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Abstract

Multi-phase, multi-component fluid flows are used in a wide variety of industrial

and scientific applications. Problems involving changes in the topology of interfaces

between fluids are difficult to study both from the physical and computational points

of view since the fluids are complex with the density, viscosity, diffusivity, and surface

tension. In order to investigate the complex interactions, we develop numerical algo-

rithms and perform numerical simulations. In particular, the methods allow us to solve

more quickly, efficiently, and accurately the important equations in hydrodynamics:

the Cahn–Hilliard, Allen–Cahn, and Navier–Stokes equations.

To model multi-component fluid flows, we consider the vector valued phase-field,

velocity, and pressure which are governed by the N -component advective Cahn–Hilliard

and modified Navier–Stokes equations. For the N -component Cahn–Hilliard equation,

we present a practically unconditionally gradient stable conservative nonlinear numer-

ical scheme. The scheme is based on a nonlinear splitting method and is solved by

an efficient and accurate nonlinear multigrid method. And the scheme allows us to

convert the N -component Cahn–Hilliard equation into a system of N−1 binary Cahn–

Hilliard equations and significantly reduces the required computer memory and CPU

time. The Cahn–Hilliard–Navier–Stokes equations can be applied to any number of

fluid components. And, to investigate the buoyancy driven interpenetration of fluids



4

with different densities, we implement a time-dependent pressure boundary condition

through a time-dependent density field at the boundary. Due to the pressure boundary

treatment, we can perform long time evolutions resulting in an equilibrium state.

We present an unconditionally stable second-order hybrid numerical method for

solving the Allen–Cahn equation. The proposed method is based on operator splitting

techniques. The Allen–Cahn equation was divided into a linear and a nonlinear equa-

tion. First, the linear equation was discretized using an implicit Euler’s scheme and the

resulting discrete system of equations was solved by a multigrid method. The nonlinear

equation was then solved analytically due to the availability of a closed-form solution.

In particular, we apply this technique to dendritic growth simulation. A great challenge

in the simulation with various supercoolings is the large difference in time and length

scales. This introduces a severe time step restriction for stability. The proposed scheme

allows the use of a sufficiently large time step without the technical limitations.
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Chapter 1

Introduction

Multi-phase or multi-component fluid flows are used in a wide variety of applications

such as extractors [74], polymer-dispersed liquid crystals [75], polymer blends [76],

reactors [77], separators [78], sprays [79], and microfluidic technology [80, 81]. Problems

involving changes in the topology of interfaces between fluids are difficult to study both

from the physical and computational points of view since the fluids are complex with

the density, viscosity, diffusivity, and surface tension. For this reason, mathematical

modeling and numerical simulation of multi-phase or multi-component flows is a great

challenge.

There are two main approaches to simulate multi-phase or multi-component flows:

one is an interface tracking and the other is an interface capturing. In interface tracking

methods (front-tracking [82, 25], immersed boundary [83, 84], and volume-of-fluid [83,

85, 86]), Lagrangian particles are used to track the interface and are advected by the

velocity field. In interface capturing methods (level-set [87, 88, 40, 89] and phase-field

[72, 65, 56]), the interface is implicitly captured by a contour of a particular scalar

function.

The equations governing the motion of unsteady, viscous, incompressible, immisci-

ble two-fluid system are the Navier-Stokes equations (the subscript i denotes the ith
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Figure 1.1. Schematic of a two-phase domain.

fluid component):

ρi

(
∂ui

∂t
+ ui · ∇ui

)
= −∇pi +∇ · [ηi(∇ui +∇uT

i )] + ρig in Ωi,

∇ · ui = 0 in Ωi,

where ρi is the density, ui is the velocity, pi is the pressure, and ηi is the viscosity

of fluid i = 1, 2, the superscript T denotes the transpose, and g is the gravitational

force. A schematic of a two-phase domain is shown in Figure 1.1. Γ is the interface

between two fluids, n = (n1, n2) is the outward unit normal vector to the interface, and

t = (t1, t2) is the unit tangent vector to the interface.

In fluid flow problems with moving interfaces, part of the interface of the compu-

tational domain is unknown and must be determined as part of the solution. On the

unknown interface, the boundary conditions should be satisfied. The dynamic con-

dition requires that the forces acting on the fluid at the interface be in equilibrium

(momentum conservation at the interface). This means that the normal forces on ei-

ther side of the interface are of equal magnitude and opposite direction, while the forces

in the tangential direction are of equal magnitude and direction (neglecting the surface



8

tension):

(n · τ)1 · n = −(n · τ)2 · n and (n · τ)1 · t = (n · τ)2 · t,

where τ is the stress tensor (including pressure terms). The kinematic condition requires

that the interface be a sharp boundary separating the two fluids that allows no flow

through it. This states that the components of the velocity normal (or tangential) to

the interface are equal for two fluids:

u1 · n = u2 · n and u1 · t = u2 · t.

Consider the effect of surface tension on a fluid interface. From the surface stress

boundary condition at an interface Γ between two fluids, we have the normal jump

condition

p1 − p2 + σκ =
(

2η1nk
∂uk

∂n

)

1

−
(

2η2nk
∂uk

∂n

)

2

,

where σ is the fluid surface tension coefficient and κ is the local surface curvature,

R−1
1 + R−1

2 , where R1 and R2 are the principle radii of curvature of the surface. The

above equation implies that both the surface tension and viscous stress at the interface

contribute to the pressure jump.

For incompressible and immiscible multi-component fluid flows, the governing equa-

tions can be written as

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p +∇ · [η(∇u +∇uT )] + SFsing + ρg, (1.1)

∇ · u = 0 in Ω = Ω1 ∪ Ω2, (1.2)

where ρ(x, t) is the density, u(x, t) is the velocity, p(x, t) is the pressure, η(x, t) is the

viscosity, SFsing = −σκδΓn is the singular surface tension force (δΓ is the surface delta

function).
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1.1. Phase-field models

Phase-field models are an increasingly popular choice for modeling the motion of

multi-phase or multi-component fluid flows [1]. In the phase-field model, sharp fluid

interfaces are replaced by thin but nonzero thickness transition regions where the in-

terfacial forces are smoothly distributed [2]. The basic idea is to introduce a conserved

order parameter (e.g., mass concentration) that varies continuously over thin interfacial

layers and is mostly uniform in the bulk phases (see Fig. 1.2).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

ξ

Figure 1.2. A concentration profile across an interface with thickness, ξ.

For density-matched binary liquids (let ρ = 1 for simplicity), the coupling of the

convective Cahn-Hilliard equation for the mass concentration with a modified momen-

tum equation that includes a phase field-dependent surface force is known as Model H

[60]. In the case of fluids with different densities a phase-field model has been proposed

by Lowengrub and Truskinovsky [61]. Complex flow morphologies and topological tran-

sitions such as coalescence and interface break-up can be captured naturally and in a

mass-conservative and energy-dissipative fashion since there is an associated free en-

ergy functional. The phase field is governed by the following advective Cahn-Hilliard
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equation:

∂c

∂t
+ u · ∇c = ∇ · [M(c)∇(F ′(c)− ε2∇c)],

where M(c) = c(1−c) is the mobility, F (c) = 1
4c2(1−c)2 is a Helmholtz free energy that

describe the coexistence of immiscible phases, and ε is a measure of interface thickness

and ε ∼ ξ (see Fig. 1.2). It can be shown that in the sharp interface limit ε → 0, the

classical Navier-Stokes system equations and jump conditions are recovered [61]. The

singular surface tension force is Fsing = −6
√

2τε∇ · (∇c ⊗∇c), where τ is the surface

tension coefficient [61]. An alternative surface tension force formulation based on the

CSF is Fsing = −6
√

2τε∇ ·
(
∇c
|∇c|

)
|∇c|∇c, with which one can calculate pressure field

directly from the momentum equations.

The advantages of the phase-field method are: (1) topology changes are automat-

ically described; (2) the composition field c has a physical meaning not only on near

interface but also in the bulk phases; (3) complex physics can easily be incorporated

into the framework, the methods can be straightforwardly extended to multicompo-

nent systems, and miscible, immiscible, partially miscible, and lamellar phases can be

modeled. For example, the binary model can be straightforwardly extended to de-

scribe three component flows as follows. Consider a ternary mixture and denote the

composition of components 1, 2, and 3, expressed as mass fractions, by c1, c2, and c3,

respectively. Because the concentrations sum to unity, only two of them need to be

determined, say c1, c2. The evolution of c1 and c2 is governed by the following advective

ternary Cahn-Hilliard equation:

∂c1

∂t
+ u · ∇c1 = ∇ ·

[
M(c1, c2)∇

(
F (c1, c2)

∂c1
− ε2∇c1 − 0.5ε2∇c2

)]
,
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∂c2

∂t
+ u · ∇c2 = ∇ ·

[
M(c1, c2)∇

(
F (c1, c2)

∂c2
− 0.5ε2∇c1 − ε2∇c2

)]
,

where M(c1, c2) =
∑3

i<j cicj is the mobility, F (c1, c2) = 1/4
∑3

i<j c2
i c

2
j is the Helmholtz

free energy that can be used to model the three immiscible mixtures, and c3 = 1−c1−c2.

In the ternary fluid flows, the singular surface tension force in the momentum should be

changed by is Fsing = −6
√

2
∑3

i=1 τi∇ · (∇ci⊗∇ci), where the physical surface tension

coefficients τij between two fluids i and j are decomposed into the phase specific surface

tensions τi such that τij = τi + τj .

Associated with diffuse-interfaces is a small scale ε, proportional to the width of the

interface. In real physical systems describing immiscible fluids, ε can be vanishingly

small. However, for numerical accuracy ε must be at least a few grid lengths in size.

This can make computations expensive. One way of ameliorating this problem is to

adaptively refine the grid only near the transition layer. Such methods are under

development by various research groups.

Phase-field methods have been used to model viscoelastic flow, thermocapillary

flow, spinodal decomposition, the mixing and interfacial stretching, in a shear flow,

droplet breakup process, wave-breaking and sloshing, the fluid motion near a moving

contact line, and the nucleation and annihilation of an equilibrium droplet (see the

references in the review paper [1]).
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Chapter 2

A binary fluid

We consider the incompressible flows of two immiscible fluids (1 and 2) of different

density and viscosity. The phase-field is defined to be either the difference between [16]

or the fraction of one of [72] the concentrations of the two mixtures.

φ =
m1 −m2

m1 + m2
or c =

m1

m1 + m2
, (2.1)

where m1 and m2 are the masses of the fluids 1 and 2. We note that −1 ≤ φ ≤ 1

and 0 ≤ c ≤ 1. Throughout this thesis, we will use φ and c as phase-fields defined by

Equation (2.1). The phase-field is also called by an order parameter [63]. The governing

equation for the phase-field is the advective Cahn–Hilliard (CH) equation:

∂c

∂t
+ u · ∇c = ∇ · (M(c)∇µ), (2.2)

µ = F ′(c)− ε2∆c, (2.3)

where u is the bulk velocity and M(c) is the phase-field dependent mobility. M(c) =

c(1−c) is used in [72], M(φ) = 1−φ2 is used in [55], and M(c) = 1 is used in [6]. When

we have a constant mobility, the CH dynamics is controlled by bulk diffusion. When

we have a variable mobility, the bulk diffusion is severely reduced, which corresponds

to the interface-diffusion-controlled dynamics, i.e., the coarsening process is mainly due

to the diffusion along the interface between the two phases. F (c) = 0.25c2(1 − c)2 is
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the Helmholtz free energy (see Figure 2.1). ε is a positive constant, which is related to

the thickness of the interfacial transition of the phase-field.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.005

0.01

0.015

0.02

composition, c

F (c)

Figure 2.1. A double well potential, F (c) = 0.25c2(1− c)2.

The CH equation without the flow arises from the Ginzburg–Landau free energy

E(c) :=
∫

Ω

(
F (c) +

ε2

2
|∇c|2

)
dx, (2.4)

where Ω is the region of space occupied by the system. To obtain the CH equation with

a variable mobility, one introduces a chemical potential µ as the variational derivative

of E ,

µ :=
δE
δc

= F ′(c)− ε2∆c

and defines the flux, J := −M(c)∇µ. As a consequence of mass conservation, we have

∂c

∂t
= −∇ · J ,

which is the CH equation with a variable mobility. The natural and no-flux boundary

conditions are

∂c

∂n
= J · n = 0 on ∂Ω, where n is normal to ∂Ω. (2.5)
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We differentiate the energy E and the total mass
∫
Ω c dx to get

d

dt
E(t) =

∫

Ω
(F ′(c)ct + ε2∇c · ∇ct) dx =

∫

Ω
µct dx =

∫

Ω
µ∇ · (M(c)∇µ) dx

=
∫

∂Ω
µM(c)

∂µ

∂n
ds−

∫

Ω
∇µ · (M(c)∇µ) dx = −

∫

Ω
M(c)|∇µ|2 dx ≤ 0

and

d

dt

∫

Ω
c dx =

∫

Ω
ct dx =

∫

Ω
∇ · (M(c)∇µ) dx =

∫

∂Ω
M(c)

∂µ

∂n
ds = 0,

where we used the no-flux boundary condition (2.5). Therefore, the total energy is

non-increasing in time and the total mass is conserved. If we put all the equations

(1.1), (1.2), (2.2), and (2.3) together, then we have

ρ(c)(ut + u · ∇u) = −∇p +∇ · [η(c)(∇u +∇uT )] + SF + ρ(c)g, (2.6)

∇ · u = 0, (2.7)

ct + u · ∇c = ∇ · (M(c)∇µ), (2.8)

µ = F ′(c)− ε2∆c. (2.9)

Singular force SFsing becomes a regular force SF in terms of phase-field.
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2.1. Variable density and viscosity

The density and viscosity are linear functions of the phase-field [55, 72]. Let ρ1 and

ρ2 be the densities of each fluid in the mixture, then the variable density of the mixture

is defined as

ρ(c) = ρ1c + ρ2(1− c) or ρ(φ) = ρ1
1 + φ

2
+ ρ2

1− φ

2
.

Similarly, the variable viscosity of the mixture is defined as

η(c) = η1c + η2(1− c) or η(φ) = η1
1 + φ

2
+ η2

1− φ

2
.

Then, if we use the linear interpolation, the density and viscosity change across the

interface with the same profiles to the scaled phase-field function. In [16], the harmonic

interpolation for the variable density and viscosity is used.

1
ρ(φ)

=
1 + φ

2ρ1
+

1− φ

2ρ2
and

1
η(φ)

=
1 + φ

2η1
+

1− φ

2η2
.

For the density, the harmonic interpolation is used and the linear interpolation is used

for the viscosity in [7].

1
ρ(φ)

=
1 + φ

2ρ1
+

1− φ

2ρ2
and η(φ) =

1 + φ

2
η1 +

1− φ

2
η2.

One of the reasons to choose the harmonic interpolation is that the solution of the

Cahn-Hilliard equation does not satisfy the maximal principle [16]. Hence, the linear

interpolation can not be guaranteed to be bounded away from zero. However, due to the

L∞-bound of the solution [8], the harmonic interpolations lead to desired properties.

In Figure 2.2, solid and dashed lines represent linear and harmonic interpolations of

density, respectively. If the value of c is negative, then the linear interpolated density
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•

•

ρ2

ρ1

c

ρ(c)

0 1
 

 

linear interpolation
harmonic interpolation

Figure 2.2. Linear (solid line) and harmonic (dotted line) interpola-
tions of density ρ.

can be negative which is not physical value. However, if the harmonic interpolation is

used, then we always have positive values of density.
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2.2. The Boussinesq approximation

In fluids, the dynamic variables typically required to describe the motion are the

velocity, pressure, viscosity, and density. The density is a very important quantity of

fluids since it determines fluid properties such as compressibility. Because of the com-

plexity of density variations in fluids, some assumptions have been introduced to reduce

the degree of the complexity. One of these assumptions is the Boussinesq approximation

[9], which is used in the field of buoyancy-driven flows.

Assume that the densities ρ1 and ρ2 (ρ1 and ρ2 are the densities of the heavier and

lighter fluid, respectively) are uniform on each side of the interface, and that the density

difference is small in the sense that the Atwood number At = (ρ1−ρ2)/(ρ1+ρ2) is small.

The Boussinesq approximation can be made in this case and is also related to the as-

sumption that all of the accelerations of flow are small compared to the gravitational ac-

celeration. In this approximation, the background density can be treated as a constant

ρ∗, i.e., the variation of background density is neglected. And the difference between the

actual density and ρ∗ will contribute only to the buoyancy force term of the momentum

equation [10]. Because of its simplicity in practical implementations (we solve a con-

stant instead of a variable coefficient Poisson equation), the Boussinesq approximation

is employed in many previous papers [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Aref and Tryggvason [13] proposed a model for the development of the Rayleigh-

Taylor instability in the Boussinesq approximation using concentrations of vorticity

along the interface. In their case, the density was not coupled to a scalar field, and the

buoyancy term in the Boussinesq Navier-Stokes equations was the only term related

to the weak stratification. Han and Tryggvason [14] examined the deformation and
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breakup of axisymmetric drops, accelerated by a constant body force, for small den-

sity differences between the drops and the surrounding fluid. In their work, a density

ratio was ρ1/ρ2 = 1.15 and a front tracking numerical technique was used to solve the

unsteady Navier-Stokes equations for both the drops and the surrounding fluid. They

showed, in the Boussinesq limit, as the Eötvös number increases the drops break up

in a backward facing bag, a transient breakup, and a forward facing bag mode. Young

et al. [15] investigated the miscible Rayleigh-Taylor instability in both two and three

dimensions. In their work, the fluid was assumed incompressible under the Boussinesq

approximation to make the problem more tractable. They found the three-dimensional

mixing zone expands two times faster than the two-dimensional mixing zone through

the simulation of randomly perturbed interfaces and identified three phases of evolution

for the three-dimensional mixing zone: the free-falling phase, the mixing phase, and the

another free-falling phase. Liu and Shen [16] modeled the mixture of two incompress-

ible fluids with a phase field model. A semi-discrete Fourier-spectral method for the

numerical approximation of a Navier-Stokes system coupled with a Cahn-Hilliard equa-

tion was proposed and analyzed. They used the Boussinesq approximation to model

the case where the two fluids have different densities.

Vladimirova and Rosner studied the fully nonlinear behavior of premixed flames in

a gravitationally stratified medium, subject to the Boussinesq approximation in [18, 19].

Vladimirova [20] simulated a bubble of reaction products rising in the reactant fluid

under the influence of gravity using the Boussinesq buoyancy approximation. The

Atwood numbers in their experiments were in the range of 0.075 ∼ 0.16. The author

showed the evolution of the bubble can be divided into two stages: the bubble grows
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radially in an essentially motionless fluid in the first stage and the bubble rises and is

distorted by the flow during the second stage. Celani et al. [21] studied the Rayleigh-

Taylor instability of two immiscible fluids in the limit of small Atwood numbers by

means of a phase-field description. They analytically rederived the known gravity-

capillary dispersion relation in the limit of vanishing mixing energy density and capillary

width. And numerical results were compared with known analytical results, both for

the linearly stable and unstable cases, and for the weakly nonlinear stages of the latter.

Forbes [22] studied the development of the Rayleigh-Taylor instability for inviscid and

viscous fluids. The author used the approximate Boussinesq approach rather than the

full Navier-Stokes equations of viscous flow and the density ratio was ρ1/ρ2 = 1.05.

A separate spectral method was presented to study the Rayleigh-Taylor instability in

a viscous Boussinesq fluid. The results were shown to agree closely with the inviscid

calculations for small to moderate times. In [24], Boffetta et al. investigated the

Rayleigh-Taylor turbulence in three dimensions at small Atwood number and at Prandtl

number one by means of high resolution direct numerical simulations of the Boussinesq

equations. The authors extended the mean-field analysis for velocity and temperature

fluctuations and showed that small-scale velocity and temperature fluctuations develop

intermittent distributions with structure function scaling exponents consistent with

Navier-Stokes turbulence advecting a passive scalar.

In the Boussinesq approximation, the background density can be treated as a con-

stant ρ∗, i.e., the variation of background density is neglected. And the difference

between the actual density and ρ∗ will contribute only to the buoyancy force term of
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the momentum equation [10]. Hence, Equation (2.6) becomes

ρ∗(ut + u · ∇u) = −∇p +∇ · [η(φ)(∇u +∇uT )] + SF + ρ(φ)g, (2.10)

where ρ∗ = (ρ1 + ρ2)/2 is the mean density [11, 21].

If we add and subtract the term ρ∗g to and from Equation (2.10), we get

ρ∗(ut + u · ∇u) = −∇p + ρ∗g +∇ · [η(φ)(∇u +∇uT )] + SF + (ρ(φ)− ρ∗)g. (2.11)

In the two-dimensional case, we can write Equation (2.11) as follows:

ρ∗(ut + u · ∇u) = −∇(p + ρ∗gy) +∇ · [η(φ)(∇u +∇uT )] + SF + (ρ(φ)− ρ∗)g.(2.12)

If we reset the pressure field as p = p + ρ∗gy and divide by ρ∗, then Equation (2.12)

becomes

ut + u · ∇u = − 1
ρ∗
∇p +

1
ρ∗
∇ · [η(φ)(∇u +∇uT )] +

1
ρ∗

SF +
ρ(φ)− ρ∗

ρ∗
g.

The buoyancy contribution can be rewritten in terms of ρ1, ρ2, and φ as:

ρ(φ)− ρ∗
ρ∗

g =
ρ1(1+φ

2 ) + ρ2(1−φ
2 )− ρ∗

ρ∗
g

= Atφg.

On the other hand, applying the similar procedure to the case of the variable density

model, the buoyancy contribution in Equation (2.6) can be rewritten as

ρ(φ)− ρ∗
ρ(φ)

g =
Atφ

1 + Atφ
g.

In our phase-field model, φ varies from −1 to 1. Note that Atφ (the Boussinesq case)

and Atφ/(1 + Atφ) (the variable density case) are linear and nonlinear functions with

respect to the phase-field φ. Figure 2.3 shows profiles of Atφ and Atφ/(1+Atφ) for two

different Atwood numbers At = 0.01 and At = 0.5. For At = 0.01, there is almost no

difference between Atφ and Atφ/(1+Atφ). And both Atφ and Atφ/(1+Atφ) are nearly
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zero. But, for At = 0.5, there is a difference between Atφ and Atφ/(1 + Atφ). This

difference implies the difference of the buoyancy force. Figures 2.4 (a) and (b) show

the buoyancy force for the Boussinesq and the variable density models with At = 0.5,

respectively. In the case of the Boussinesq model, the buoyancy force is symmetric along

the interface. But, in the case of the variable density model, the buoyancy force is not

symmetric along the interface although the phase-field is symmetric. This difference of

the buoyancy force causes a difference of the interface evolution for the Boussinesq and

the variable density models. If the density variation goes to zero, i.e., At ¿ 0, then

the difference between the Boussinesq and the non-Boussinesq fluids disappears. But

in general there is a difference between the Boussinesq and the non-Boussinesq fluids.
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At1φ/(1 + At1φ)
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At2φ/(1 + At2φ)

Figure 2.3. Profiles of Atφ (the Boussinesq case) and Atφ/(1 + Atφ)
(the variable density case) for two different Atwood numbers At1 = 0.01
and At2 = 0.5.
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Figure 2.4. The buoyancy force for (a) the Boussinesq approximation
and (b) the variable density models with At = 0.5. This difference
causes a difference of the interface evolution for the two different models.
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2.3. Regularized Dirac delta functions

Many numerical techniques, including immersed boundary [90, 91, 92, 93, 94, 95,

96, 97], volume-of-fluid [98, 99, 100, 101, 102, 103, 104, 105, 106, 107], and level-set

[108, 109, 110, 111, 112, 113, 114, 115], use the concept of a regularized Dirac delta

function to account for interfacial effects and many previous studies show that an

appropriate delta function is required to obtain more accurate results.

In the immersed boundary method, the elastic boundary is represented by a set

of Lagrangian points and the singular force at the Lagrangian points is determined by

the generalized Hooke’s law. This force is spread to the surrounding Eulerian points

using a delta function. In the immersed boundary method, most commonly used delta

functions are 2-point [92, 95, 97], 3-point [94, 95, 97], 6-point [90, 91, 95, 96], 4-point

cosine [93, 97], and 4-point [91, 93, 95, 97] functions. For all r, where r is the parameter

representing the position of the submerged boundary point and is scaled with respect

to the grid size h, the one-dimensional delta functions are listed below.

• 2-point delta function

δ(r) =
{

1− |r| if |r| ≤ 1,
0 otherwise.

• 3-point delta function

δ(r) =





1
3(1 +

√−3r2 + 1) if |r| ≤ 0.5,
1
6(5− 3|r| −

√
−3(1− |r|)2 + 1) if 0.5 ≤ |r| ≤ 1.5,

0 otherwise.

• 6-point delta function

δ(r) =





61
112 − 11

42 |r| − 11
56 |r|2 + 1

12 |r|3 +
√

3
336(243 + 1584|r|

−748|r|2 − 1560|r|3 + 500|r|4 + 336|r|5 − 112|r|6)1/2 if 0 ≤ |r| ≤ 1,
21
16 + 7

12 |r| − 7
8 |r|2 + 1

6 |r|3 − 3
2δ(|r| − 1) if 1 ≤ |r| ≤ 2,

9
8 − 23

12 |r|+ 3
4 |r|2 − 1

12 |r|3 + 1
2δ(|r| − 2) if 2 ≤ |r| ≤ 3,

0 otherwise.
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• 4-point cosine delta function

δ(r) =
{

1
4(1 + cos(πr

2 )) if |r| ≤ 2,
0 otherwise.

• 4-point delta function

δ(r) =





1
8(3− 2|r|+

√
1 + 4|r| − 4r2) if 0 ≤ |r| ≤ 1,

1
8(5− 2|r| −

√
−7 + 12|r| − 4r2) if 1 ≤ |r| ≤ 2,

0 otherwise.

The above five types of delta functions are shown in Figure 2.5. Shin et al. [95]

analyzed the stability regimes of the feedback forcing gains in the feedback forcing

method for several types of delta functions and showed that non-growing oscillations

became smaller for the delta function supported by more points. Yang et al. [97]

found that the non-physical oscillations are mainly due to the fact that the derivatives

of the regular discrete delta functions do not satisfy certain moment conditions and

demonstrated that the smoothed discrete delta functions can effectively suppress the

non-physical oscillations in the volume forces and improve the accuracy of the immersed

boundary method with direct forcing in moving boundary simulations.

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6
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Figure 2.5. Five types of delta functions used in the immersed bound-
ary method.
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The volume-of-fluid (VOF) method was proposed by Hirt and Nichols [30]. In

VOF method, the interface is reconstructed from the values of a color function which

represents the volume fraction of one of the fluids in each cell. The continuum surface

force (CSF) of Brackbill et al. [120] has been widely used to model surface tension in

multi-phase fluid flows in VOF method. In the CSF model [100, 101, 107, 55, 39, 63,

121], the surface tension force is converted into a volume force via a delta function:

f = σκnδ, where σ is the surface tension coefficient, κ is the curvature, n is the normal

to the surface, and δ is a delta function. In VOF method, the most commonly used

delta function is δ(c̃) = |∇c̃|, where c̃ is a smoothed version of the volume fraction.

The CSF model is simple and robust, and involves only the solving of a field equation

for a smoothed phase field c̃. However, the method is known to produce strong and

spurious currents near the interface. For this reason, many researchers have developed

new methods to reduce spurious currents [104, 107, 122, 123, 124]. Meier et al. [104]

reduced spurious currents using the piecewise-linear interface construction (PLIC-VOF)

method. In [124], a parabolic reconstruction of surface tension (PROST) algorithm is

used to gain higher order accuracy for the surface tension force.

In the level-set method, first devised and introduced by Osher and Sethian in [125],

delta functions are often used to distribute a singular force or compute a surface area

[113, 126, 127, 128]. Most commonly used delta functions are listed below. Here, ε is

proportional to the grid size, i.e., ε = mh for a positive number m.

• Delta function in [108, 110, 112, 114, 115]

δε(x) =
{

1
ε

(
1− ∣∣x

ε

∣∣) if |x| ≤ ε,
0 otherwise.
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• Delta function in [108, 109, 110, 111, 113, 114, 115]

δε(x) =
{

1
2ε

(
1 + cos(πx

ε )
)

if |x| ≤ ε,
0 otherwise.

Tornberg and Engquist [129] pointed out that the most common technique for reg-

ularization of delta functions in level-set simulations is not consistent and analyzed

the accuracy of regularization of delta functions. Smereka [112] presented methods for

constructing consistent approximations to Dirac delta measures concentrated on piece-

wise smooth curves or surfaces. Towers [130] proposed second-order finite difference

methods for approximating Heaviside functions and showed that the methods are more

accurate than a commonly used approximate Heaviside function.

We now present eight types of delta functions for phase-field models. From the

Ginzburg–Landau free energy (2.4), the phase-field c at the equilibrium state satisfies

the following equation:

1
4
c2(1− c)2 =

ε2

2
|∇c|2. (2.13)

By using Equation (2.13) and delta functions used in phase-field models [65, 131, 132,

133], we get new delta functions for the present model. In this thesis, eight types of

delta functions are chosen:

• Delta function in [65, 131] δ1(c) = 6
√

2ε|∇c|2.

• New delta function δ2(c) = 3
√

2c2(1− c)2/ε.

• Delta function in [132, 133] δ3(c) = 0.5(δ1(c) + δ2(c)).

• Delta function in [65] δ4(c) = 30
√

2εc(1− c)|∇c|2.

• New delta function δ5(c) = c(1− c)/(
√

2ε).

• New delta function δ6(c) = |∇c|.
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• New delta function δ7(c) = 0.5(δ5(c) + δ6(c)).

• New delta function δ8(c) = 630
√

2εc3(1− c)3|∇c|2.

For a flat interface with an equilibrium profile,

∫ ∞

−∞
δi(ceq) dx = 1 for all i = 1, 2, . . . , 8,

where ceq(x, y) = 0.5(1+tanh(x/(2
√

2ε))) is an equilibrium profile in the infinite domain

when the chemical potential is given by Equation (2.3) [64] and it is a good approxi-

mation in the finite domain. Figure 2.6 shows delta functions used in this paper. We

note that new delta functions δ5(c) and δ8(c) have wider and narrower supports than

δ1(c) and δ4(c), respectively.
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Figure 2.6. Delta functions for phase-field models.

We now consider a line of unit length on a unit domain Ω = (0, 1)× (0, 1):

c(x, y) =
1
2

(
1 + tanh

(
0.5− x

2
√

2a

))
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for different values of a. The value of a is related to the interface thickness. For

a = 0.5ε, ε, and 2ε, the length of line is given by

fi(a) =
∫

Ω
δi(c) dx dy.

This integral is calculated using the Mathematica code given in the Appendix. The

results are given in Table 2.1. Next, we consider a circle of radius 0.25 centered at the

center of a domain Ω = (0, 1)× (0, 1):

c(x, y) =
1
2

(
1 + tanh

(
0.25−

√
(x− 0.5)2 + (y − 0.5)2

2
√

2a

))
.

The circumference for different values of a is given in Table 2.1. In both cases, δ6(c) is

insensitive to the value of a. This means that the length of line or circle can be computed

accurately using δ6(c) regardless of the interface thickness. We will numerically discuss

this in more detail in Section 6.1. Figure 2.7 shows the graphs of fi(a) for i = 1, 2, . . . , 8.

Table 2.1. The length of line and circle with different interface thick-
nesses for each delta function.

Case 1: line Case 2: circle
a 0.5ε ε 2ε 0.5ε ε 2ε fi(a)
δ1 2 1 0.5 π 0.5π 0.25π f1(a) = 1/a
δ2 0.5 1 2 0.25π 0.5π π f2(a) = a
δ3 1.25 1 1.25 0.625π 0.5π 0.625π f3(a) = (1/a + a)/2
δ4 2 1 0.5 π 0.5π 0.25π f4(a) = 1/a
δ5 0.5 1 2 0.25π 0.5π π f5(a) = a
δ6 1 1 1 0.5π 0.5π 0.5π f6(a) = 1
δ7 0.75 1 1.5 0.375π 0.5π 0.75π f7(a) = (a + 1)/2
δ8 2 1 0.5 π 0.5π 0.25π f8(a) = 1/a
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Figure 2.7. The graphs of fi(a) for i = 1, 2, . . . , 8.
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2.4. Nondimensionalization

To restate the dimensional NSCH system in dimensionless form, we define the

dimensionless variables as

x′ =
x

Lc
, u′ =

u
Uc

, t′ =
tUc

Lc
, p′ =

p

ρcU2
c

, g′ =
g
g
, ρ′ =

ρ

ρc
, µ′ =

µ

µc
,

where Lc, Uc, and ρc are the characteristic length, velocity, and density, respectively. g

is the gravitational acceleration and µc is α, which is µ = α(φ3 − β
αφ − k

α∆φ) = µcµ
′.

Substituting these variables into the governing equations (2.6) - (2.9) we have

ρ′(u′t′ + u′ · ∇′u′) = −∇′p′ + η

ρcUcLc
∆′u′ +

gLc

U2
c

ρ′g′

− 3
√

2σε

4ρcLcU2
c

∇′ ·
( ∇′φ
|∇′φ|

)
|∇′φ|∇′φ, (2.14)

∇′ · u′ = 0, (2.15)

φt′ +∇′ · (φu′) =
Mµc

UcLc
∆′µ′, (2.16)

µ′ = φ3 − β

α
φ− k

αL2
c

∆′φ. (2.17)

Dropping the primes and considering α = β, Equations (2.14) - (2.17) become

ρ(ut + u · ∇u) = −∇p +
1

Re
∆u +

1
We

SF +
ρ

Fr
g, (2.18)

∇ · u = 0, (2.19)

φt +∇ · (φu) =
1

Pe
∆µ, (2.20)

µ = φ3 − φ− ε2∆φ, (2.21)

where SF = −0.75
√

2ε∇ · (∇φ/|∇φ|) |∇φ|∇φ. The dimensionless physical parameters

are the Reynolds number, Re, Weber number, We, Froude number, Fr, Peclet number,
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Pe, Cahn number, ε, given by

Re =
ρcUcLc

η
, We =

ρcLcU
2
c

σ
, Fr =

U2
c

gLc
, P e =

UcLc

Mµc
, ε =

√
k

αL2
c

.
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2.5. Snow crystal growth

In nonlinear dynamical systems, the physics of phase transformations has attracted

considerable interest. Crystal growth is an essential part of phase transformations

from the liquid phase to the solid phase via heat transfer. To simulate crystal growth,

cellular automaton [255, 273, 274, 275, 276], Monte-Carlo [260, 263], boundary integral

[256, 257, 264, 266], front-tracking [232, 243, 251], level-set [237, 241, 248, 270], and

phase-field [235, 236, 238, 239, 242, 245, 246, 247, 249, 258, 259, 261, 262, 265, 267,

268, 269, 272] methods have been developed. In this thesis, we focus on the phase-field

method for crystal growth simulations.

Many numerical methods such as explicit [243, 244, 247, 261, 268], mixed implicit-

explicit [259, 269, 272], and adaptive methods [236, 238, 258, 262, 265] have been

proposed for crystal growth problems. In particular, a multiple time-step algorithm

that uses a larger time step for the flow-field calculations while reserving a finer time

step for the phase-field evolution was proposed in [267]. One of the main difficulties in

the numerical simulations of crystal growth with various anisotropic interfacial energies

is the large difference in time and length scales. The use of space and temporal mesh

adaptivity is a natural choice to overcome this problem. Therefore, we need a scheme

that allows the use of a sufficiently large time step without the stability limitations.

In this paper we present a new accurate and efficient operator splitting algorithm for

solving the phase-field model of crystal growth. In particular, we focus on six-fold

symmetric crystal growth, which is related to snow crystal. Water has the unique

chemical property known as a hydrogen bond. The attractive interaction between the

hydrogen and oxygen atoms in different water molecules arranges the solid state water
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molecules to form a hexagonal shape. For such a reason, in specific temperature, snow

crystal grows into six-fold symmetric crystal [254]. The thickness and width of snow

crystal are in the ratio of 1 : 50, so snow crystal problems can be simplified into two-

dimensional problems. We consider here the solidification of a pure substance from its

supercooled melt in two-dimensional space.
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2.6. The Wulff construction

The equilibrium crystal shape is determined by minimizing the total interfacial free

energy. We use the following k-fold symmetric interfacial energy equation:

ε(θ) = ε0 [1 + εk cos(kθ)] ,

where ε0 is the mean interfacial tension and 0 ≤ εk < 1 is the anisotropy parameter.

O

A

B

M

(a) (b)

Figure 2.8. The Wulff construction. (a) Interfacial free-energy density
ε(θ) in the polar coordinates. (b) Equilibrium crystal shape (bold line)
for k = 6, ε0 = 1, and ε6 = 0.1.

In this paper, we focus on k = 6 case. The equilibrium shape is easily constructed

by the Wulff’s theorem [271]. We describe the construction of the equilibrium shape

geometrically [234]. Let M = (ε(θ), θ) be a point on the interfacial energy function in

the polar coordinates (see Figure 2.8(a)). The construction starts from the origin O

and draw the line segment OM to the point M . Draw the perpendicular line
←→
AB to

the line segment OM . Then the inner convex hull made from all such perpendiculars

is an equilibrium crystal shape as shown in Figure 2.8(b).

Conversely, let us assume the equilibrium shape is known and (r, θ) be the polar

coordinates of a point T of the crystal boundary S, that is, T = (r, θ). And let
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φ

θ
T = (x(φ), y(φ))

p(φ)

r

M
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B

S

O

Figure 2.9. Parameter definitions.

T = (x(φ), y(φ)) be the corresponding Cartesian coordinates, where φ is a parameter

and is the angle between x-axis and the perpendicular line to the tangent line
←→
AB at

the point T . Let M be the intersection point of the line
←→
AB and the perpendicular line

containing the origin to
←→
AB. Let the length of the line segment OM be p(φ). In Figure

2.9, we can see these parameter definitions. Then p(φ) can be obtained from the right

triangle 4OTM :

p(φ) = r cos(φ− θ) = r cosφ cos θ + r sinφ sin θ = x(φ) cosφ + y(φ) sin φ. (2.22)

We can express (x(φ), y(φ)) in terms of p(φ). First, take a derivative to p(φ), then we

have

pφ(φ) = xφ(φ) cos φ− x(φ) sin φ + yφ(φ) sin φ + y(φ) cos φ. (2.23)
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Since the normal vector (cosφ, sinφ) and the tangent vector (xφ, yφ) are orthogonal,

that is, (cosφ, sinφ) · (xφ, yφ) = 0, we can simplify Equation (2.23) as

pφ = −x sinφ + y cosφ. (2.24)

Now, by solving Equations (2.22) and (2.24) we have

x(φ) = p(φ) cosφ− pφ(φ) sin φ, y(φ) = p(φ) sinφ + pφ(φ) cosφ. (2.25)

Let F and A be the total edge free energy and the area of crystal, respectively and

be defined as

F =
∫

ε(φ)
√

(xφ(φ))2 + (yφ(φ))2dφ, (2.26)

A =
1
2

∫
(x(φ)yφ(φ)− y(φ)xφ(φ))dφ. (2.27)

Using Equation (2.25), we can rewrite Equations (2.26) and (2.27) in the form

F =
∫

ε(φ)(p(φ) + pφφ(φ))dφ,

A =
1
2

∫
p(φ)(p(φ) + pφφ(φ))dφ.

We want to minimize F with subject to a constant area constraint of A. Using the

Lagrange multiplier λ, we seek to minimize

F + λA =
∫ (

ε(φ) +
λ

2
p(φ)

)
(p(φ) + pφφ(φ))dφ.

And then, the Euler–Lagrange equation is

∂Q

∂p
− d

dφ

(
∂Q

∂pφ

)
+

d2

dφ2

(
∂Q

∂pφφ

)
= 0, (2.28)

where

Q =
(

ε +
λ

2
p

)
(p + pφφ). (2.29)
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From these two Equations (2.28) and (2.29), we get

p + pφφ = − 1
λ

(ε + εφφ). (2.30)

A solution of differential equation (2.30) is

p(φ) = − 1
λ

ε(φ).

This result implies that in a crystal at equilibrium, the distances of the faces from

the center of the crystal are proportional to their surface free energies per unit area

[234].

For large ε6 values, the crystal shape will be energy minimizing when certain orienta-

tions are missing. Missing orientations occur when the polar plot of r = 1/ε(θ) changes

convexity [240]. The curvature of a polar plot r(θ) is κ = (r2 + 2r2
θ − rrθθ)/(r2 + r2

θ)
3
2 .

For r(θ) = 1/ε(θ), the curvature is κ = (ε + εθθ)/[1 + ( εθ
ε )2]

3
2 . So convexity changes

whenever

ε + εθθ = ε0(1− 35ε6 cos 6θ) < 0.

If values of ε6 are larger than 1/35, then missing orientations occur. Figure 2.10 shows

the 6-fold Wulff equilibrium shapes ((x(φ), y(φ)) for 0 ≤ φ ≤ 2π) with two different

ε6 values: (a) ε6 = 1/50 and (b) ε6 = 1/10 (which shows the missing orientation).

Figure 2.11 shows the trace of (x(φ), y(φ)) with different intervals. φm is defined as the

smallest non-zero value which satisfies y(φm) = 0.
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(a) ε6 = 1/50 (b) ε6 = 1/10

Figure 2.10. The 6-fold Wulff equilibrium shapes with two different ε6 values.

(a) 0 ≤ φ ≤ φm (b) φm ≤ φ ≤ π/3− φm (c) π/3− φm ≤ φ ≤ π/3

Figure 2.11. Trace of (x(φ), y(φ)) with different intervals and y(φm) = 0.
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2.7. Governing equations of snow crystal growth

The phase-field model for the crystal growth is given by

ε2(c)
∂c

∂t
= ∇ · (ε2(c)∇c) + [c− λU(1− c2)](1− c2)

+
(
|∇c|2ε(c)∂ε(c)

∂cx

)

x

+
(
|∇c|2ε(c)∂ε(c)

∂cy

)

y

(2.31)

∂U

∂t
= D∆U +

1
2

∂c

∂t
,

where c is the order parameter, ε(c) is the anisotropic function, λ is the dimensionless

coupling parameter, and U = cp(T − TM )/L is the dimensionless temperature field.

Here cp is the specific heat at constant pressure, TM is the melting temperature, L is

the latent heat of fusion, D = ατ0/ε20, α is the thermal diffusivity, τ0 is the characteristic

time, and ε0 is the characteristic length. The order parameter is defined by c = 1 in

the solid phase and c = −1 in the liquid phase. The interface is defined by c = 0 and

λ is given as λ = D/a2 with a2 = 0.6267 [246, 247]. We define a normal vector of c as

(cx, cy) and an angle between normal vector and x-axis as φ that satisfies tanφ = cy/cx.

Then by replacing ε(c) with ε(φ) = ε0(1 + ε6 cos(6φ)), we can simplify the following

terms in Equation (2.31):

(
|∇c|2ε(φ)

∂ε(φ)
∂cx

)

x

=
(

(c2
x + c2

y)ε(φ)ε′(φ)
(
− cy

c2
x + c2

y

))

x

= − (
ε′(φ)ε(φ)cy

)
x
.

In a similar way, we get

(
|∇c|2ε(φ)

∂ε(φ)
∂cy

)

y

= (ε′(φ)ε(φ)cx)y .
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Hence we can rewrite the governing equations of 6-fold symmetric crystal growth as

following:

ε2(φ)
∂c

∂t
= ∇ · (ε2(φ)∇c) + [c− λU(1− c2)](1− c2)

− (
ε′(φ)ε(φ)cy

)
x

+
(
ε′(φ)ε(φ)cx

)
y

(2.32)

∂U

∂t
= D∆U +

1
2

∂c

∂t
. (2.33)
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2.8. Derivation of the thin film equation

We consider the dynamics of a thin layer of liquid of thickness h = h(x, y, t) on an

inclined surface driven by thermally created surface tension gradients and influenced by

gravity. The spatial variables x and y denote the direction of the flow and the direction

normal to the flow, respectively. Let α, ρ, g, η, γ, and τ = dγ/dx denote the angle

from horizontal of inclination of the plane, the density, the gravitational constant, the

dynamic viscosity, the surface tension, and the surface tension gradient of the liquid

[278].

We briefly review the derivation of the lubrication model [279]. We start from the

three-dimensional Navier-Stokes equations.

ρ(ut + uux + vuy + wuz) = −px + η(uxx + uyy + uzz)− ρg sinα,

ρ(vt + uvx + vvy + wvz) = −py + η(vxx + vyy + vzz),

ρ(wt + uwx + vwy + wwz) = −pz + η(wxx + wyy + wzz)− ρg cosα,

ux + vy + wz = 0,

where subscripts denote partial derivatives. In this system the dependent variables are

u(x, y, z, t), v(x, y, z, t), w(x, y, z, t), and p(x, y, z, t).

We define characteristic variables: L, H, U , V , W and T are characteristic length

(x- and y-direction), height (z-direction), velocity in x-direction, velocity in y-direction,

velocity in z-direction, and time, respectively. The lubrication approximation takes

advantage of the thickness of the film by employing a small parameter:

H

L
= ξ.
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The thin film equation is considered slow flow, so the Navier-Stokes equations reduce

to the Stokes equations:

0 = −px + η(uxx + uyy + uzz)− ρg sinα,

0 = −py + η(vxx + vyy + vzz),

0 = −pz + η(wxx + wyy + wzz)− ρg cosα,

ux + vy + wz = 0.

Before applying boundary conditions, we drop the terms containing uxx, uyy, vxx, vyy,

wxx, wyy, and wzz by comparing their size (in terms of powers of ξ) to other terms in

the Stokes equations. In particular, if

x = Lx̂, y = Lŷ, z = Hẑ, u = Uû, and t = T t̂, (2.34)

the incompressibility condition, ux + vy + wz = 0, gives us the following scaling for w:

w =
HU

L
ŵ = ξUŵ

and we see that

uxx =
U

L2
ûx̂x̂ ¿ U

H2
ûẑẑ = uzz, uyy =

U

L2
ûŷŷ ¿ U

H2
ûẑẑ = uzz,

vxx =
V

L2
v̂x̂x̂ ¿ V

H2
v̂ẑẑ = vzz, vyy =

V

L2
v̂ŷŷ ¿ V

H2
v̂ẑẑ = vzz,

wxx =
ξU

L2
ŵx̂x̂ ¿ ξU

H2
ŵẑẑ ¿ U

H2
ûẑẑ = uzz,

wyy =
ξU

L2
ŵŷŷ ¿ ξU

H2
ŵẑẑ ¿ U

H2
ûẑẑ = uzz, wzz =

ξU

H2
ŵẑẑ ¿ U

H2
ûẑẑ = uzz.
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Thus for a thin film we may reduce the Navier-Stokes equations to the following equa-

tions:

px = ηuzz − ρg sinα, (2.35)

py = ηvzz, (2.36)

pz = −ρg cosα, (2.37)

ux + vy + wz = 0.

.

The normal stress boundary condition equates the force exerted by the interface

at the liquid-air interface z = h(x, y, t) on the fluid below with the effect of surface

tension, through the curvature of the free surface, κ [280]:

p− patm = −γκ = −γ
(1 + h2

y)hxx + (1 + h2
x)hyy − 2hxhyhxy

(1 + h2
x + h2

y)3/2
.

Here, surface tension coefficient is denoted by γ. The expression for curvature can be

simplified in the lubrication approximation since

(hx)2 ≈
(

H

L

)2

= ξ2 ¿ 1 and (hy)2 ≈
(

H

L

)2

= ξ2 ¿ 1.

Therefore, the curvature is approximated by ∆h and the normal stress boundary con-

dition is

p− patm = −γ∆h at z = h(x, y, t). (2.38)

We choose the following linear equation of state to relate the surface tension gradient

to the temperature gradient:

Γ(Ts) = γ0 − τ(Ts − T∞),
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where Ts is the temperature at the surface, T∞ is the ambient temperature, τ is the

surface tension gradient, and γ0 is a base value of surface tension. The tangential stress

condition at the free surface z = h(x, y, t) is based on the assumption that we drive the

film with a constant surface stress, which couples the gradient in surface tension τ to

the scalar component of stress Tzx in the flow [281]:

τ = Tzx = 2ηDzx,

where subscript of T and D denotes partial derivative and component, respectively.

The strain rate tensor has the form

D =
1
2
(∇u +∇uT ) =

1
2




2ux uy + vx uz + wx

uy + vx 2vy vz + wy

uz + wx vz + wy 2wz


 .

Therefore Dzx = 1
2uz + O(ξ) and the tangential stress condition takes the form

τ = ηuz at z = h(x, y, t). (2.39)

The no slip boundary condition assumes that the liquid at the liquid-solid interface is

not moving. This is expressed in the boundary condition:

u = v = 0 at z = 0.

We integrate Equation (2.37) with respect to z:

p(x, y, z, t) = −ρg cosαz + c1. (2.40)

We determine c1 using the normal stress boundary condition (2.38) which yields

c1 = patm − γ∆h + ρg cosαh.
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We differentiate Equation (2.40) with respect to x and y and substitute the resulting

expression for px and py into Equations (2.35) and (2.36), respectively:

ηuzz = ρg cosαhx − γ∆hx + ρg sinα,

ηvzz = ρg cosαhy − γ∆hy.

We integrate twice with respect to z to derive expressions for the velocity u and v.

After the first integration we have the following equation:

ηuz = (ρg cosαhx − γ∆hx + ρg sinα)z + c2,

ηvz = (ρg cosαhy − γ∆hy)z + c3.

We determine c2 and c3 using the tangential stress boundary condition equation (2.39)

which yields

c2 = τ − (ρg cosαhx − γ∆hx + ρg sinα)h,

c3 = −(ρg cosαhy − γ∆hy)h.

The second integration with respect to z yields

ηu = (ρg cosαhx − γ∆hx + ρg sinα)
z2

2
+ c2z + c4,

ηv = (ρg cosαhy − γ∆hy)
z2

2
+ c3z + c5,

where c4 = c5 = 0 due to the no slip boundary condition. This provides the final

velocities u(x, y, z, t) and v(x, y, z, t):

u =
1
η

[
(ρg cosαhx − γ∆hx + ρg sinα)

(
z2

2
− hz

)
+ τz

]
,

v =
1
η

[
(ρg cosαhy − γ∆hy)

(
z2

2
− hz

)]
.
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We model the dynamics of the draining film using the lubrication approximation

with a “depth averaged” velocity ū = (ū, v̄) [277]:

ū =
1
h

∫ h

0
udz =

τh

2η
− ρgh2 sinα

3η
+

γh2∆hx

3η
− ρgh2hx cosα

3η
,

v̄ =
1
h

∫ h

0
vdz =

γh2∆hy

3η
− ρgh2hy cosα

3η
,

ū =
(

τh

2η
− ρgh2 sinα

3η

)
~ex +

γh2∇∆h

3η
− ρgh2∇h cosα

3η
, (2.41)

where ~ex = (1, 0). In Equation (2.41), the first term is due to surface tension gradient,

the second term is due to the tangential component of gravity, the third term is due to

curvature, and the fourth term is due to the normal component of gravity. Coupling

Equation (2.41) with mass conservation, we obtain

ht +∇ · (hū) = 0. (2.42)

To non-dimensionalize Equation (2.42), we employ the non-dimensional variables (de-

noted by hats) defined in Equation (2.34) and h = Hĥ to obtain

H

T
ĥt̂ +

1
L
∇̂ ·

[(
H2τ ĥ2

2η
− H3ρgĥ3 sinα

3η

)
~ex

+
H4γĥ3∇̂∆̂ĥ

3L3η
− H4ρgĥ3∇̂ĥ cosα

3Lη

]
= 0. (2.43)

Now we define the characteristic variables by balancing terms. First we balance the

tangential gravity and Marangoni terms to define H. Note that the independent and

dependent variables are all order 1. We obtain the following equation for H

H2τ

2η
=

H3ρg sinα

3η
, i.e., H =

3τ

2ρg sinα
.

Next we define L such that the Marangoni and surface tension effects balance:

H2τ

2η
=

H4γ

3L3η
, i.e., L =

(
3γτ

2ρ2g2 sin2 α

)1/3

.
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Now choose the time scale T so that gravity, Marangoni and surface tension forces

balance:

H

T
=

H2τ

2Lη
, i.e., T =

2η

τ2

(
4γτρg sinα

9

)1/3

.

We substitute the expressions for H, L, and T into Equation (2.43) and drop the ‘ˆ ’

to obtain the dimensionless equation thin film equation:

ht + (h2 − h3)x = D∇ · (h3∇h)−∇ · (h3∇∆h),

where D = TH3ρg cos α
3ηL2 . As in [278] we take D = 0. Thus we have derived the dimen-

sionless thin film equation

ht + (h2 − h3)x = −∇ · (h3∇∆h). (2.44)

We can think of this traveling wave as a viscous regularization of a shock wave, if we

rescale the space and the time variables by (x′, y′) = ε(x, y) and t′ = εt, then Equation

(2.44) becomes after dropping the ′ notation

ht + (h2 − h3)x = −ε3∇ · (h3∇∆h). (2.45)

This equation is a fourth order nonlinear singular perturbation of the conservative law

ht + (h2−h3)x = 0 [278]. Here, ε parameter is related to the surface tension coefficient

γ [282].
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Chapter 3

The multi-component Cahn–Hilliard system

The CH equation is the prototypical continuum model of phase separation in a

binary alloy. It was originally derived by Cahn and Hilliard [117] to describe spinodal

decomposition and has been widely adopted to model many other physical phenom-

ena such as contact angle and wetting problem [148, 64, 149], gravity and capillary

waves [150, 151], mixing [63], pinchoff of liquid-liquid jets [152, 153], Rayleigh-Taylor

instability [11, 154, 155, 156], solid tumor growth [157, 158, 159], thermocapillary flow

[160, 161], and vesicle dynamics [162].

Most of the technologically important alloys are multi-component systems exhibit-

ing multiple phases in their microstructures. Moreover, one or more of these phases

are formed as a result of phase transformations induced during processing. Since per-

formance of these multi-component alloys depends crucially on the morphology of the

phases, a fundamental understanding of the kinetics of phase transformations is impor-

tant for controlling the microstructures of these multi-phase alloys [163].

We consider the evolution of the N -component CH system on a domain Ω ⊂ Rd,

d = 1, 2, 3. Let c = (c1, . . . , cN ) be the phase variables (i.e., the mole fractions of

different components). Clearly the total mole fractions must sum to 1, i.e.,

c1 + · · ·+ cN = 1,
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so that, admissible states will belong to the Gibbs N -simplex

G :=

{
c ∈ RN

∣∣∣∣∣
N∑

i=1

ci = 1, 0 ≤ ci ≤ 1

}
. (3.1)

Without loss of generality, we postulate that the free energy can be written as

follows:

F(c) =
∫

Ω

(
F (c) +

ε2

2

N∑

i=1

|∇ci|2
)

dx, (3.2)

where F (c) = 0.25
∑N

i=1 c2
i (1 − ci)2 and ε > 0 is the gradient energy coefficient. The

natural boundary condition for the N -component CH system is the zero Neumann

boundary condition:

∇ci · n = 0 on ∂Ω, (3.3)

where n is the unit normal vector to ∂Ω.

The time evolution of c is governed by the gradient of the energy with respect to

the Ḣ−1 inner product under the additional constraint (3.1). This constraint has to

hold everywhere at any time. In order to ensure this last constraint, we use a variable

Lagrangian multiplier β(c) [205]. The time dependence of ci is given by the following

CH equation:

∂ci

∂t
= M∆µi, (3.4)

µi = f(ci)− ε2∆ci + β(c), for i = 1, . . . , N, (3.5)

where M is a mobility, f(c) = c(c − 0.5)(c − 1), and β(c) = − 1
N

∑N
i=1 f(ci). We take

M ≡ 1 for convenience.

The mass conserving boundary condition for the N -component CH system is

∇µi · n = 0 on ∂Ω. (3.6)
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We differentiate the energy F and the total mass of each phase,
∫
Ω ci dx, to get

d

dt
F(t) = −M

∫

Ω

N∑

i=1

|∇µi|2dx ≤ 0 (3.7)

and

d

dt

∫

Ω
ci dx = 0, (3.8)

where we used the mass conserving boundary condition (3.6). For a more detail de-

scription of derivations of (3.7) and (3.8), please refer to Ref. [195]. Therefore, the

total energy is non-increasing in time and the total mass of each phase is conserved.

That is

F(t) ≤ F(0) and
∫

Ω
ci(x, t) dx =

∫

Ω
ci(x, 0) dx for i = 1, . . . , N.

The generalization of the CH equation to multi-component systems first appeared in

the literature of De Fontaine [164] and Morral and Cahn [165]. Hoyt [166] extended the

CH continuum theory of nucleation to multi-component solutions. Elliott and Luckhaus

[167] gave a global existence result under constant mobility and specific assumptions.

Eyre [168] studied differences between multi-component and binary alloys and discussed

the equilibrium and dynamic behavior of multi-component systems. Elliot and Garcke

[169] proved a global existence for multi-component systems when the mobility matrix

depends on a concentration. Maier-Paape et al. [170] explained the initial-stage phase

separation process in multi-component CH systems through spinodal decomposition.

There are many numerical studies with the binary CH equation [149, 153, 156, 171,

172, 65, 173, 174, 175, 72, 176, 177, 178, 179, 180, 181], ternary [163, 171, 182, 183, 184,

185, 186, 187, 188, 189, 190, 191, 192, 193], and quaternary [194, 195, 196, 58, 197] CH

systems. One of the main difficulties in solving the CH system numerically is that the
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system is fourth-order in space which makes difference stencils very large and introduces

a severe time step restriction for stability, i.e., ∆t ∼ (∆x)4 for explicit methods. And

there is a nonlinearity at the lower order spatial derivatives which can also contribute to

numerical stability. Copetti [184] considered an explicit finite element approximation of

a model for phase separation in a ternary mixture and took ∆x = 1.0 and ∆t = 0.01 in

numerical experiments. In [163], Bhattacharyya and Abinandanan used a semi-implicit

Fourier spectral method for solving the ternary CH equations. They treated the linear

fourth-order terms implicitly and the non-linear terms explicitly and simulations were

carried out using ∆x = 1.0 and ∆t = 0.05. Ma [185] performed numerical simulation of

the phase separation kinetics in ternary mixtures with different interfacial properties by

means of the cell dynamics approach and in the literature ∆x and ∆t were both set to

be unity. In [182], ∆x and ∆t were also both set to be unity. Kim and Lowengrub [187]

developed a stable, conservative, and second-order accurate fully implicit discretization

of the ternary CH system. The authors used a nonlinear multigrid method to efficiently

solve the discrete ternary CH system at the implicit time-level and a uniform time step

∆t ≤ 0.25∆x for a uniform mesh size ∆x. Boyer and Lapuerta [189] used the implicit

Galerkin finite elements method with ∆x = 8.33 × 10−4 and ∆t = 0.001 to solve the

ternary CH system.

In numerous papers there are stability restrictions on the time step which cause

huge computational costs and make the calculation very inefficient. Therefore we need

a scheme that allows the use of a sufficiently large time step without the technical

limitations. But, though such an algorithm allows the use of a sufficiently large time

step, it seems to be less attractive, because we need to invert an (N − 1) × (N − 1)
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matrix to obtain the solution of N -component CH system (except for the explicit

method) and the matrix inversion becomes more and more complicated for increasing

N . This problem was shown in previous papers. The authors in [195] developed a

nonlinear multigrid method to efficiently solve the discrete N -component CH system

at the implicit time level, but an iteration step for the nonlinear multigrid method

consists of a 2(N − 1)× 2(N − 1) matrix inversion.

In the literature [198, 199, 200, 201, 202], to overcome this problem, a variety of

numerical approaches have been developed for a large number of components. These

approaches can significantly reduce the required computer memory and CPU time,

but such approaches are limited to the Allen–Cahn system. Adaptive mesh refinement

(AMR) [159, 175, 179, 203, 73] has been used in the CH simulations to increase com-

putational efficiency, but implementation of AMR could be difficult and, in general,

AMR is employed only a small number of components.

In this thesis, we present a practically unconditionally gradient stable conservative

numerical method for solving the CH system representing a model for phase separa-

tion in an N -component mixture. This method allows us to solve the N -component

CH system in a decoupled way and significantly reduces the CPU time and memory

requirements. We emphasize that while the method will allow us to take arbitrarily

large time steps, the accuracy of the numerical solution depends on choosing a small

enough time step to resolve the dynamics [204].
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Chapter 4

The multi-component Allen–Cahn system

The Allen–Cahn (AC) equation [208] was originally introduced as a phenomeno-

logical model for antiphase domain coarsening in a binary alloy. The AC equation

and its various modified forms have been applied to a wide range of problems, such

as phase transitions [208], image analysis [209, 210], motion by mean curvature flows

[211, 212, 213, 214, 215, 216], two-phase fluid flows [217], and crystal growth [218, 219,

220]. Therefore, an efficient and accurate numerical solution of this equation is needed

to better understand its dynamics.

We consider the evolution of the N -component AC system on a domain Ω ⊂ Rd,

d = 1, 2, 3. Let c = (c1, c2, . . . , cN ) be a vector valued phase-field and ci = ci(x, t) for

i = 1, 2, . . . , N is the mole fraction of the ith component in the mixture as a function

of space and time. Clearly the total mole fractions must sum to 1, i.e.,

c1 + · · ·+ cN = 1, (4.1)

so that, admissible states will belong to the Gibbs N -simplex

G :=

{
c ∈ RN

∣∣∣∣∣
N∑

i=1

ci = 1, 0 ≤ ci ≤ 1

}
.

Without loss of generality, we postulate that the free energy can be written as

follows:

F(c) =
∫

Ω

(
F (c)
ε2

+
1
2

N∑

i=1

|∇ci|2
)

dx,
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where F (c) = 0.25
∑N

i=1 c2
i (1 − ci)2 is the Helmholtz free energy density [221]. The

small positive constant ε is the gradient energy coefficient related to the interfacial

energy. The natural boundary condition for the N -component AC system is the zero

Neumann boundary condition:

∇ci · n = 0 on ∂Ω, (4.2)

where n is the unit normal vector to ∂Ω.

The time evolution of c is governed by the L2-gradient flow of the total free energy

under the additional constraint (4.1), which has to hold everywhere at any time. In

order to ensure this last constraint, we use a variable Lagrangian multiplier β(c) [222]

and set ∂F
∂c =

(
∂F
∂c1

, ∂F
∂c2

, . . . , ∂F
∂cN

)
= f(c) = (f(c1), f(c2), . . . , f(cN )), where f(c) =

c(c − 0.5)(c − 1). Let 1 = (1, 1, . . . , 1) ∈ RN . Using a general smooth vector valued

function ξ, we set

d = (d1, d2, . . . , dN ) = ξ − 1
N

N∑

i=1

ξi1, then
N∑

i=1

di = 0.

Let

β(c) = − 1
N

N∑

i=1

f(ci).

Then, the time dependence of c is given by the following N -component AC system:

∂c(x, t)
∂t

= −M

(
F ′(c(x, t)) + β(c)1

ε2
−∆c(x, t)

)
, x ∈ Ω, 0 < t ≤ T,

where the coefficient, M , is a constant mobility and M ≡ 1 is taken for convenience.

Numerical simulations of the N -component AC system, using explicit methods,

impose severe time step restrictions requiring the use of implicit type methods [118,

204, 223]. Restrictions on a time step cause huge computational costs and make the

calculation very inefficient. So some authors [224, 225, 226, 227] used adaptive mesh
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refinement (AMR) methods to increase computational efficiency in the AC simulations,

but implementation of AMR could be difficult and, in general, AMR is employed only

a small number of components.

The nonlinearly stabilized splitting scheme that involves a semi-implicit time and

centered difference space discretizations of the binary AC equation is

cn+1
i − cn

i

∆t
=

0.25cn
i − 0.75cn+1

i + 1.5(cn+1
i )2 − (cn+1

i )3

ε2
+ ∆hcn+1

i (4.3)

for i = 1, . . . , N and n = 0, . . . , Nt − 1. In Ref. [228], the authors reported the energy

decreasing property for the corresponding discrete problem by using the eigenvalues of

the Hessian matrix of the energy functional. And an implicit Euler’s scheme of the

one-dimensional AC equation is

cn+1
i − cn

i

∆t
=
−0.5cn+1

i + 1.5(cn+1
i )2 − (cn+1

i )3

ε2
+ ∆hcn+1

i .

This scheme is much better than the simple explicit Euler’s scheme. However, the im-

plicit Euler’s scheme suffers from instability if a large time step is used [118]. Equation

(4.3) can be reformulated as

cn+1
i − cn

i
∆t(2ε)2

∆t+(2ε)2

=
−0.5cn+1

i + 1.5(cn+1
i )2 − (cn+1

i )3

ε2
+ ∆hcn+1

i .

This suggests that the unconditionally gradient stable scheme can be considered a time

step rescaling of the implicit Euler’s scheme. In addition,

∆tequiv =
∆t(2ε)2

∆t + (2ε)2
≤ min(∆t, (2ε)2).

That is, the scaled equivalent time step ∆tequiv is bounded by (2ε)2, which is a small

value.

In this thesis, we propose an unconditionally stable and accurate numerical method

for solving the N -component AC system. The proposed method is based on an operator
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splitting technique, which is the method for treating the individual terms of a partial

differential equation independently. The main benefit of operator splitting methods is

that the stability depends on the minimum of each term rather than the stability of all

terms combined. The proposed scheme for the the N -component AC system involves

two steps. First, ct = ∆c − (β(c)1)/ε2 is solved numerically using an implicit Euler’s

method. Second, ct = −f(c)/ε2 is solved analytically.
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Chapter 5

Numerical solutions

5.1. Cahn–Hilliard solver

In this section, we present fully discrete schemes for the CH equation. We consider

an unconditionally gradient stable scheme for time discretization introduced by Eyre

[118, 204]. For simplicity of exposition, we shall discretize the CH equation in two-

dimensional space, i.e., Ω = (a, b) × (c, d). One and three-dimensional discretizations

are defined analogously. Let Nx and Ny be positive even integers, h = (b − a)/Nx be

the uniform mesh size, and Ωh = {(xi, yj) : xi = (i − 0.5)h, yj = (j − 0.5)h, 1 ≤

i ≤ Nx, 1 ≤ j ≤ Ny} be the set of cell-centers. Let cij and µij be approximations of

c(xi, yj) and µ(xi, yj). We define a discrete energy functional by

Eh(cn) =
h2

4

Nx∑

i=1

Ny∑

j=1

((cn
ij)

2 − 1)2 +
ε2h2

2




Nx∑

i=0

Ny∑

j=1

|∇dc
n
i+ 1

2
,j
|2 +

Nx∑

i=1

Ny∑

j=0

|∇dc
n
i,j+ 1

2

|2

 .

By using the linearly stabilized splitting scheme [204], we present a implicit time and

centered difference space discretization of Equations (2.2) and (2.3) without flow:

cn+1
ij − cn

ij

∆t
= ∆dµ

n+1
ij , (5.1)

µn+1
ij = 2cn+1

ij − ε2∆dc
n+1
ij + f(cn

ij)− 2cn
ij , (5.2)

where f(c) = F ′(c).
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Eyre [118, 204] proved that if cn+1 is the solution of Equations (5.1) and (5.2) with

a given cn, then

Eh(cn+1) ≤ Eh(cn).

Furihata et al. [284] have examined the boundedness of the solution of a finite difference

scheme [285] using discretized Lyapunov functional. Furihata [283] has shown that the

decrease of the total energy implies boundedness of discretized Sobolev norm of the

solution, independent ∆t and ∆x, unconditionally.

We show that boundedness of the solution of finite difference scheme using the

decrease of the discrete total energy functional. The decrease of the discrete total

energy functional means that the numerical solution for the CH equation is pointwise

bounded. If cn is a numerical solution for the discrete Equations (5.1) and (5.2), then

there exists a constant K, independent of n, such that

‖cn‖∞ ≤ K. (5.3)

We prove Equation (5.3) by a contradiction. Assume on the contrary that there is an

integer nK , dependent on K, such that ‖cnK‖∞ > K for all K. Then there is an index

i (1 ≤ i ≤ N) such that |cnK
i | > K. Let K be the largest solution of hF (K) = Eh(c0),

i.e., K =
√

1 + 2
√
Eh(c0)/h. Note that K ≥ 1. Then, F (c) is a strictly increasing

function on (K,∞) (see Figure 5.1). Since the total energy is non-increasing, we have

Eh(c0) = hF (K) < hF (|cnK
i |) ≤ Eh(cnK ) ≤ Eh(c0) [286]. This contradiction implies

that Equation (5.3) should be satisfied.
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x−1 0 1

hF (c)

hF (|cnK

i
|)

Eh(c0)

K |cnK

i
|

Figure 5.1. Graph of hF (c).
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5.2. Multigrid methods

In this section, we develop a multigrid method to solve the linear discrete system

(5.1) and (5.2) at the implicit time level. A pointwise Gauss-Seidel relaxation scheme is

used as the smoother in the multigrid method. See the reference text [71] for additional

details. We use the same notations as this reference text. Let us rewrite Equations

(5.1) and (5.2) as follows.

L(cn+1, µn+1) = (φn, ψn),

where the linear system operator (L) is defined as

L(cn+1, µn+1) =
(

cn+1

∆t
−∆dµ

n+1, µn+1 − 2cn+1 + ε2∆dc
n+1

)

and the source term is (φn, ψn) = (cn/∆t, f(cn)− 2cn). In the following description

of one multigrid cycle, we assume a sequence of grids Ωk (Ωk−1 is coarser than Ωk by

a factor of 2). Given the numbers, ν1 and ν2, of pre- and post- smoothing relaxation

sweeps, an iteration step for the multigrid method using the V-cycle is formally written

as follows:

Multigrid cycle

{cn+1,m+1
k , µn+1,m+1

k } = MGcycle(k, cn+1,m
k , µn+1,m

k , Lk, φ
n
k , ψn

k , ν1, ν2) on Ωk grid.

That is, {cn+1,m
k , µn+1,m

k } and {cn+1,m+1
k , µn+1,m+1

k } are the approximations of {cn+1
k (xi, yj),

µn+1
k (xi, yj)} before and after an MGcycle.

Step 1) Presmoothing

{c̄n+1,m
k , µ̄n+1,m

k } = SMOOTHν1(cn+1,m
k , µn+1,m

k , Lk, φ
n
k , ψn

k ) on Ωk grid.
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This means performing ν1 smoothing steps. Let us discretize Equations (5.1) and (5.2)

as a Gauss-Seidel type.

c̄n+1,m
k,ij

∆t
+

4µ̄n+1,m
k,ij

h2
= φn

k,ij +
µ̄n+1,m

k,i−1,j + µn+1,m
k,i+1,j + µ̄n+1,m

k,i,j−1 + µn+1,m
k,i,j+1

h2
, (5.4)

−
(

2 +
4ε2

h2

)
c̄n+1,m
k,ij + µ̄n+1,m

k,ij = ψn
k,ij − ε2

c̄n+1,m
k,i−1,j + cn+1,m

k,i+1,j + c̄n+1,m
k,i,j−1 + cn+1,m

k,i,j+1

h2
.(5.5)

One SMOOTH relaxation operator step consists of solving the system (5.4) and (5.5)

by a 2× 2 matrix inversion for each ij.

Step 2) Coarse grid correction

• Compute the defect: (d̄m
1k, d̄

m
2k) = (φn

k , ψn
k )− Lk(c̄

n+1,m
k , µ̄n+1,m

k ).

• Restrict the defect: (d̄m
1,k−1, d̄

m
2,k−1) = Ik−1

k (d̄m
1k, d̄

m
2k).

• Compute an approximate solution {c̄m
k−1, µ̄

m
k−1} of the coarse grid equation on Ωk−1:

Lk−1(c
n+1,m
k−1 , µn+1,m

k−1 ) = (d̄m
1,k−1, d̄

m
2,k−1). (5.6)

If k = 1, we apply the smoothing procedure in Step 1) to obtain the approximate

solution. If k > 1, we solve (5.6) by performing a k-grid cycle using the zero grid

function as an initial approximation:

{v̂n+1,m
1,k−1 , v̂n+1,m

2,k−1 } = MGcycle(k − 1,0,0, Lk−1, d̄
m
1,k−1, d̄

m
2,k−1, ν1, ν2).

• Interpolate the correction: (v̂n+1,m
1k , v̂n+1,m

2k ) = Ik
k−1(v̂

n+1,m
1,k−1 , v̂n+1,m

2,k−1 ).

• Compute the corrected approximation on Ωk:

cm, after CGC
k = c̄n+1,m

k + v̂n+1,m
1k , µm, after CGC

k = µ̄n+1,m
k + v̂n+1,m

2k .
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Step 3) Postsmoothing:

{cn+1,m+1
k , µn+1,m+1

k }

= SMOOTHν2(cm, after CGC
k , µm, after CGC

k , Lk, φ
n
k , ψn

k ) on Ωk grid.

This completes the description of an MGcycle. Figure 5.2 shows the description of an

MGcycle.

smooth
ν1

u
n+1,m
k ū

n+1,m
k

d̄m
k = φn

k −Lk(ūn+1,m
k )

Restrict(Ik−1

k )

d̄m
k−1 = Ik−1

k d̄m
k

Solve

Lk−1(v̂
n+1,m
k−1

) ≈ d̄m
k−1

Interpolate(Ik
k−1)

v̂
n+1,m
k = Ik

k−1v̂
n+1,m
k−1

u
n+1,m+1

k

smooth
ν2

u
m,afterCGC
k

= ū
n+1,m
k + v̂

n+1,m
k

Figure 5.2. The description of an MGcycle.

Describing an algorithm for a discrete system is one thing and actual implementa-

tion is another. Especially, using recursive function for a multigrid method is non-trivial

task for the beginners. We made the code as simple as possible. Therefore, it needs
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a modification for accounting other features of the equations such as different bound-

ary conditions, variable mobilities, three dimensional extension, and more than two

components. These modifications can be done in a straightforward manner.
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5.3. Navier–Stokes solver

The simultaneous solution of the large number of discrete equations arising from

(2.6) and (2.7) is very costly, especially in three spatial dimensions [69]. An efficient

approximation can be obtained by decoupling the solution of the momentum equations

from the solution of the continuity equation by a projection method [67, 68]. We will

focus on describing the idea in two-dimensions. A staggered marker-and-cell (MAC)

mesh of Harlow and Welch [70] is used in which pressure and phase fields are stored at

cell centers and velocities at cell interfaces (see Figure 5.3).

vi,j−1/2

vi,j+1/2

vi+1,j−1/2

vi+1,j+1/2

ui−1/2,j ui+1/2,j

ui−1/2,j+1 ui+1/2,j+1

pijφij

Figure 5.3. Velocities are defined at cell boundaries while the pressure
and phase field are defined at the cell centers.

Let a computational domain be partitioned in Cartesian geometry into a uniform

mesh with mesh spacing h. The center of each cell, Ωij , is located at (xi, yj) = ((i −

0.5)h, (j − 0.5)h) for i = 1, · · · , Nx and j = 1, · · · , Ny. Nx and Ny are the numbers of

cells in x and y-directions, respectively. The cell vertices are located at (xi+ 1
2
, yj+ 1

2
) =

(ih, jh).
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At the beginning of each time step, given un, φn, and pn, we want to find un+1,

φn+1, and pn+1 which solve the following temporal discretization of dimensionless form

of the Equations (2.18) - (2.21) of motion:

ρnun+1 − un

∆t
= −ρn(u · ∇du)n −∇dp

n+1 +
1

Re
∆dun +

1
We

SFn +
ρn

Fr
g,

∇d · un+1 = 0,

φn+1 − φn

∆t
=

1
Pe

∆dν
n+1 − 1

Pe
∆dφ

n −∇d · (φu)n, (5.7)

νn+1 = (φn+1)3 − ε2∆dφ
n+1, (5.8)

where ρn = ρ(φn) and g = (0,−1).

The outline of the main procedures in one time step is:

Step 1. Initialize u0 to be the divergence-free velocity field and φ0.

Step 2. Solve an intermediate velocity field, ũ, which generally does not satisfy the

incompressible condition, without the pressure gradient term,

ũ− un

∆t
= −un · ∇dun +

1
ρnRe

∆dun +
1

ρnWe
SFn +

1
Fr

g.

The resulting finite difference equations are written out explicitly. They take the form

ũi+ 1
2
,j = un

i+ 1
2
,j
−∆t(uux + vuy)n

i+ 1
2
,j

+
∆t

ρn
i+ 1

2
,j
We

SF x−edge

i+ 1
2
,j

+
∆t

h2ρn
i+ 1

2
,j
Re

(
un

i+ 3
2
,j

+ un
i− 1

2
,j
− 4un

i+ 1
2
,j

+ un
i+ 3

2
,j+1

+ un
i− 1

2
,j−1

)
,

ṽi,j+ 1
2

= vn
i,j+ 1

2
−∆t(uvx + vvy)n

i,j+ 1
2

+
∆t

ρn
i,j+ 1

2

We
SF y−edge

i,j+ 1
2

− ∆t

Fr

+
∆t

h2ρn
i,j+ 1

2

Re

(
vn
i,j+ 3

2

+ vn
i,j− 1

2
,j
− 4vn

i,j+ 1
2

+ vn
i+1,j+ 3

2

+ vn
i−1,j− 1

2
,j

)
,
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where the advection terms, (uux + vuy)n
i+ 1

2
,j

and (uvx + vvy)n
i,j+ 1

2

, are defined by

(uux + vuy)n
i+ 1

2
,j

= un
i+ 1

2
,j
ūn

x
i+1

2 ,j

+
vn
i,j− 1

2

+ vn
i+1,j− 1

2

+ vn
i,j+ 1

2

+ vn
i+1,j+ 1

2

4
ūn

y
i+1

2 ,j
,

(uvx + vvy)n
i,j+ 1

2

=
un

i− 1
2
,j

+ un
i− 1

2
,j+1

+ un
i+ 1

2
,j

+ un
i+ 1

2
,j+1

4
v̄n
x

i,j+1
2

+vn
i,j+ 1

2

v̄n
y

i,j+1
2

.

The values ūn
x

i+1
2 ,j

and ūn
y

i+1
2 ,j

are computed using the upwind procedure. The

procedure is

ūn
x

i+1
2 ,j

=





un

i+1
2 ,j
−un

i− 1
2 ,j

h if un
i+ 1

2
,j

> 0
un

i+3
2 ,j
−un

i+1
2 ,j

h otherwise

and

ūn
y

i+1
2 ,j

=





un

i+1
2 ,j
−un

i+1
2 ,j−1

h if vn
i,j− 1

2

+ vn
i+1,j− 1

2

+ vn
i,j+ 1

2

+ vn
i+1,j+ 1

2

> 0
un

i+1
2 ,j+1

−un

i+1
2 ,j

h otherwise.

The quantities v̄n
x

i,j+1
2

and v̄n
y

i,j+1
2

are computed in a similar manner. The surface

tension force terms, SF x−edge

i+ 1
2
,j

and SF y−edge

i,j+ 1
2

, are computed using the procedure derived

in Ref. [190].

Then, we solve the following equations for the advanced pressure field at (n + 1)

time step.

un+1 − ũ
∆t

= − 1
ρn
∇dp

n+1, (5.9)

∇d · un+1 = 0. (5.10)

With application of the divergence operator to Equation (5.9), we find that the

Poisson equation for the pressure at the advanced time (n + 1).

∇d ·
(

1
ρn
∇dp

n+1

)
=

1
∆t
∇d · ũ, (5.11)
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where we have made use of the Equation (5.10) and the terms are defined as in the

following.

∇d ·
(

1
ρn
∇dp

n+1
ij

)
=

1
ρn

i+1
2 ,j

pn+1
i+1,j + 1

ρn

i− 1
2 ,j

pn+1
i−1,j + 1

ρn

i,j+1
2

pn+1
i,j+1 + 1

ρn

i,j− 1
2

pn+1
i,j−1

h2

−
1

ρn

i+1
2 ,j

+ 1
ρn

i− 1
2 ,j

+ 1
ρn

i,j+1
2

+ 1
ρn

i,j− 1
2

h2
pn+1

ij ,

∇d · ũij =
ũi+ 1

2
,j − ũi− 1

2
,j

h
+

ṽi,j+ 1
2
− ṽi,j− 1

2

h
,

where ρn
i+ 1

2
,j

= (ρn
ij + ρn

i+1,j)/2 and the other terms are similarly defined.

The boundary condition for the pressure is

n · ∇dp
n+1 = n ·

(
−ρnun+1 − un

∆t
− ρn(u · ∇du)n +

1
Re

∆dun +
1

We
SFn +

ρn

Fr
g
)

,

where n is the unit normal vector to the domain boundary.

In our application of the phase-field to the Rayleigh-Taylor instability, we will use

a periodic boundary condition to vertical boundaries and no slip boundary condition

to the top and bottom domain. Therefore,

n · ∇dp
n+1 = n ·

(
1

We
SFn +

ρn

Fr
g
)

.

The resulting linear system of Equation (5.11) is solved using a multigrid method

[71], specifically, V-cycles with a Gauss-Seidel relaxation. Then the divergence-free

normal velocities un+1 and vn+1 are defined by

un+1 = ũ− ∆t

ρn
∇dp

n+1, i.e.,

un+1
i+ 1

2
,j

= ũi+ 1
2
,j −

∆t

ρn
i+ 1

2
,j
h

(pi+1,j − pij), vn+1
i,j+ 1

2

= ṽi,j+ 1
2
− ∆t

ρn
i,j+ 1

2

h
(pi,j+1 − pij).

We implement the unconditionally gradient stable scheme in Equations (5.7)-(5.8)

with a nonlinear multigrid method. For a detailed description of the numerical method

used in solving these equations, please refer to Refs. [72, 73].
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Since we are interested in long time simulations, mass conservation is an important

factor. Therefore, we use a conservative discretization of the convective part of the

phase-field equation (5.7).

((φu)x + (φv)y)n
ij =

un
i+ 1

2
,j
(φn

i+1,j + φn
ij)− un

i− 1
2
,j
(φn

ij + φn
i−1,j)

2h

+
vn
i,j+ 1

2

(φn
i,j+1 + φn

ij)− un
i,j− 1

2

(φn
ij + φn

i,j−1)

2h
.

These complete the one time step. Other projection type methods [67] can be used.
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5.4. Modified Allen–Cahn solver

In this section, we propose a robust hybrid numerical method for crystal growth

simulation. For simplicity of exposition we shall discretize Equations (2.32) and (2.33)

in two-dimensional space, i.e., Ω = (−l1, l1) × (−l2, l2). Let Nx and Ny be positive

even integers, h = 2l1/Nx be the uniform mesh size, and Ωh = {(xi, yj) : xi = (i −

0.5)h, yj = (j − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be the set of cell-centers. Let cn
ij

be approximations of c(xi, yj , n∆t), where ∆t = T/Nt is the time step, T is the final

time, and Nt is the total number of time steps. The discrete differentiation operator is

∇dcij = (ci+1,j − ci−1,j , ci,j+1 − ci,j−1)/(2h). We then define the discrete Laplacian by

∆dcij = (ci+1,j + ci−1,j − 4cij + ci,j+1 + ci,j−1)/h2. We discretize Equations (2.32) and

(2.33):

ε2(φn)
cn+1 − cn

∆t
= ε2(φn)∆dc

n+1,2 + 2ε(φn)∇dε(φn) · ∇dc
n

−F ′(cn+1)− 4λUnF (cn+1,1)

− (
ε′(φ) · ε(φ)cy

)n

x
+

(
ε′(φ) · ε(φ)cx

)n

y
,

Un+1 − Un

∆t
= D∆dU

n+1 +
cn+1 − cn

2∆t
,

where F (c) = 0.25(c2 − 1)2 and F ′(c) = c(c2 − 1). Here cn+1,k for k = 1, 2 are defined

in the operator splitting scheme. We propose the following operator splitting scheme:

ε2(φn)
cn+1,1 − cn

∆t
= 2ε(φn)∇dε(φn) · ∇dc

n

− (
ε′(φ) · ε(φ)cy

)n

x
+

(
ε′(φ) · ε(φ)cx

)n

y
,

ε2(φn)
cn+1,2 − cn+1,1

∆t
= ε2(φn)∆dc

n+1,2 − 4λUnF (cn+1,1),

ε2(φn)
cn+1 − cn+1,2

∆t
= −F ′(cn+1). (5.12)
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We can solve Equation (5.12) analytically by the method of separation of variables

[252, 253]. The solution is given as follows:

cn+1 =
cn+1,2

√
e
− 2∆t

ε2(φn) + (cn+1,2)2
(

1− e
− 2∆t

ε2(φn)

) .

Finally, the proposed scheme can be written as follows:

ε(φn)
cn+1,1 − cn

∆t
= 2ε(φn)xcn

x + 2ε(φn)yc
n
y −

(
ε′(φ) · cy

)n

x
+

(
ε′(φ) · cx

)n

y
,

ε2(φn)
cn+1,2 − cn+1,1

∆t
= ε2(φn)∆dc

n+1,2 − 4λUnF (cn+1,1), (5.13)

cn+1 =
cn+1,2

√
e
− 2∆t

ε2(φn) + (cn+1,2)2
(

1− e
− 2∆t

ε2(φn)

) ,

Un+1 − Un

∆t
= D∆dU

n+1 +
cn+1 − cn

2∆t
. (5.14)

Equations (5.13) and (5.14) can be solved by a multigrid method [233, 71].
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5.5. The multi-component Cahn–Hilliard solver

The numerical solution of the N -component CH system uses a second-order accu-

rate spatial discretization and a nonlinear splitting time stepping method. For sim-

plicity and clarity of exposition, we will present the numerical method in 2D, but the

extension to 3D is straightforward. Note that we only need to solve equations with

c1, c2, . . . , cN−1 since cN = 1 − c1 − c2 − · · · − cN−1 for the N -component CH system.

Let c = (c1, c2, . . . , cN−1) and µ = (µ1, µ2, . . . , µN−1).

5.5.1. Discretization. Let Ω = (a, b)×(c, d) be the computational domain in 2D,

Nx and Ny be positive even integers, h = (b − a)/Nx be the uniform mesh size, and

Ωh = {(xi, yj) : xi = (i − 0.5)h, yj = (j − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be the set

of cell-centers.

Let cij and µij be approximations of c(xi, yj) and µ(xi, yj). We first implement

the zero Neumann boundary condition (3.3) and (3.6) by requiring that

Dxc 1
2
,j = DxcNx+ 1

2
,j = Dyci, 1

2
= Dyci,Ny+ 1

2
= 0,

Dxµ 1
2
,j = DxµNx+ 1

2
,j = Dyµi, 1

2
= Dyµi,Ny+ 1

2
= 0,

where the discrete differentiation operators are

Dxci+ 1
2
,j = (ci+1,j − cij)/h and Dyci,j+ 1

2
= (ci,j+1 − cij)/h.

We then define the discrete Laplacian by

∆hcij = (Dxci+ 1
2
,j −Dxci− 1

2
,j + Dyci,j+ 1

2
−Dyci,j− 1

2
)/h

and the discrete L2 inner product by

(c,d)h = h2
Nx∑

i=1

Ny∑

j=1

(c1ijd1ij + c2ijd2ij + · · ·+ cN−1ijdN−1ij). (5.15)
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We also define a discrete norm associated with (5.15) as

‖c‖2 = (c, c)h.

We define f(c) and 1 to f(c) = (f(c1), f(c2), . . . , f(cN−1)) and 1 = (1, 1, . . . , 1) ∈

RN−1. We discretize Equations (3.4) and (3.5) in time by a nonlinear splitting algo-

rithm:

cn+1
ij − cn

ij

∆t
= ∆hνn+1

ij + ∆h

(
β(cn

ij)1−
1
4
cn

ij

)
, (5.16)

νn+1
ij = ϕ(cn+1

ij )− ε2∆hcn+1
ij ,

where the nonlinear function ϕ(c) = (ϕ1(c), ϕ2(c), . . . , ϕN−1(c)) = f(c) + c/4.

In Equation (5.16), the variable Lagrangian multiplier β(c) is determined by the

solutions at time level n. By treating β(c) explicitly, there is no relation between the

solutions at time level n + 1. Thus the N -component CH system can be solved in a

decoupled way, i.e.,

ck,
n+1
ij − ck,

n
ij

∆t
= ∆hνk,

n+1
ij + ∆h

(
β(cn

ij)−
1
4
ck,

n
ij

)
,

νk,
n+1
ij = ϕ(ck,

n+1
ij )− ε2∆hck,

n+1
ij , for k = 1, 2, . . . , N − 1.

This means that we only solve the binary CH equation N − 1 times to solve the N -

component CH system. The above discrete system is solved by a nonlinear multigrid

method [71].
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5.6. The multi-component Allen–Cahn solver

In this section, an unconditionally stable hybrid method is proposed for the N -

component AC system. The unconditional stability means that arbitrarily large time

steps can be used in the numerical algorithm. For simplicity and clarity of exposition,

we will present the numerical method in 2D, but the extension to 3D is straightforward.

Note that we only need to solve equations with c1, c2, . . . , cN−1 since cN = 1− c1− c2−

· · · − cN−1 for the N -component AC system. Let c = (c1, c2, . . . , cN−1).

Let Ω = (a, b)× (c, d) be the computational domain in 2D, Nx and Ny be positive

even integers, h = (b − a)/Nx be the uniform mesh size, and Ωh = {(xi, yj) : xi =

(i − 0.5)h, yj = (j − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be the set of cell-centers. Let

cij be an approximation of c(xi, yj). We first implement the zero Neumann boundary

condition (4.2) by requiring that

Dxc 1
2
,j = DxcNx+ 1

2
,j = Dyci, 1

2
= Dyci,Ny+ 1

2
= 0,

where the discrete differentiation operators are

Dxci+ 1
2
,j = (ci+1,j − cij)/h and Dyci,j+ 1

2
= (ci,j+1 − cij)/h.

We then define the discrete Laplacian by

∆hcij = (Dxci+ 1
2
,j −Dxci− 1

2
,j + Dyci,j+ 1

2
−Dyci,j− 1

2
)/h

and the discrete L2 inner product by

(c,d)h = h2
Nx∑

i=1

Ny∑

j=1

(c1ijd1ij + c2ijd2ij + · · ·+ cN−1ijdN−1ij). (5.17)

We also define a discrete norm associated with (5.17) as

‖c‖2 = (c, c)h.
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We define f(c) and 1 to f(c) = (f(c1), f(c2), . . . , f(cN−1)) and 1 = (1, 1, . . . , 1) ∈

RN−1. We propose the following operator splitting scheme, which is an unconditionally

stable hybrid scheme:

c∗ij − cn
ij

∆t
= ∆hc∗ij −

β(cn
ij)1

ε2
, (5.18)

cn+1
ij − c∗ij

∆t
= − f(cn+1

ij )
ε2

. (5.19)

Equation (5.18) is an implicit Euler’s scheme for ct = ∆c − (β(c)1)/ε2 with an

initial condition cn. Using a von Neumann stability analysis [229], it can be seen that

this scheme is unconditionally stable. The resulting implicit discrete system can be

solved by a fast solver such as a multigrid method [230, 71]. Equation (5.19) can be

considered as an approximation of the equation

ct = − f(c)
ε2

(5.20)

by an implicit Euler’s method with the initial condition c∗. We can solve Equation

(5.20) analytically by the method of separation of variables [231]. The solution is given

as follows:

cn+1
ij = 0.5 +

c∗ij − 0.5√
e
−∆t
2ε2 + (2c∗ij − 1)2(1− e

−∆t
2ε2 )

.

The proposed operator splitting algorithm is shown schematically in Fig. 5.4.

cn+1

cn

ct = ∆c− β(c)1
ε2

(multigrid method)

//

99t
t

t
t

t
t

t
t

t
t

t
c∗

ct = − f(c)
ε2

(analytical solution)

OO

Figure 5.4. A hybrid numerical method for the N -component AC system.
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In Equation (5.18), the variable Lagrangian multiplier β(c) is determined by the

solutions at time level n. By treating β(c) explicitly, there is no relation between

the solutions at time level ∗. Thus the N -component AC system can be solved in a

decoupled way, i.e.,

ck,
∗
ij − ck,

n
ij

∆t
= ∆hck,

∗
ij −

β(cn
ij)

ε2
,

ck,
n+1
ij = 0.5 +

ck,
∗
ij − 0.5

√
e
−∆t
2ε2 + (2ck,

∗
ij − 1)2(1− e

−∆t
2ε2 )

, for k = 1, 2, . . . , N − 1.

This means that we only solve the binary AC equation N − 1 times to solve the N -

component AC system.
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Chapter 6

Numerical results

6.1. Numerical experiments for regularized Dirac delta functions

We now present numerical results to show the performance of regularized Dirac

delta functions as (1) a postprocessing of the phase-field solution; length of line and

circle, Rayleigh-Taylor instability, deformation of a circle by a single vortex, a three-

dimensional deformation field, and triply periodic minimal surfaces, and (2) a rep-

resentation of the surface tension force; reduction of spurious velocities and pres-

sure jump across the drop. And we also demonstrate relation between the interfa-

cial width and grid size. Across the interfacial region, the concentration field varies

from 0.1 to 0.9 over a distance of approximately 4
√

2ε tanh−1(0.8). Therefore, if we

want this value to be approximately m (> 0) grid points, the ε value needs to be

taken as εm = hm/[4
√

2 tanh−1(0.8)]. Figure 6.1 shows the concentration c(x) =

0.5(1 + tanh(x/(2
√

2εm))) with m = 4, 8, 12, and 16. We will use various ε that is

suitable for each problem.

6.1.1. The Dirac delta function as a postprocessing of the phase-field

solution. In this section, we investigate the performance of each delta function as an

interface length or a surface area calculation tool. The interface length L and surface
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Figure 6.1. The concentration c(x) = 0.5(1 + tanh(x/(2
√

2εm))) with
m = 4, 8, 12, and 16.

area A are defined as:

L (c) =
Nx∑

i=1

Ny∑

j=1

δ(cij)h2 and A (c) =
Nx∑

i=1

Ny∑

j=1

Nz∑

k=1

δ(cijk)h3,

where Nx, Ny, and Nz are the number of grid points in the x, y, and z directions,

respectively. The discrete composition field cij (or cijk) is located at cell-centers and h

is the uniform mesh size.

When there is no theoretical value of an interface length or a surface area, we need

a reasonable value corresponding to the theoretical value. To obtain a reasonable value,

we take the initial condition as

c(x, y, 0) =
1
2

(
1 + tanh

(
0.25−

√
(x− 0.5)2 + (y − 0.5)2

2
√

2ε4

))

on the computational domain Ω = (0, 1)× (0, 1), which represents a circle with a radius

0.25. We calculate the length of a 0.5-level contour using MATLAB. The results with

increasingly finer grids are given in Table 6.1.

Table 6.1. Comparison between the theoretical value and the length of contour.

Mesh 162 322 642 1282 Theoretical value
Interface length 1.565632 1.569770 1.570572 1.570778 2πr ≈ 1.570796
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Next, the initial condition is

c(x, y, z, 0) =
1
2

(
1 + tanh

(
0.25−

√
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

2
√

2ε4

))

on Ω = (0, 1)×(0, 1)×(0, 1), which represents a sphere with a radius 0.25. We compute

the area of an isosurface by summation of the areas of all triangle tiles in the isosurface

using MATLAB. The results with increasingly finer grids are given in Table 6.2. The

results in Tables 6.1 and 6.2 suggest that the length of contour and the area of isosurface

agree well with the theoretical value.

Table 6.2. Comparison between the theoretical value and the area of isosurface.

Mesh 323 643 1283 2563 Theoretical value
Surface area 0.781695 0.784493 0.785185 0.785364 4πr2 ≈ 0.785398

6.1.1.1. Test 1: length of line and circle. In Section 2.3, we explored the perfor-

mance of delta functions by the interface profile using Mathematica. To numerically

explore the performance, we consider two initial conditions on Ω = (0, 1)× (0, 1);

c(x, y, 0) =
1
2

(
1 + tanh

(
0.5− x

2
√

2a

))
and

c(x, y, 0) =
1
2

(
1 + tanh

(
0.25−

√
(x− 0.5)2 + (y − 0.5)2

2
√

2a

))

for a = 0.5ε8, ε8, and 2ε8. We choose h = 1/128 and ∆t = 10h.

In Figures 6.2 (case of line) and 6.3 (case of circle), (a), (b), and (c) show the

contour lines of concentration with a = 0.5ε8, ε8, and 2ε8, respectively. The length

of line and circle for each delta function is given in Table 6.3. From Table 6.3, it is

observed that δ6 accurately calculates the length of line and circle regardless of whether

an interface transition is compressed (a = 0.5ε8) or stretched (a = 2ε8). Figures 6.2 (d)

and 6.3 (d) show the percentage error of each delta function of cases of line and circle

by representing them as histograms of various sizes, respectively.
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Figure 6.2. The length of line. (a), (b), and (c) show the contour lines
of concentration with a = 0.5ε8, ε8, and 2ε8, respectively. Contour levels
are 0.1, 0.2, . . . , 0.9. (d) the percentage error of each delta function.

Table 6.3. The length of line and circle for each delta function.

Case Line Circle
a 0.5ε8 ε8 2ε8 0.5ε8 ε8 2ε8

Contour value 1.0000 1.0000 1.0000 1.5849 1.5855 1.5857
δ1 1.8556 0.9804 0.4975 2.9677 1.5473 0.7823
δ2 0.5000 1.0000 2.0000 0.7854 1.5708 3.1416
δ3 1.1778 0.9902 1.2488 1.8766 1.5590 1.9619
δ4 1.7929 0.9720 0.4964 2.8927 1.5373 0.7810
δ5 0.5000 1.0000 2.0000 0.7854 1.5708 3.1413
δ6 1.0000 1.0000 1.0000 1.5708 1.5706 1.5704
δ7 0.7500 1.0000 1.5000 1.1781 1.5707 2.3558
δ8 1.7353 0.9645 0.4955 2.8278 1.5284 0.7799

6.1.1.2. Test 2: Rayleigh–Taylor instability. When a heavy fluid is superposed over

a light fluid in a gravitational field, the fluid interface is unstable. Any perturba-

tion of this interface tends to grow with time, producing the phenomenon known as

the Rayleigh–Taylor instability. This phenomenon represents the penetration of both

heavy and light fluids into each other. The Rayleigh–Taylor instability for a fluid in

a gravitational field was originally introduced by Rayleigh [134] and later applied to
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Figure 6.3. The length of circle. (a), (b), and (c) show the contour
lines of concentration with a = 0.5ε8, ε8, and 2ε8, respectively. Contour
levels are 0.1, 0.2, . . . , 0.9. (d) the percentage error of each delta func-
tion.

all accelerated fluids by Taylor [135]. In order to simulate the Rayleigh–Taylor insta-

bility, the Navier–Stokes–Cahn–Hilliard equations (NSCH) are preferred. The NSCH
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equations can be written in a dimensionless form

ρ(c)(ut + u · ∇u) = −∇p +
1

Re
∆u +

ρ(c)
Fr

g,

∇ · u = 0,

ct +∇ · (cu) =
1

Pe
∆µ,

µ = f(c)− C∆c,

where u is the velocity, p is the pressure, ρ(c) = ρ1c + ρ2(1 − c) is the variable den-

sity (ρ1 and ρ2 are the densities of the heavier and lighter fluid, respectively), and

g = (0,−1). The dimensionless parameters are the Reynolds number, Re = ρ∗U∗L∗/η,

Froude number, Fr = U2∗ /(gL∗), Peclet number, Pe = U∗L∗/(Mµ∗), and Cahn num-

ber, C = ε2/(µ∗L2∗). The values with lower ∗ are characteristic values of corresponding

ones, η is the viscosity, and g is the acceleration due to gravity. Here, the effect of the

surface tension is negligible. For a detailed description of the numerical method used

in solving the NSCH equations, please refer to Ref. [136].

We calculate the length of the interface with three different Peclet numbers. The

initial condition is

c(x, y, 0) =
1
2

(
1 + tanh

(
y − 2− 0.1 cos(2πx)

2
√

2ε

))

on Ω = (0, 1)× (0, 4), which represents a planar interface superimposed by a perturba-

tion of wave number k = 1 and amplitude 0.1. The density ratio is ρ1 : ρ2 = 3 : 1 and

we use the simulation parameters such as the uniform grids h = 1/128, ∆t = 0.00125,

ε = 0.01, and Re = 3000.

Figure 6.4 (a) shows the evolution of the interface with Pe = 1/ε at times t = 0,

1, and 2. The results are given in Table 6.4. In the numerical simulations of the
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Rayleigh–Taylor instability, as the Pe number increases, the width of an interface

transition becomes non-uniform (see Figures 6.4 (b), (c), and (d)). As a result, the

percentage error of almost all delta functions is high (see Figure 6.5). But the result

obtained using δ6 is in better agreement with the contour value, regardless of the Pe

number.
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Figure 6.4. (a) the evolution of the interface with Pe = 1/ε at times
t = 0, 1, and 2. The effect of the Peclet number on the temporal
evolution of the interface at time t = 2: (b) Pe = 0.1/ε, (c) Pe = 1/ε,
and (d) Pe = 10/ε. Contour levels are 0.1, 0.2, . . . , 0.9.

Table 6.4. Rayleigh–Taylor instability: the interface length for each
delta function.

Pe Contour value δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

0.1/ε 5.169 4.955 5.478 5.217 4.953 5.798 5.097 5.447 4.950
1/ε 5.832 6.385 5.532 5.958 6.222 4.611 5.924 5.267 6.150
10/ε 6.455 10.38 4.387 7.386 9.596 2.974 6.901 4.938 9.328

6.1.1.3. Test 3: deformation of a circle by a single vortex. In this test, a cir-

cle is deformed with a velocity field defined by u = k sin2(πx) sin(2πy) and v =

−k sin(2πx) sin2(πy). In order to demonstrate the capability of each delta function
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Figure 6.5. Rayleigh–Taylor instability: the percentage error of each
delta function.

in an extreme velocity field, we choose k = 100, which is much larger than values used

in the previous experiments. This flow satisfies u = v = 0 on the boundaries of the

unit square domain. As shown in Figure 6.6 (a) by the dotted line, initially the circle

has a radius of 0.15 and is centered at (0.50, 0.75) in the unit square domain. The

phase-field is initialized to c = 1 and c = 0 inside and outside the circle, respectively.

The advection by the vorticity field causes the circle to evolve into a filament that

spirals toward the vortex center at (0.5, 0.5). The numerical solutions are computed

on the uniform grids h = 1/128 and the calculation is run with ∆t = 0.00125/k and

ε = 0.01. Figure 6.6 (a) shows the evolution of the interface at times t = 0, 0.0025, and

0.005. The results are given in Table 6.5. For most of delta functions, except δ6, the

error is large because of the compressed interfacial transition (see Figure 6.6 (b)). But,

as seen in Section 2.3, δ6 yields a good result even though the interfacial transition is

compressed (see Figure 6.6 (c)).
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Figure 6.6. (a) the evolution of the interface at times t = 0, 0.0025,
and 0.005. (b) Contour lines of concentration. Contour levels are
0.1, 0.2, . . . , 0.9. (c) the percentage error of each delta function.

Table 6.5. Deformed circle: the interface length for each delta function.

Contour value δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

1.968 3.192 1.246 2.219 3.117 1.218 1.919 1.568 3.060

6.1.1.4. Test 4: three-dimensional deformation field. We consider the problem of

a deforming sphere in a velocity field given by u = 2 sin2(πx) sin(2πy) sin(2πz), v =

− sin(2πx) sin2(πy) sin(2πz), and w = − sin(2πx) sin(2πy) sin2(πz) [137]. A simulation

of this problem has previously been performed by Enright et al. using the level-set

method [138]. This flow satisfies u = v = w = 0 on the boundaries of the unit cube

domain. A sphere of radius 0.15 is placed within a unit computational domain at

(0.35, 0.35, 0.35). We take h = 1/256, ∆t = 2.5e-4, ε3, and Pe = 0.1/ε3.

Figure 6.7 shows the evolution of the interface at times t = 0, 0.2, 0.4, and 0.6.

Each figure can be compared with the figures from the level-set computation in [138].

The sphere is entrained by two rotating vortices and then is compressed into a pancake-

like shape. The surface of the pancake-like shape becomes stretched out. Parts of the
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interface thin out to about a few grid and almost all delta functions have difficulty

to calculate exactly the surface area of this thin interface (see the results in Table

6.6). But δ6 has very little error even if the surface is deformed. Figure 6.8 shows the

percentage error of each delta function by representing them as histograms of various

sizes.

(a) t = 0 (b) t = 0.2

(c) t = 0.4 (d) t = 0.6

Figure 6.7. Deformation test: the evolution of the interface.

Table 6.6. Deformed sphere: the surface area for each delta function.

Isosurface value δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

0.586 0.565 0.567 0.566 0.545 0.634 0.596 0.615 0.528
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Figure 6.8. Deformed sphere: the percentage error of each delta function.

6.1.1.5. Test 5: triply periodic minimal surfaces. Triply periodic minimal surfaces

(TPMS, see Figure 6.9) are of special interest because they appear in a variety of real

structures such as silicates, bicontinuous mixtures, lyotropic colloids, detergent films,

lipid bilayers, and biological formations [139]. One important application of TPMS is

tissue scaffolds. Tissue scaffolds should have an optimal surface area and pore size to

restore function or regenerate tissue more efficiently. The TPMS morphology has been

successfully adapted to tissue scaffolds [140]. To calculate surface areas of TPMS, we

take the periodic nodal surface approximations of the P, D, and G TPMS [141]:

P (x, y, z) = cos 2πx + cos 2πy + cos 2πz + 0.5,

D(x, y, z) = cos 2πx cos 2πy cos 2πz − sin 2πx sin 2πy sin 2πz + 0.5,

G(x, y, z) = sin 2πx cos 2πy + sin 2πz cos 2πx + sin 2πy cos 2πz + 0.5.

For these calculations, we employ the computational domain Ω = (0, 1)× (0, 1)× (0, 1)

with h = 1/256, ∆t = 0.5h, and ε = 0.01. We stop the numerical computations when
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the discrete l2-norm of the difference between (n + 1)th and nth time step solutions

becomes less than 10−6. That is ||cn+1− cn|| ≤ 10−6. In Table 6.7, we compare surface

areas obtained using each delta function with those obtained by Jung et al. [142]. As

we can see from Figure 6.10, the error of δ6 is small.

(a) (b) (c)

Figure 6.9. Triply periodic minimal surfaces: (a) Schwarz P (primi-
tive), (b) Schwarz D (diamond), and (c) Schoen G (gyroid).

Table 6.7. TPMS: the surface area for each delta function.

TPMS (the results in [142]) δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

P surface (2.34) 2.21 2.24 2.22 2.11 2.29 2.35 2.32 2.02
D surface (3.84) 3.57 3.63 3.60 3.39 3.80 3.82 3.81 3.22
G surface (3.10) 2.88 2.93 2.91 2.74 3.14 3.08 3.11 2.60

6.1.2. The Dirac delta function in the surface tension force formulation.

An accurate approximation of the surface tension force is essential for solving two-phase

incompressible fluid flows. The continuum surface force (CSF) model of Brackbill

et al. [120] is employed extensively to model the surface tension force of two-phase

incompressible fluid flows in volume-of-fluid [99, 121, 124, 143], level-set [113, 39], and

phase-field [72, 65, 55, 63] methods. In the CSF model, surface tension forces acting on

the interface are transformed to volume forces in regions near the interface via a delta

function, SF = σκδn, where σ is the surface tension coefficient, κ is the curvature, δ
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Figure 6.10. TPMS: the percentage error of each delta function.

is a delta function concentrated on the interface, and n is the unit outward normal to

the surface and defined by n = ∇c/|∇c|. We note the identity

∇ · n = −κ. (6.1)

For a derivation of Equation (6.1), see Ref. [120]. The governing equations for two-

phase incompressible fluid flows can be written as [72, 65]

ρ(ut + u · ∇u) = −∇p + η∆u− σ∇ ·
( ∇c

|∇c|
)

δ(c)
∇c

|∇c| , (6.2)

∇ · u = 0,

ct +∇ · (cu) = M∆µ,

µ = f(c)− ε2∆c.

For details of the numerical solution, we refer to Ref. [65]. In this section, we present

two tests for the surface tension force.
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6.1.2.1. Reduction of spurious velocities. Spurious or parasitic velocities are un-

physical currents that arise from a slight imbalance between stresses in the interfacial

region. There are a number of papers for spurious velocities in incompressible flow

problems [102, 144, 145, 146, 147]. Approximating and choosing the surface tension

force formulation accurately is important since an improper formulation will lead to

spurious velocities. In this section, we compare the performance of each delta function

with the similar test problem in [124]. The computational domain is Ω = (0, 1)× (0, 1)

and the time step is ∆t = 10−5. The boundary conditions are zero velocity at the top

and bottom walls, and periodicity in x-direction. Initially, a circular drop is centered

at (0.5, 0.5), with radius a = 0.1 and surface tension coefficient σ = 0.357. Both fluids

have equal density, 4, and viscosity, 1. The initial velocity field is zero. The exact

solution is zero velocity for all time. In dimensionless terms, the relevant parameter is

the Ohnesorge number Oh = η/
√

σρa ∼ 2.6463.

Table 6.8 shows the convergence of spurious velocities as we refine the mesh size for

each delta function. Most delta functions show minor decreases as we refine the mesh.

But δ1, δ6, and δ7 show a linear convergence of spurious velocities, and δ6 effectively

eliminates spurious velocities than δ1 and δ7. In Figure 6.11, scaled velocity vector plots

at 200th time step with ∆t = 10−5 are shown. These show the locations of spurious

velocities with mesh refinement, (a) h = 1/64, (b) 1/128, and (c) 1/256 with ε = 0.64h.

Spurious velocities are mainly concentrated in the neighborhood of the interface. The

convergence of spurious velocities is evident as we refine the mesh size h and interface

parameter ε.
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Table 6.8. l2-norm of velocity at 200th time step with ε = 0.64h and
∆t = 10−5.

Case δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

642 2.064e-5 4.460e-5 3.219e-5 3.010e-5 3.019e-5 2.232e-5 2.599e-5 4.463e-5
1282 1.112e-5 4.345e-5 2.663e-5 1.901e-5 1.820e-5 1.018e-5 1.389e-5 2.667e-5
2562 5.880e-6 4.264e-5 2.350e-5 1.325e-5 1.318e-5 4.653e-6 8.362e-6 2.137e-5
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Figure 6.11. Scaled velocity vector plots at 200th time step with
∆t = 10−5. These show the locations of spurious velocities with mesh
refinement, (a) h = 1/64, (b) 1/128, and (c) 1/256 with ε = 0.64h. The
solid line in each figure represents the interface. The length of the arrow
is proportional to the magnitude of the velocity vector.

6.1.2.2. Pressure jump across the drop. Let us consider the equilibrium of a drop

placed within another fluid. Let the drop composition be defined as

c(x, y) =
1
2

(
1 + tanh

(
0.1−

√
(x− 0.5)2 + (y − 0.5)2

2
√

2ε

))
.

In the equilibrium state of a droplet, the velocity vanishes (u ≡ 0) and therefore

Equation (6.2) reduces to Equation (6.3) and therefore pressure gradient should balance

surface tension force.

∇p = −σ∇ ·
( ∇c

|∇c|
)

δ(c)
∇c

|∇c| . (6.3)

We solve Equation (6.4) numerically by taking the divergence operator to Equation

(6.3) with σ = 20, 128 × 128 mesh, computational domain Ω = (0, 1) × (0, 1), and
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ε = 0.005.

∆p = −σ∇ ·
[
∇ ·

( ∇c

|∇c|
)

δ(c)
∇c

|∇c|
]

. (6.4)

From Laplace’s formulation, we can obtain the theoretical prediction of the pressure

jump inside an infinite cylinder as ∆ptheo = σ/R, where R is the drop radius. In

this test, the pressure jump ∆ptheo is 200. This value is compared with the difference

between the maximum and minimum computed drop pressures obtained with each delta

function, [p], defined as

[p] = max
i,j

pij −min
i,j

pij .

As shown in Table 6.9, the numerical pressure jump [p] obtained using δ6 is in excellent

agreement with the theoretical prediction.

Table 6.9. The numerical pressure jump [p] across the drop with σ =
20 and R = 0.1.

Case δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

[p] 190.40 199.08 194.58 182.76 197.31 199.70 198.48 176.90

6.1.3. Relation between the interfacial width and grid size. With the mass

conserving boundary condition (∇µ ·n = 0 on ∂Ω), the differentiation of the total mass

yields

d

dt

∫

Ω
φ dx =

∫

Ω
φt dx =

∫

Ω
∆µ dx =

∫

∂Ω
∇µ · n ds = 0, (6.5)

where φ is the phase-field variable and we redefine φ as the difference between the

concentration of the two components. Equation (6.5) means that the solution of the

Cahn–Hilliard equation conserves mass over the entire domain. Even though the phase-

field variable is conserved globally, the mass of a drop is liable to variations as the φ

evolves. Theoretically, such variations vanish as the interfacial thickness approaches
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zero. But, in practice, the interfacial thickness is finite. This was pointed out by Yue

et al. [133]. To minimize the variations of mass, Yue et al. provided the guidelines on

how to pick the interfacial width and grid size relative to the radius of curvature. And

the authors calculated the shift of the phase-field variable and found that the shift δφ

is proportional to ε/r0, where r0 is the initial drop radius.

In this section, we perform numerical simulations of the spontaneous shrinking of

a drop. Drop with initial radius r0 = 0.75 and interfacial width ε8.3281 (this value

corresponds to the value in Section 2.2 in Ref. [133]) and ε30 are simulated. The initial

drop is centered at the center of the computational domain Ω = (−2, 2)× (−2, 2) and

a 128 × 128 mesh is used. Figures 6.12 (a) and (b) show the phase-field φ at y = 0

for ε8.3281 and ε30, respectively. In the case of ε8.3281, a grid size h is ε8.3281/2 and a

128 × 128 mesh is sufficient to guarantee numerical accuracy. Thus, we can see that

φ at the equilibrium state shifts slightly away from the initial state. But, in the case

of ε30, a 128 × 128 mesh is too coarse compared with ε30. As a result, the phase-field

disperses (see Figure 6.12 (b)). In Figure 6.12 (c), we use a 512 × 512 mesh with ε30

and obtain more accurate result than result in Figure 6.12 (b). Therefore, to guarantee

numerical accuracy, we need to choose properly an interfacial width and grid size.
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(a) ε8.3281 with a 1282 mesh.
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(b) ε30 with a 1282 mesh.
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(c) ε30 with a 5122 mesh.

Figure 6.12. Each figure shows the phase-field at y = 0. The interfa-
cial width and grid size for each case are given below each figure.
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6.2. Numerical experiments for snow crystal growth

In this section we perform numerical experiments for two-dimensional solidification

to validate that our proposed scheme is accurate, efficient, and robust. Unless otherwise

specified, we take the initial state as

c(x, y, 0) = tanh

(
R0 −

√
x2 + y2

√
2

)
and U(x, y, 0) =

{
0 if c > 0
∆ else.

The zero level set (c = 0) represents a circle of radius R0. From the dimensionless

variable definition the value U = 0 corresponds to the melting temperature of the pure

material, while U = ∆ is the initial undercooling. The capillary length, d0, is defined

as d0 = a1/λ [235, 250, 262] with a1 = 0.8839 [246, 247, 262] and λ = 3.1913 [262].

6.2.1. Convergence test. To obtain an estimate of the convergence rate, we per-

form a number of simulations for 6-fold crystal growth problem on a set of increasingly

finer grids. The computational domain is Ω = (−100, 100)2 and we take R0 = 15d0,

ε6 = 0.02, and ∆ = −0.55. The numerical solutions are computed on the uniform grids

h = 200/2n and with corresponding time steps ∆t = 0.6/2n−8 for n = 8, 9, 10, and 11.

The calculations are run up to time T = 150. We define the error to be the discrete of

l2-norm of the difference between that grid and the average of the next finer grid cells

covering it:

eh/ h
2 ij

= chij − (ch
2 2i−1,2j−1

+ ch
2 2i−1,2j

+ ch
2 2i,2j−1

+ ch
2 2i,2j

)/4.

The rate of convergence is defined as:

log2(‖ eh/ h
2
‖2 / ‖ eh

2
/ h

4
‖2).
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The errors and rates of convergence are given in Table 6.10. The results suggest that

the scheme is indeed second order accurate in space. Figure 6.13 shows the convergence

of numerical results under mesh refinement.

Table 6.10. Error and l2 convergence result.

256− 512 Rate 512− 1024 Rate 1024− 2048

5.477E−4 1.96 1.405E−4 2.01 3.487E−5
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256×256
512×512
1024×1024
2048×2048

Figure 6.13. Convergence of numerical results under mesh refinement.

Next, we consider the evolution of the interface with different time steps in order

to investigate the effect of time step. A 1024 × 1024 mesh is used on the domain

Ω = (−200, 200)2 with R0 = 50d0, ε6 = 0.02, and ∆ = −0.55. Figure 6.14 (a) shows

the interfaces at time T = 1200 with different time steps ∆t = 0.6, 0.3, and 0.15. Figure

6.14 (b) shows the velocity of the tip versus time. For the calculation of the crystal

tip velocity, refer to Ref. [252]. The velocity V of the tip at time T = 1200 versus

time step is shown in Figure 6.14 (c). Here, we define the error between the fitting



6.2. NUMERICAL EXPERIMENTS FOR SNOW CRYSTAL GROWTH 96

velocity Ṽ and V as Ei = |Ṽi − Vi|/Vi. In Figure 6.14 (c), the linear fit Ṽ is done using

the MATLAB function “polyfit” and the errors on the index i are calculated by the

MATLAB function “polyval” on the results of the linear fit. In this test, the l2 error

is 0.54%. Therefore the results suggest that the convergence rate of the tip velocity is

linear with respect to the time step.
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Figure 6.14. (a) The interfaces at T = 1200 for different time steps.
(b) shows the velocity of the tip versus time. (c) The numerical experi-
mental and linear fitting velocities versus time step.

6.2.2. Stability test. In this section, we perform a number of simulations on a

set of increasingly finer grids to show that our proposed method is more stable than
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the previous methods which suffer from time restrictions ∆t ≤ O(h2) for stability. The

computational domain is Ω = (−200, 200)2 and we take R0 = 15d0, ε6 = 0.02, and

∆ = −0.55. The numerical solutions are computed on the uniform grids h = 400/2n

with corresponding time steps ∆t = 3h for n = 8, 9, and 10. Figure 6.15 shows the

crystal growth with different time steps at T = 70.31. In general, large time steps may

cause large truncation errors. However, as can be seen in Figure 6.15, we obtain stable

solutions with large time steps.
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Figure 6.15. The stability of crystal growth with different mesh sizes:
(a) 256 × 256 mesh (∆t = 4.68), (b) 512 × 512 mesh (∆t = 2.34), and
(c) 1024× 1024 mesh (∆t = 1.17).

6.2.3. Effect of ε6. To investigate the effect of ε6, we consider the evolution of the

interface with different ε6 = 0.002, 0.02, and 0.05. A 1024× 1024 mesh is used on the

domain Ω = (−100, 100)2 and we take R0 = 50d0, ∆ = −0.55, ∆t = 0.3, and T = 1200.

Figures 6.16 (a), (b), and (c) are the evolution of crystal growth with ε6 = 0.002, 0.02,

and 0.05, respectively. As advised in the previous paper, If ε6 < 1
35 , all of tangent

planes lie outside and all orientations appear on the equilibrium shape. Detail view

is drawn in Figure 6.16(a). Otherwise, there is missing orientations shown in Figure

6.16(c). While if ε6 is not more smaller than 1
35 , the crystal also works well shown in

Figure 6.16(b). Thus the Wulff construction is not strictly correlated with ε6 in crystal

growth, but provide guidelines for parameter selection.
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Figure 6.16. The effect of ε6. (a), (b), and (c) are the evolution of
crystal growth with ε6 = 0.002, 0.02, and 0.05, respectively. The times
are t = 0, 120, 240, 360, 480, 600, 720, 840, 960, 1080, and 1200.

6.2.4. Effect of undercooling. Now we investigate the effects of undercooling

of the initial solid seed. For each test, a 1024 × 1024 mesh is used on the domain

Ω = (−200, 200)2 and we choose R0 = 15d0, ε6 = 0.02, ∆t = 0.3, and T = 1080.

Figure 6.17 shows sequences of interfaces with different undercooling sizes ∆ = −0.45,

∆ = −0.55, and ∆ = −0.65. We observe that the large initial undercooling causes the

dendrite to grow faster.
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Figure 6.17. Sequences of interfaces with different undercooling sizes
∆ = −0.45, ∆ = −0.55, and ∆ = −0.65.

6.2.5. k-fold symmetric crystal growth. If we set the energy function by

ε(φ) = ε0(1 + εk cos(kφ)), then our proposed method can simulate the k-fold crystal
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growth in general. To show this, we simulate sequences of computational experiments

of k-fold symmetric crystal growth for k = 4, . . . , 9. A 1024× 1024 mesh is used on the

domain Ω = (−200,−200)2 and we take R0 = 15d0, ∆ = −0.55, and ∆t = 0.3. Note

that we use εk = 1/(k2 − 1) to respond to the Wulff’s algorithm. The evolutions for

each k are shown in Figure 6.18.
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Figure 6.18. The evolutions of k-fold crystal growth after time: (a)
T = 720, (b) T = 1200, (c) T = 1680, (d) T = 2160, (e) T = 2520, and
(f) T = 2880.
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6.3. Numerical experiments for the multi-component Cahn–Hilliard

system

6.3.1. The stability of the proposed scheme. We investigate the stability

of five different schemes for the quaternary CH system: the explicit Euler’s (EE),

semi-implicit Euler’s (SIE), implicit Euler’s (IE), Crank-Nicolson (CN), and nonlinear

splitting (NS). For dissipative dynamics such as the CH system, a discrete time stepping

algorithm is defined to be gradient stable if the free energy is nonincreasing, F(cn+1) ≤

F(cn), for each n. Define ∆tmax as the largest possible time step which allows stable

numerical computation. In other words, if the time step is larger than ∆tmax, then

the algorithm is not gradient stable. To measure ∆tmax for each scheme, we perform a

number of simulations for a sample initial problem on a set of increasingly finer grids.

The initial conditions are

c1(x, y, 0) = 0.25 + 0.1rand( ),

c2(x, y, 0) = 0.25 + 0.1rand( ),

c3(x, y, 0) = 0.25 + 0.1rand( )

on a domain Ω = (0, 1)× (0, 1). Here, rand( ) is a random number between −1 and 1.

The numerical solutions are computed on the uniform grids, h = 1/2n for n = 5, 6, 7,

and 8. For each case, ε = 0.64h is used. The values of ∆tmax with different schemes are

listed in Table 6.11. From the results, we observe that EE, SIE, IE, and CN schemes

are not gradient stable when we use the time step larger than ∆tmax (see Figure 6.19).

However, our proposed scheme (NS) is gradient stable for time steps of any size, i.e.,

the scheme is practically unconditionally gradient stable.
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Table 6.11. The values of the maximum time step guaranteeing the
stability of each scheme.

Case 32× 32 64× 64 128× 128 256× 256
EE 7.6× 10−5 1.9× 10−5 4.7× 10−6 1.1× 10−6

SIE 2.9× 10−2 7.9× 10−3 1.3× 10−3 4.3× 10−4

IE 3.2× 10−2 7.8× 10−3 1.7× 10−3 4.4× 10−4

CN 2.0× 10−2 5.0× 10−3 1.1× 10−3 2.8× 10−4

NS ∞ ∞ ∞ ∞

32 64 128 256
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Figure 6.19. The maximum time step (∆tmax) guaranteeing the sta-
bility of each scheme.

6.3.2. Linear stability analysis. In this section, we study the short-time behav-

ior of a quaternary mixture. The partial differential Equations (3.4) and (3.5) we wish

to solve may be written as

∂c(x, t)
∂t

= ∆
(
ψ(c)− ε2∆c

)
, for (x, t) ∈ Ω× (0, T ], (6.6)

where ψ(c) = f(c)+β(c)1. Let the mean concentration take the form m = (m1,m2,m3).

We seek a solution of the form

c(x, t) = m +
∞∑

k=1

cos(kπx)(αk(t), βk(t), γk(t)), (6.7)
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where |αk(t)|, |βk(t)|, and |γk(t)| ¿ 1. After linearizing ψ(c) about m, we have

ψ(c) ≈ ψ(m) + (c−m)




∂c1ψ1(m) ∂c1ψ2(m) ∂c1ψ3(m)
∂c2ψ1(m) ∂c2ψ2(m) ∂c2ψ3(m)
∂c3ψ1(m) ∂c3ψ2(m) ∂c3ψ3(m)


 . (6.8)

Substituting (6.8) into (6.6) and letting m1 = m2 = m3 = m for simplicity, then, up to

first order, we have

∂c
∂t

= ∆c




18m2−9m+1
2

3m(4m−1)
2

3m(4m−1)
2

3m(4m−1)
2

18m2−9m+1
2

3m(4m−1)
2

3m(4m−1)
2

3m(4m−1)
2

18m2−9m+1
2


− ε2∆2c. (6.9)

After substituting c(x, t) from Equation (6.7) into (6.9), we get



αk(t)
βk(t)
γk(t)



′

= A




αk(t)
βk(t)
γk(t)


 , A =




a b b
b a b
b b a


 , (6.10)

where ′ indicates the time derivative and

a =
−k2π2

2
(18m2 − 9m + 1)− ε2k4π4, b =

−3k2π2m(4m− 1)
2

.

The eigenvalues of A are

λ1 = −k2π2

2
(42m2 − 15m + 1 + 2ε2k2π2),

λ2 = λ3 = −k2π2

2
(6m2 − 6m + 1 + 2ε2k2π2).

The solution to the system of ODEs (6.10) is given by



αk(t)
βk(t)
γk(t)


 =

αk(0) + βk(0) + γk(0)
3




1
1
1


 eλ1t +

−αk(0)− βk(0) + 2γk(0)
3



−1
0
1


 eλ2t

+
−αk(0) + 2βk(0)− γk(0)

3



−1
1
0


 eλ2t.

In Figure 6.20, we plot the evolution of the amplitudes as a function of time.

The symbols ‘-◦-’, ‘-¦-’, and ‘-M-’ are numerical results that are compared with the

theoretical values αk(t) (point), βk(t) (star), and γk(t) (plus), respectively, with the
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Figure 6.20. The symbols ‘-◦-’, ‘-¦-’, and ‘-M-’ are numerical results
that are compared with the theoretical values αk(t) (point), βk(t) (star),
and γk(t) (plus), respectively, with the initial conditions of Equations
(6.11)-(6.13).

initial conditions:

c1(x, 0) = 0.25 + 0.001 cos(3πx), (6.11)

c2(x, 0) = 0.25 + 0.002 cos(3πx), (6.12)

c3(x, 0) = 0.25 + 0.003 cos(3πx). (6.13)

Here, we used k = 3, m = 0.25, ε = 0.005, h = 1/256, ∆t = 0.1h, and T = 200∆t. The

numerical amplitudes are defined by

αn
k =

(
max

1≤i≤Nx

cn
1 (xi)− min

1≤i≤Nx

cn
1 (xi)

)
/2,

βn
k =

(
max

1≤i≤Nx

cn
2 (xi)− min

1≤i≤Nx

cn
2 (xi)

)
/2,

γn
k =

(
max

1≤i≤Nx

cn
3 (xi)− min

1≤i≤Nx

cn
3 (xi)

)
/2.



6.3. NUMERICAL EXPERIMENTS FOR THE MULTI-COMPONENT
CAHN–HILLIARD SYSTEM 104

The results in Figure 6.20 show that the linear stability analysis and numerical solutions

are in good agreement in a linear regime.

6.3.3. The efficiency of the proposed scheme. As mentioned in Section 5.5.1,

we can solve the N -component CH system in a decoupled way by using our scheme.

In order to show the efficiency of the proposed scheme, we consider phase separation

of N = 3, 4, . . . , 10 components in the unit square domain Ω = (0, 1) × (0, 1). For

each number of components, the initial condition is a randomly chosen superposition

of circles. We choose h = 1/128, ∆t = 10h, and ε = 0.0047 and perform 4000 time

steps. The evolution of the interface is shown in Figure 6.27. Rows 1 and 2 correspond

to t = 10∆t and 4000∆t, respectively. Table 6.13 provides the average CPU time (in

seconds) during 4000 time steps for each number of components. The average CPU

time versus number of components is shown in Figure 6.28. The results suggest that the

convergence rate of average CPU time is linear with respect to number of components.

Table 6.12. Average CPU times (sec.) for different numbers of components.

N 3 4 5 6 7 8 9 10
Average CPU time 2.060 2.990 4.070 5.028 5.791 6.686 7.492 8.533

6.3.4. Spinodal decomposition - phase separation of a ten-component

mixture. We consider phase separation of a ten-component mixture by spinodal de-

composition. The initial condition is a randomly chosen superposition of circles. A

128 × 128 mesh is used on the domain Ω = (0, 1) × (0, 1) and we take ∆t = 10h and

ε = 0.0038. We compute until the solution becomes numerically stationary. Figure 6.23

shows the evolution of the interface at different times. We observe that three phases

meet at one point and the angles between them approach 120◦ as they approach local
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N = 3 N = 5 N = 8 N = 10

t = 4000∆t
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Figure 6.21. Phase separation of N = 3, 5, 8, and 10 components.
Rows 1 and 2 correspond to t = 10∆t and 4000∆t, respectively. Num-
bers in row 2 indicate the number of components.
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Figure 6.22. Average CPU time versus number of components.

equilibrium states. This is due to the fact that in the total energy functional equation

(3.2), F(c(x, t)) is symmetric and the interaction parameter ε is constant. This result

is in good agreement with the theory in [205].
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(a) t = ∆t (b) t = 20∆t (c) t = 200∆t
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(f) t = 4000∆t

Figure 6.23. Temporal evolution of a ten-component system. Times
are shown below each figure. Numbers in (d), (e), and (f) indicate the
number of components.

6.4. Numerical experiments for the multi-component

Navier–Stokes–Cahn–Hilliard system

6.4.1. Phase separation of a five-component mixture in a gravitational

field. We consider multi-component incompressible viscous fluid flow. The fluid dy-

namics is described by the Navier–Stokes–Cahn–Hilliard (NSCH) equations [64, 63,

153, 11, 154, 155, 156, 65, 187, 189, 58, 55, 16, 56]:

ρ(c)
(

∂u
∂t

+ u · ∇u
)

= −∇p + η∆u + ρ(c)g, (6.14)

∇ · u = 0, (6.15)

∂c
∂t

+ u · ∇c = M∆µ, (6.16)

µ = f(c)− ε2∆c + β(c), (6.17)
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where u is the velocity, p is the pressure, ρ(c) is the density, η is the viscosity, g =

(0,−g) is the gravity, M is the mobility, and µ is the generalized chemical potential. In

this paper the effect of the surface tension is negligible. We note that even though our

phase-field model can deal with a variable viscosity case straightforwardly, we focus on

the viscosity matched case.

To make Equations (6.14)-(6.17) dimensionless, we choose the following definitions:

x′ =
x
Lc

, u′ =
u
Uc

, t′ =
tUc

Lc
, ρ′ =

ρ

ρc
, p′ =

p

ρcU2
c

, g′ =
g
g
, µ′ =

µ

µc
,

where the primed quantities are dimensionless and Lc is the characteristic length, Uc is

the characteristic velocity, ρc is the characteristic density and is defined as that of fluid

1, g is the gravitational acceleration, and µc is the characteristic chemical potential.

Substituting these variables into Equations (6.14)-(6.17) and dropping the primes, we

have

ρ(c)
(

∂u
∂t

+ u · ∇u
)

= −∇p +
1

Re
∆u +

ρ(c)
Fr2

g, (6.18)

∇ · u = 0, (6.19)

∂c
∂t

+ u · ∇c =
1

Pe
∆µ, (6.20)

µ = f(c)− ε2∆c + β(c), (6.21)

where g = (0,−1) and ε is redefined according to the scaling. The dimensionless

parameters are the Reynolds number, Re = ρcUcLc/η, Froude number, Fr = Uc/
√

gLc,

and Peclet number, Pe = UcLc/(Mµc). Using Uc =
√

gLc, we have Re = ρcUcLc/η =

ρcg
1/2Lc

3/2/η and Fr = Uc/
√

gLc =
√

gLc/
√

gLc = 1. By applying our scheme, we

can solve the multi-component advective CH system (6.20) and (6.21) in a decoupled

way and solving the multi-component NSCH system (6.18)-(6.21) becomes solving the
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binary NSCH system. For a detailed description of the numerical method used in

solving the binary NSCH system, please refer to Ref. [156].

To model phase separation of a five-component mixture in a gravitational field, we

take an initial velocity field as zero, u = 0, and the initial conditions for c are randomly

distributed between 0 and 1. ρ(c) =
∑5

i=1 ρici (c5 = 1 − c1 − c2 − c3 − c4 and ρi is

the ith fluid density) and ρi = 6− i for i = 1, . . . , 5. A mesh size 128× 128 is used on

the unit square domain and we choose ∆t = 2.0 × 10−3, ε = 0.0047, Re = 3000, and

Pe = 0.1/ε. Figure 6.24 shows the time evolution of the five-component mixture system

in a gravitational field. Fluid 1 is represented by the black region, fluid 2 by the dark

gray region, fluid 3 by the gray region, fluid 4 by the light gray region, and fluid 5 by

the white region. From Figure 6.24 we see that the gravity affects a multi-component

simulation by pulling the heavy fluid to the bottom of the computational domain.

t = 4 t = 9.6 t = 16 t = 80

Figure 6.24. Phase separation of a five-component mixture in a grav-
itational field. Fluid 1 is represented by the black region, fluid 2 by the
dark gray region, fluid 3 by the gray region, fluid 4 by the light gray
region, and fluid 5 by the white region. Times are shown below each
figure.

6.4.2. The Rayleigh-Taylor instability of a five-component mixture. When

a heavy fluid is superposed over a light fluid in a gravitational field, the fluid interface

is unstable. Any perturbation of this interface tends to grow with time, producing the
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phenomena known as the Rayleigh-Taylor instability. The phenomena are the pene-

tration of both heavy and light fluids into each other. The Rayleigh-Taylor instability

for a fluid in a gravitational field was originally introduced by Rayleigh [206] and later

applied to all accelerated fluids by Taylor [207].

In this section, we study the Rayleigh-Taylor instability of a five-component mix-

ture. In the simulations, we have two initial states as shown in Figure 6.25 (a) and

Figure 6.26 (a). The initial velocity is zero. ρ(c) =
∑5

i=1 ρici (c5 = 1− c1− c2− c3− c4

and ρi is the ith fluid density) and ρi = 6 − i for i = 1, . . . , 5. A mesh size 128 × 512

is used on a domain Ω = (0, 1) × (0, 4) and we choose ∆t = 2.0 × 10−3, ε = 0.0047,

Re = 3000, and Pe = 0.1/ε. The results are presented in Figures 6.25 (b)-(g) and Fig-

ures 6.26 (b)-(g). The area shown by black indicates the fluid 1 region, while the dark

gray, gray, light gray, and white color regions stand for the fluid 2, 3, 4, and 5 domains,

respectively. We observe that our proposed method is a powerful tool to simulate the

Rayleigh-Taylor instability between multi-component fluids.

(a) (b) (c) (d) (e) (f) (g)

Figure 6.25. The Rayleigh-Taylor instability of a five-component mix-
ture. Times are t = 0, 3, 6, 10, 20, 40, and 160 (left to right).
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(a) (b) (c) (d) (e) (f) (g)

Figure 6.26. The Rayleigh-Taylor instability of a five-component mix-
ture. Times are t = 0, 3, 6, 10, 30, 50, and 200 (left to right).
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6.5. Numerical experiments for the multi-component Allen–Cahn system

6.5.1. The efficiency of the proposed scheme. As mentioned in Section 5.6,

we can solve the N -component AC system in a decoupled way by using our scheme.

In order to show the efficiency of the proposed scheme, we consider phase separation

of N = 3, 4, . . . , 10 components in the unit square domain Ω = (0, 1) × (0, 1). For

each number of components, the initial condition is a randomly chosen superposition of

circles. We choose h = 1/128, ∆t = 10h, and ε = 0.0047 and perform 30000 time steps.

The evolution of the interface is shown in Figure 6.27. Rows 1 and 2 correspond to

t = 3000∆t and 30000∆t, respectively. Table 6.13 provides the average CPU time (in

seconds) during 30000 time steps for each number of components. The average CPU

time versus number of components is shown in Figure 6.28. The results suggest that the

convergence rate of average CPU time is linear with respect to number of components.

N 3 4 5 6 7 8 9 10
Average CPU time 0.0498 0.0742 0.0998 0.1254 0.1526 0.1779 0.2056 0.2329

Table 6.13. Average CPU times (sec.) for different numbers of components.
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t = 3000∆t

N = 3 N = 5 N = 8

t = 30000∆t

N = 3 N = 5 N = 8

Figure 6.27. Phase separation of N = 3, 5, and 8 components. Rows
1 and 2 correspond to t = 3000∆t and 30000∆t, respectively.
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Figure 6.28. Average CPU time versus number of components.
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Chapter 7

Conclusion

To model multi-component fluid flows, we considered the vector valued phase-field,

velocity, and pressure which are governed by the N -component advective Cahn–Hilliard

and modified Navier–Stokes equations. For the N -component Cahn–Hilliard equation,

we presented a practically unconditionally gradient stable conservative nonlinear nu-

merical scheme. The scheme was based on a nonlinear splitting method and was solved

by an efficient and accurate nonlinear multigrid method. And the scheme allows us

to convert the N -component Cahn–Hilliard equation into a system of N − 1 binary

Cahn–Hilliard equations and significantly reduces the required computer memory and

CPU time. The Cahn–Hilliard–Navier–Stokes equations can be applied to any number

of fluid components. And, to investigate the buoyancy driven interpenetration of fluids

with different densities, we implemented a time-dependent pressure boundary condition

through a time-dependent density field at the boundary. Due to the pressure boundary

treatment, we can perform long time evolutions resulting in an equilibrium state.

We presented an unconditionally stable second-order hybrid numerical method for

solving the Allen–Cahn equation. The proposed method was based on operator split-

ting techniques. The Allen–Cahn equation was divided into a linear and a nonlinear

equation. First, the linear equation was discretized using an implicit Euler’s scheme

and the resulting discrete system of equations was solved by a multigrid method. The
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nonlinear equation was then solved analytically due to the availability of a closed-form

solution. In particular, we applied this technique to dendritic growth simulation. A

great challenge in the simulation with various supercoolings is the large difference in

time and length scales. This introduces a severe time step restriction for stability. The

proposed scheme allows the use of a sufficiently large time step without the technical

limitations.
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Appendix

In this Appendix, we present a source code written in C language for the Cahn-

Hilliard equation.

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define nx 128
#define ny 128
#define iloop for(i=1;i<=nx;i++)
#define jloop for(j=1;j<=ny;j++)
#define ijloop int i, j; iloop jloop
#define iloopt for(i=1;i<=nxt;i++)
#define jloopt for(j=1;j<=nyt;j++)
#define ijloopt int i, j; iloopt jloopt
void initialization(double **cn);
void Cahn_Hilliard(double **cn, double **cnp);
void source(double **cn, double **src_c, double **src_mu);
void vcycle(double **cnp, double **mu, double **sor_c, double **sor_mu,

int nxf, int nyf, int ilevel);
void relax(double **cnp, double **mu, double **sor_c, double **sor_mu,

int ilevel, int nxt, int nyt);
void defect(double **def_c, double **def_mu, double **cn, double **cnp,

double **sor_c, double **sor_mu, int nxf, int nyf);
void LS(double **LSc, double **LSmu, double **cnp, double **mu,

int nxt, int nyt);
void laplace(double **a, double **lap_a, int nxt, int nyt);
void restrict(double **cf, double **cc, double **muf, double **muc,

int nxt, int nyt);
void prolong(double **cc, double **cf, double **muc, double **muf,

int nxt, int nyt);
double **dmatrix(long nrl, long nrh, long ncl, long nch);
void zero_matrix(double **a, int nxt, int nyt);
void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch);
void mat_add(double **a, double **b, double **c, int nxt, int nyt);
void mat_sub(double **a, double **b, double **c, int nxt, int nyt);
void mat_copy(double **a, double **b, int nxt, int nyt);
double error(double **ct, double **cnp);
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void print_data(double **cnp);
int n_level, c_relax;
double **tmp1, **tmp2, **ct, **mu, **sor_c, **sor_mu, xleft, xright,

yleft, yright, h, h2, dt, epsilon, Cahn;
int main()
{

extern int n_level, c_relax;
extern double **tmp1, **tmp2, **ct, **mu, **sor_c, **sor_mu,

xleft, xright, yleft, yright, h, h2, dt, epsilon, Cahn;
int it, max_it, print_interval, count=1;
double **cn, **cnp;
FILE *fphi;
if (nx<ny) n_level=(int)(log(nx)/log(2)+0.1);
else n_level=(int)(log(ny)/log(2)+0.1);
c_relax=5, max_it=50, print_interval=max_it/2,
xleft=0.0, xright=1.0, yleft=0.0, yright=1.0;
h=xright/(double)nx, h2=pow(h,2), dt=h, epsilon=h,
Cahn=pow(epsilon,2);
tmp1=dmatrix(1, nx, 1, ny); tmp2=dmatrix(1, nx, 1, ny);
ct=dmatrix(1, nx, 1, ny); mu=dmatrix(1, nx, 1, ny);
sor_c=dmatrix(1, nx, 1, ny); sor_mu=dmatrix(1, nx, 1, ny);
cn=dmatrix(1, nx, 1, ny); cnp=dmatrix(1, nx, 1, ny);

initialization(cnp);

fphi=fopen("phi.m","w");
fprintf(fphi,"A=[ \n");
fclose(fphi);

print_data(cnp);

for (it=1; it<=max_it; it++) {
mat_copy(cn, cnp, nx, ny);
Cahn_Hilliard(cn, cnp);
if (it % print_interval==0) {

print_data(cnp);
printf("print out counts %d \n", count++); }

printf("Iteration is %d \n", it); }

fphi = fopen("phi.m","a");
fprintf(fphi,"]; surf(A’); shading interp \n");
fclose(fphi);

return 0;
}
void initialization(double **cn)
{

ijloop {
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cn[i][j]=0.3*(0.5-rand()/(double)RAND_MAX);
mu[i][j]=0.0; }

}
void Cahn_Hilliard(double **cn, double **cnp)
{

int max_it=300, iter=1;
double tol=1.0e-5, resid=1.0;
source(cn, sor_c, sor_mu);
mat_copy(ct, cn, nx, ny);
while (iter <= max_it && resid > tol) {

vcycle(cnp, mu, sor_c, sor_mu, nx ,ny, 1);
resid=error(ct, cnp);
mat_copy(ct, cnp, nx, ny);
iter++; }

printf("Error is %12.10f %d",resid,iter-1);
}
void source(double **cn, double **src_c, double **src_mu)
{

ijloop {
src_c[i][j]=cn[i][j]/dt;
src_mu[i][j]=pow(cn[i][j],3)-3.0*cn[i][j];}

}
void vcycle(double **cnp, double **mu, double **sor_c, double **sor_mu,

int nxf, int nyf, int ilevel)
{

relax(cnp, mu, sor_c, sor_mu, ilevel, nxf, nyf);

if (ilevel<n_level) {

double **def_c, **def_mu, **codef_c, **codef_mu,
**fidef_c, **fidef_mu;

def_c=dmatrix(1, nxf/2, 1, nyf/2);
def_mu=dmatrix(1, nxf/2, 1, nyf/2);
fidef_c=dmatrix(1, nxf, 1, nyf);
fidef_mu=dmatrix(1, nxf, 1, nyf);
codef_c=dmatrix(1, nxf/2, 1, nyf/2);
codef_mu=dmatrix(1, nxf/2, 1, nyf/2);

defect(def_c, def_mu, cnp, mu, sor_c, sor_mu, nxf, nyf);
zero_matrix(codef_c, nxf/2, nyf/2);
zero_matrix(codef_mu, nxf/2, nyf/2);
vcycle(codef_c, codef_mu, def_c, def_mu, nxf/2, nyf/2, ilevel+1);
prolong(codef_c, fidef_c, codef_mu, fidef_mu, nxf/2, nyf/2);
mat_add(cnp, cnp, fidef_c, nxf, nyf);
mat_add(mu, mu, fidef_mu, nxf, nyf);
relax(cnp, mu, sor_c, sor_mu, ilevel, nxf, nyf);
free_dmatrix(def_c, 1, nxf/2, 1, nyf/2);
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free_dmatrix(def_mu, 1, nxf/2, 1, nyf/2);
free_dmatrix(fidef_c, 1, nxf, 1, nyf);
free_dmatrix(fidef_mu, 1, nxf, 1, nyf);
free_dmatrix(codef_c, 1, nxf/2, 1, nyf/2);
free_dmatrix(codef_mu, 1, nxf/2, 1, nyf/2);

}
}
void restrict(double **cf, double **cc, double **muf, double **muc,

int nxt, int nyt)
{

ijloopt {
cc[i][j]=0.25*(cf[2*i][2*j]+cf[2*i-1][2*j]

+cf[2*i][2*j-1]+cf[2*i-1][2*j-1]);
muc[i][j]=0.25*(muf[2*i][2*j]+muf[2*i-1][2*j]

+muf[2*i][2*j-1]+muf[2*i-1][2*j-1]); }
}
void prolong(double **cc, double **cf, double **muc, double **muf,

int nxt, int nyt)
{

ijloopt {
cf[2*i][2*j]=cf[2*i-1][2*j]
=cf[2*i][2*j-1]=cf[2*i-1][2*j-1]=cc[i][j];
muf[2*i][2*j]=muf[2*i-1][2*j]
=muf[2*i][2*j-1]=muf[2*i-1][2*j-1]=muc[i][j]; }

}
void LS(double **LSc, double **LSmu, double **cnp, double **mu,

int nxt, int nyt)
{

double **lap_mu, **lap_c;

lap_mu=dmatrix(1, nxt, 1, nyt);
lap_c=dmatrix(1, nxt, 1, nyt);
laplace(cnp, lap_c, nxt, nyt);
laplace(mu, lap_mu, nxt, nyt);

ijloopt {
LSc[i][j]=cnp[i][j]/dt-lap_mu[i][j];
LSmu[i][j]=- 2.0*cnp[i][j]+Cahn*lap_c[i][j]+mu[i][j]; }

free_dmatrix(lap_mu, 1, nxt, 1, nyt);
free_dmatrix(lap_c, 1, nxt, 1, nyt);

}
void defect(double **def_c, double **def_mu, double **cn, double **cnp,

double **sor_c, double **sor_mu, int nxf, int nyf)
{

LS(tmp1, tmp2, cn, cnp, nxf, nyf);
mat_sub(tmp1, sor_c, tmp1, nxf, nyf);
mat_sub(tmp2, sor_mu, tmp2, nxf, nyf);
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restrict(tmp1, def_c, tmp2, def_mu, nxf/2, nyf/2);
}
double error(double **ct, double **cnp)
{

double value=0.0;
ijloop {

if (fabs(ct[i][j]-cnp[i][j]) > value)
value=fabs(ct[i][j]-cnp[i][j]); }

return value;
}
void relax(double **cnp, double **mu, double **sor_c, double **sor_mu,

int ilevel, int nxt, int nyt)
{

int iter;
double ht2, a[4], f[2], det;
ht2 = pow(xright/(double) nxt,2);

for (iter=1; iter<=c_relax; iter++) {
ijloopt {
a[0]=1.0/dt, a[1]=0.0, a[2]=-2.0, a[3]=1.0;
f[0]=sor_c[i][j], f[1]=sor_mu[i][j];

if (i>1) {a[1]+=1.0/ht2,a[2]-=Cahn/ht2;
f[0]+=mu[i-1][j]/ht2,f[1]-=Cahn*cnp[i-1][j]/ht2;}

if (i<nxt) {a[1]+=1.0/ht2,a[2]-=Cahn/ht2;
f[0]+=mu[i+1][j]/ht2,f[1]-=Cahn*cnp[i+1][j]/ht2;}

if (j>1) {a[1]+=1.0/ht2,a[2]-=Cahn/ht2;
f[0]+=mu[i][j-1]/ht2,f[1]-=Cahn*cnp[i][j-1]/ht2;}

if (j<nyt) {a[1]+=1.0/ht2,a[2]-=Cahn/ht2;
f[0]+=mu[i][j+1]/ht2,f[1]-=Cahn*cnp[i][j+1]/ht2;}

det = a[0]*a[3] - a[1]*a[2];
cnp[i][j] = (a[3]*f[0] - a[1]*f[1])/det;
mu[i][j] = (-a[2]*f[0] + a[0]*f[1])/det;}

}
}
void laplace(double **a, double **lap_a, int nxt, int nyt)
{

double ht2, value;
ht2 = pow(xright / (double) nxt, 2);

ijloopt {
value=0.0;
if (i<nxt) value += a[i+1][j]-a[i][j];
if (i>1) value -= a[i][j]-a[i-1][j];
if (j<nyt) value += a[i][j+1]-a[i][j];
if (j>1) value -= a[i][j]-a[i][j-1];
lap_a[i][j]=value/ht2;}
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}
void mat_add(double **a, double **b, double **c, int nxt, int nyt)
{

ijloopt a[i][j] = b[i][j]+c[i][j];
}
void zero_matrix(double **a, int nxt, int nyt)
{

ijloopt a[i][j]=0.0;
}
void mat_copy(double **a, double **b, int nxt, int nyt)
{

ijloopt a[i][j]=b[i][j];
}
double **dmatrix(long nrl, long nrh, long ncl, long nch)
{

double **m;
long i, nrow=nrh-nrl+1+1, ncol=nch-ncl+1+1;
m=(double **) malloc((nrow)*sizeof(double*));
m+=1;
m-=nrl;
m[nrl]=(double *) malloc((nrow*ncol)*sizeof(double));
m[nrl]+=1;
m[nrl]-=ncl;
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;

return m;
}
void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch)
{

free(m[nrl]+ncl-1);
free(m+nrl-1);

}
void mat_sub(double **a, double **b, double **c, int nxt, int nyt)
{

ijloopt a[i][j]=b[i][j]-c[i][j];
}
void print_data(double **cnp)
{

int i, j;
FILE *fp;
fp = fopen("phi.m","a");
iloop {

jloop { fprintf(fp, " %f", cnp[i][j]);}
fprintf(fp, "\n");}

fclose(fp);
}
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