇnC1 D ˇn. This proposed algorithm is illus-

trated in Figure 4. If the condition is positive, we expect that the value of Bd .�/ could be
rapidly changed.

4. NUMERICAL RESULTS

We perform the following numerical experiments: convergence test, evolution of the fluid vesicles,
and effects of the penalty constant and surface area constraints. Unless otherwise stated, we use the
initial condition as �.x; 0/ D tanh

�
r=
�p

2�
��

, where

r D 0:245 �
p
.x � 1/2=8C .y � 1/2=8C .´ � 0:5/2: (39)

Also, the computational domain is � D .0; 2/ � .0; 2/ � .0; 1/, and for other parameters, we use
� D 1; � D 0:06; h D 1=32, and �t D 1e-5. Then, the initial volume Ad .�0/ and surface area
Bd .�

0/ are �2.757 and 4.415, respectively. We denote the initial volume as ˛ D Ad .�0/.

4.1. Convergence tests

The initial condition is �.x; 0/ D tanh
�
r=
�p

2�
��

, where

r D 0:35 �
p
.x � 1/2=3C .y � 1/2=3C .´ � 0:5/2: (40)

To obtain the convergence rates, we perform a number of simulations with increasingly finer grids.
The numerical simulations are performed on the uniform grids h D 1=2n for n D 4, 5, and 6. We
implement the numerical computation up to time t D 1e-4 with the time step �t D 1e-5. We fix
the transition layer � D 0:06 and the interface area constraint ˇ D 5. The error is defined by the
difference between the own grid and interpolation of solution in the twice finer grid

ehijk WD �hijk �
1

8

�
�h
2 2i;2j;2k

C�h
2 2i�1;2j;2k

C�h
2 2i;2j�1;2k

C�h
2 2i�1;2j�1;2k

C �h
2 2i;2j;2k�1

C�h
2 2i�1;2j;2k�1

C�h
2 2i;2j�1;2k�1

C�h
2 2i�1;2j�1;2k�1

�
:

(41)

By the Richardson method, the convergence rate is defined as a ratio of errors: log2.kehk2=keh=2k2/.
Table I lists the errors and convergence rates. As expected from the discretization, the numerical
results show that the scheme has second-order accuracy with respect to space.

Table I. Error norms and convergence rates in space at time t D 1e-4.

h 1=16 Rate 1=32 Rate 1=64

kehk2 7.003e-3 1.990 1.762e-3 1.998 4.413e-4
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Table II. Error norms and convergence rates in time with h D 1=32.

�t 4e-6 Rate 2e-6 Rate 1e-6

ke�tk2 2.220e-3 1.028 1.080e-3 1.013 5.353e-4

To obtain the convergence rate for the time, we simulate with the space step h D 1=32 and a set
of time steps as�t D 4e-6, 2e-6, and 1e-6. We run the computation up to time T D 4e-4. We define
the error as e�tijk WD ��tijk � ��t=2ijk . Table II lists the errors and convergence rates. We observe
first-order accuracy with respect to time, as expected from the discretization.

4.2. Evolution with the constant surface area constraint

We consider the evolution of Willmore flow with the constant surface area constraint ˇ to show the
limitation of the penalty method. We run the simulation up to t D 0:03. For the other parameter,
we use the penalty constant M D 300, surface area ˇd D 5, and h D 1=32. Figure 5(a)–(d) shows
the evolution of the surface shape of �. The initial ellipsoid shape becomes to the fluid vesicles.
Figure 5(e) shows transverse sections of � at y D 1 as time evolves. And Figure 5(f) depicts the
normalized volume Ad .�n/=˛ and surface area Bd .�n/=ˇd . Ad .�n/=˛ D 1 verifies the volume

Figure 5. Evolution of the surface shape at time (a) t D 0, (b) t D 2e-3, (c) t D 4e-3, and (d) t D 1e-2. (e)
Contours at every 200 iterations. (f) Normalized surface area and volume.

Figure 6. (a) Evolution of the surface area with different penalty values and (b) surface area at time t D 0:03
via the different penalty constants.
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conservation of the hybrid scheme. However, Bd .�n/=ˇ does not converge to 1, which means that
the equilibrium shape does not have the given surface area.

4.3. Penalty constant

We investigate the effect of penalty constant M with the fixed ˇ D 5. Figure 6(a) shows the evo-
lution of the surface area B.�/ with different penalty constants M . B.�/ increases at the earlier
stage and converges to some value at the steady state. As M is increased, B.�/ at the steady-state
approaches to 5, as shown in Figure 6(b). However, the numerical method is not stable if we use a
more larger value of M .

4.4. Surface area

We consider the effect of surface area ˇ with the fixed M D 100. Figure 7(a) shows the evolution
of the surface area Bd .�/ with different surface area values ˇ. The surface area Bd .�/ increases
and then converges to some value at the steady state. As the value of ˇ increases, the surface area
Bd .�/ increases; see Figure 7(b). The dashed line is an expanded line with the first two values, and
it infers that the increase of the surface area at the steady state is not linear.

We can expect a value that the surface area at the steady state is 5, and we denote it as ˇ�. This
is a motivation of the proposed adaptive algorithm for the surface area constraint because we can
control parameters to obtain a desired surface area.

Figure 7. (a) Evolution of the surface area with surface area values and (b) last surface area via the surface
area.

Figure 8. Evolution of the surface shape at time (a) t D 0, (b) t D 2e-3, (c) t D 4e-3, and (d) t D 1e-2. (e)
Contours at every 200 iterations. (f) Normalized surface area and volume.
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Figure 9. (a) Evolutions of the surface area and (b) contours at the steady state with different penalty
constants.

Figure 10. Comparison without and with the variable surface area constraints. (a) Evolutions of the surface
areas B.�/ and constraints ˇ. (b) Bending energy via the time variable.

4.5. Evolution with the variable surface area constraint

We consider the evolution of Willmore flow with the variable surface area constraint. We run the
simulation up to t D 0:03. For the other parameter, we use the penalty constant M D 300 and the
surface area ˇ D 5. Figure 8(a)–(d) shows the evolution of the surface shape of �. An ellipse shape
is elongated and it becomes to the fluid vesicles at the steady state. Figure 8(e) shows the zero level
contours of � at y D 1. And, Figure 8(f) depicts the normalized volume Ad .�n/=˛ and surface area
Bd .�

n/=ˇ. In contrast with Figure 5, Bd .�n/=ˇ asymptotically approaches to 1. The evolutions in
Figure 8 are similar to those in Figure 5, but the steady-state result with the variable surface area
constraints has the given surface area and volume.

4.6. Penalty constants with the variable surface area constraint

Figure 9(a) shows the evolution of the surface area with different penalty constants M . The three
evolutions converge to the desired surface area ˇd D 5. The contours at t D 0:03 are drawn in
Figure 9(b). The adaptive method for the surface area is applied after the first ten iterations.

4.7. Surface area with the variable surface area constraint

We compare the evolution of the surface area without and with the variable surface area constraint;
see Figure 10(a). For the constant constraints, we use ˇ D ˇ� and M D 100. At t D 0:03, the
difference of the bending energy W.�/ is 8.24e-4 and that of the surface area constraint is 7.90e-5.

5. CONCLUSIONS

We proposed an accurate and robust numerical method for the phase-field model of a vesicle
membrane. The proposed numerical method combines the penalty and the Lagrange multiplier
methods for the surface area and volume constraints. The Lagrange multiplier corrects the volume
directly, and numerical results demonstrated the volume conservation. We investigate the effect of
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the penalty and constraint values to show the limitation and motivation. The adaptive constraint
method for the surface area was presented to resolve the problem that the surface area does not con-
verge to the desired surface area. We demonstrated the accuracy and effectiveness of the proposed
numerical method.
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