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a b s t r a c t 

In this paper, we propose an unconditionally stable numerical scheme for the Allen–Cahn 

(AC) equation with high-order (higher than fourth) polynomial free energy. The AC equa- 

tion was proposed by Allen and Cahn to model the anti-phase domain coarsening in a 

binary mixture. The AC equation has been extensively used as a building block equation 

for modeling many scientific problems such as image processing, dendritic growth, motion 

by mean curvature, and multi-phase fluid flows. The AC equation can be derived from a 

gradient flow of a total energy functional which consists of a double-well form potential 

and a gradient term. Practically, a quartic polynomial has been used for the double-well 

potential. High-order (greater than fourth) polynomial free energy potentials can be also 

used in the total energy functional and can better represent interfacial dynamics of the 

AC equation. However, the AC equation with the high-order polynomial is getting stiffer 

as the polynomial order increases. Typically, this type of double-well potential is solved 

using a convex splitting with a stabilizing parameter and effectively modifies the original 

governing equation. 

In the proposed method, we use a second-order operator splitting method and an inter- 

polation method. First, we solve the nonlinear double-well potential term using interpo- 

lation from the pre-computed values. Second, we solve the diffusion equation using the 

Crank–Nicolson method and multigrid method. The overall scheme is unconditionally sta- 

ble and we theoretically prove the unconditional stability. Computational experiments are 

performed to demonstrate the robustness and accuracy of the proposed method; and in- 

vestigate the effect of the order of the double-well potential on the dynamics of the AC 

equation. Finally, we highlight the different dynamics for the AC equation with polynomial 

free energy of various orders. The computational results suggest that the proposed method 

will be useful for modeling various interfacial phenomena. 
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1. Introduction 

The Allen–Cahn (AC) equation was presented by Allen and Cahn [1] : 

∂φ( x , t) 

∂t 
= −F ′ (φ(x , t)) 

ε2 
+ �φ(x , t) , x ∈ �, t > 0 , (1) 

where φ(x , t) is the order parameter in a domain � ⊂ R 

d (d = 2 , 3) , F (φ) is the double-well free energy density, and ε is

a positive parameter. For the boundary condition in this work, a homogeneous Neumann boundary condition is considered. 

The AC equation can be obtained from the following Lyapunov energy functional in L 2 -gradient flow: 

E(φ) = 

∫ 
�

(
F (φ) 

ε2 
+ 

|∇φ| 2 
2 

)
d x . (2) 

Differentiating Eq. (2) with respect to time gives the following total energy decrease in time: 

d 

d t 
E(φ) = 

∫ 
�

(
∂φ

∂t 

F ′ (φ) 

ε2 
+ ∇ 

∂φ

∂t 
· ∇φ

)
d x 

= 

∫ 
�

φt 

(
F ′ (φ) 

ε2 
− �φ

)
d x = −

∫ 
�
(φt ) 

2 d x ≤ 0 . (3) 

The AC equation has been extensively used as a building block equation for modeling many important scientific problems 

such as image processing [2] , dendritic growth [3,4] , motion by mean curvature [5] , the evaporation of thin film mixtures

[6] , and multi-phase fluid flows [7–9] . In addition, the AC equation has been modified in other forms and utilized in many

areas. For example, many studies have been conducted on the conservative AC equation [10,11] because of the nature of

preserving mass unlike classical AC equation. Recently, pinning boundary conditions have been applied to the AC equation 

and the conservative AC equation [12] . 

Therefore, the accurate and efficient numerical schemes are needed to solve the AC equation. The efficient and robust 

numerical method in [13] was based on the diagonally implicit fractional-step θ-scheme for temporal discretization and 

the conforming finite element method (FEM) for spatial discretization. The authors in [14] designed, analyzed, validated 

an unconditionally energy stable second-order FEM for solving the AC equation. Shen et al. [15] investigated a class of the

maximum principle preserving schemes for the generalized AC equation. In [16] , a linearized finite difference method (FDM) 

for solving the AC equation was proposed using a modified leap-frog scheme and they rigorously analyzed a maximum 

norm error to show that the proposed scheme is second-order accurate both in time and space variables. The analysis of

the operator splitting schemes for the numerical solution of the AC equation was studied [17,18] . Tianliang et al. [19] devel-

oped a novel second-order maximum-principle preserving FDM for the AC equation and demonstrated that the method is 

unconditionally energy-stable. The authors in [20] proposed a volume-preserving time-fractional AC equation and adaptive 

linear second-order energy stable schemes. They showed the efficiency and advantages of the presented scheme through 

numerical results. Other than the operator splitting approach, there have been extensive works of second-order accurate 

energy stable numerical schemes for the phase-field model [21] and other related gradient flows, using the implicit treat- 

ment for the nonlinear terms. Cheng et al. [22] presented an energy gradient stable numerical scheme for the Cahn–Hilliard

(CH) equation with the second-order accuracy in time and fourth-order finite difference scheme in space. A modified back- 

ward differentiation formula (BDF2) is applied for the temporal accuracy. Wu et al. [23] used the standard Crank–Nicolson 

method to handle the high-order linear diffusion term. In [24] , the second-order convex splitting scheme was used with the

Fourier pseudo-spectral spatial approximation. In addition, there has been recent work of energy stable numerical schemes 

for ternary CH system, one of popular phase-field models, in which a high order polynomial of mixed terms was involved,

using convex splitting techniques [25] . 

The main purpose of this paper is to propose an unconditionally stable numerical scheme and investigate the dynamics 

of the AC equation with the high-order (higher than fourth) polynomial free energy: 

F α(φ) = 0 . 25(φα − 1) 2 , (4) 

where α is an even integer, see Fig. 1 . Note that if α = 2 , then F α(φ) becomes the classical quartic polynomial potential. 

In general, phase-field models such as the AC equation replace a sharp interface by a diffuse phase transition layer with

a finite thickness. To numerically solve the AC equation with a small interfacial transition parameter, we need a sufficiently 

fine mesh size to discretize phase interfaces [26] . The main motivation for using higher-order polynomial ( α > 2) is that

we can use relatively coarser mesh sizes to resolve the phase interfaces. To demonstrate the performance of the proposed 

model, we perform various computational tests in the numerical experiment section. 

To the authors’ knowledge, there are only few studies on the AC equation with a high-order polynomial free energy 

potential. Recently, a high-order polynomial potential was used in the Navier–Stokes–Cahn–Hilliard systems for the two- 

phase incompressible fluids [27] : 

u t + u · ∇u = −∇p + 

1 

Re 
�u − 1 

2 W e 
∇ ·

( ∇φ

|∇φ| 
)

∇φ, (5) 
2 
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Fig. 1. Polynomial free energy functions, F α (φ) = 0 . 25(φα − 1) 2 , for α = 2 , 4 , 6 , 8 , and 10. 

Fig. 2. (a) Temporal evolutions of droplet under a simple shear flow with α = 2 (top row) and α = 6 (bottom row). (b)–(c) Profiles of φ sliced in y − z

plane through x = 0 at t = 0 and t = 20 . 75 , respectively. 

 

 

 

 

 

 

 

∇ · u = 0 , (6) 

φt + ∇ · (φu ) = 

1 

P e 
�(F ′ α(φ) − ε2 �φ) , (7) 

where u = (u, v , w ) is the velocity and p is the pressure. For the other parameters, please refer to [27] . The initial radius of

sphere is 0.22 in the computational domain � = (0 , 2) × (0 , 1) × (0 , 1) with 128 × 64 × 64 mesh. Fig. 2 (a) shows the droplet

deformation under shear flow with α = 2 (top row) and α = 6 (bottom row) in three-dimensional space. The droplet with

α = 2 is vanishing as time evolves although the governing system (5) –(7) should satisfy the mass conservation property.

To prevent this problem, the mesh grid size must be small enough, however, its computational cost is very expensive, in

particular, for three-dimensional space. It is known that when the mesh grid size is h = 1 / 64 in three-dimensional space and

the initial radius smaller than 19 h = 0 . 296875 , the spherical shape is unstable and diffuses into the ambient bulk phase to
3 
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decrease its total energy [28] . On the other hand, the droplet with α = 6 does not shrink even if the mesh grid size is used

as the same with the case with α = 2 . When the high-order polynomial potential is used, the spherical drop needs relatively

small number grids to preserve its shape [27] . Fig. 2 (b) and (c) show x -directional profiles of φ through (y, z) = (0 . 5 , 0 . 5)

at t = 0 and t = 20 . 75 , respectively. Therefore, the high-order polynomial potential has good property to conserve features

compared to the fourth-order polynomial potential. 

The remaining parts of this paper are organized as follows. Section 2 describes the numerical solution algorithm for the 

AC equation with the high-order polynomial potential. Numerical experiments to show the effects and differences of using 

high-order α are described in Section 3 . Finally, Section 4 discusses the conclusions. 

2. Numerical solution algorithm 

In this section, we present an unconditionally stable numerical solution algorithm of the AC equation with the high-order 

polynomial free energy. First, we discretize the AC equation in two-dimensional space � = (L x , R x ) × (L y , R y ) . For positive

even integers N x and N y , the uniform spatial step size in the x -and y -directions is denoted by h = (R x − L x ) /N x = (R y − L y ) /N y .

The numerical solution φ(x m 

, y n , t k ) can be simply denoted by φk 
mn , where (x m 

, y n ) = (L x + (m − 0 . 5) h, L y + (n − 0 . 5) h ) is

cell-centered point, t k = k �t, and �t is the temporal step size. The three-dimensional numerical solution algorithms can be 

defined similarly. 

For the second-order operator splitting method, we need three substeps as follows [29] : 

φ(x , t + �t) = 

(
N 

�t/ 2 ◦ L 

�t ◦ N 

�t/ 2 
)
φ(x , t) + O(�t 3 ) , x ∈ �, t > 0 , (8) 

where N 

�t and L 

�t are the nonlinear and linear solution operators with the temporal step �t, respectively. The nonlin-

ear solution operator is N 

�t φ(x , t) = φ(x , t + �t) , where φ(x , t + �t) is the solution of the nonlinear differential equation

φt = −F ′ α(φ) /ε2 after time �t with an initial condition φ(x , t) . The linear solution operator is L 

�t φ(x , t) = φ(x , t + �t) ,

where φ(x , t + �t) is the solution of the linear differential equation φt = �φ after time �t with an initial condition φ(x , t) .

When both the operators of Eq. (8) have at least second-order accuracy in time, the entire numerical method theoretically 

guarantees second-order accuracy in time [29–31] . There have been theoretical analysis of convergence estimate for various 

nonlinear partial differential equations [25,32] . 

In the proposed method, we use an interpolation method to solve the nonlinear equation ( φt = −F ′ α(φ) /ε2 ) and the

Crank–Nicolson method with a multigrid method to solve the linear equation ( φt = �φ). We describe each of these numer-

ical solution algorithms in detail. First, we condition the nonlinear equation: 

∂φ(x , t) 

∂t 
= −F ′ α(φ(x , t)) 

ε2 
(9) 

with the initial condition φ(x m 

, y n , k �t) . Note that if α = 2 , then we have a closed-form solution [33] , 

φ(x m 

, y n , (k + 1)�t) = φk 
mn 

/ 

√ 

e 
− 2�t 

ε2 + 

(
φk 

mn 

)2 
(

1 − e 
− 2�t 

ε2 

)
. (10) 

However, if α 	 = 2 , then a simple closed-form solution is not available. We have to resort to numerical solutions. When the

value of α is large, we cannot use both the explicit and implicit methods because the equation is very stiff and time step

restriction is extremely stringent. The large values of α can lead to rapid oscillations in the solution of Eq. (9) even with

moderate time steps. 

For concrete examples, first let us consider the explicit method for Eq. (9) : 

φk +1 − φk 

�t 
= −F ′ α(φk ) 

ε2 
. (11) 

The initial condition is φ0 = 0 . 95 ; and we set α = 20 and ε = 1 . Fig. 3 (a) shows the numerical solutions of Eq. (11) with

different tem poral step sizes ( �t = 0 . 005 , 0 . 01 , 0 . 015 ). If we use a slightly large temporal step size ( �t = 0 . 015 ), then

the solution oscillates. The solution should monotonically increase or decrease with time. Next, we solve Eq. (9) using the

implicit method: 

φk +1 − φk 

�t 
= −F ′ α(φk +1 ) 

ε2 
. (12) 

We define G (φ) = (φ − φk ) / �t + F ′ α(φ) /ε2 , and then we solve G (φk +1 ) = 0 using the Newton’s method: 

φk +1 ,p+1 = φk +1 ,p − G (φk +1 ,p ) 

G 

′ (φk +1 ,p ) 
, for p = 0 , 1 , . . . , 

where φk +1 , 0 = φk . We define φk +1 = φk +1 ,p+1 for some p if | φk +1 ,p+1 − φk +1 ,p | < tol is satisfied with a given tolerance tol. 

However, Fig. 3 (b) shows that the numerical solution does not converge with a temporal step size �t = 0 . 055 . Therefore,

the numerical solutions of both the explicit and implicit methods are unstable unless the temporal step size is taken to be

sufficiently small. 
4 
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Fig. 3. Numerical results with (a) explicit and (b) implicit Euler methods. 

Fig. 4. Schematic diagram of the interpolation step. 

 

 

 

 

 

 

 

 

To overcome these difficulties, a simple interpolation-based numerical scheme is proposed. The main procedure of the 

proposed algorithm is as follows: Given φk 
mn , we apply the interpolation method with the pre-computed values in order 

to obtain the solution φ(x m 

, y n , (k + 1)�t) . The pre-computed values are the solutions of the nonlinear Eq. (9) using a

numerical scheme that will be covered after this paragraph. For example, there is a node I j satisfying I j ≤ φk 
mn ≤ I j+1 for

some j and 1 ≤ j ≤ M 2 − 1 . Here, I is a non-uniform grid on the horizontal interval [ −1 , 1] , I j is an element of I, and M 2 is

an odd integer. Then, we define 

φ(x m 

, y n , (k + 1)�t) = 

I j+1 − φk 
mn 

I j+1 − I j 
	 j (�t) + 

φk 
mn − I j 

I j+1 − I j 
	 j+1 (�t) . (13) 

Fig. 4 illustrates the interpolation step using the pre-computed solutions of two adjacent data points of given φk 
mn . 

A detailed explanation of the proposed algorithm for solving Eq. (9) is given as follows: Given α, ε, and temporal step

�t, let us introduce a smaller subcycling time step �τ = �t/N τ , where N τ is a positive integer and its specific value will

be defined later. We temporally discretize horizontal interval [ −1 , 1] of possible range of φ uniformly, i.e., I ∗ = { I ∗
i 
| I ∗

i 
=

−1 + 2(i − 1) / (M 1 − 1) , for i = 1 , . . . , M 1 } . Here, M 1 is an odd integer to include zero in I ∗. Fig. 5 (a) shows the numerical

solutions of the ordinary differential Eq. (9) on I ∗ and at t = �t by using the explicit Euler scheme with the subcycling time

step �τ and the initial condition, 	i (0) = I ∗
i 
. That is, for i = 1 , . . . , M 1 , 

	i ((s + 1)�τ ) = 	i (s �τ ) − �τ
F ′ α(	i (s �τ )) 

2 
, for s = 0 , . . . , N τ − 1 . (14) 
ε

5 
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Fig. 5. Schematic diagrams. (a) The numerical solutions 	(�t) of Eq. (9) on the uniform grid I ∗ . (b) The inverse mapping 	−1 (�t) on the uniform grid J. 

Fig. 6. First-order derivatives of F α (φ) , f α(φ) = F ′ α (φ) = 0 . 5 α(φα − 1) φα−1 for α = 2 , 4 , 6 , 8 , and 10. The symbiotic stars in the upper left and lower right 

corners indicate spinodal points. The absolute value | φ| of spinodal point reaches the value 1 as α increases. 

 

 

 

 

 

 

Next, we discretize the vertical interval [ −1 , 1] uniformly, i.e., J = { J j | J j = −1 + 2( j − 1) / (M 2 − 1) , for j = 1 , . . . , M 2 } . Here,

M 2 is an odd integer to include zero in J. Using interpolation and inverse mapping, we redefine a non-uniform grid on the

horizontal interval [ −1 , 1] , i.e., I = { I j | I j = 	−1 
j 

(�t) , for j = 1 , . . . , M 2 } as shown in Fig. 5 (b). On this non-uniform grid I,

we solve the ordinary differential Eq. (9) by using the explicit Euler scheme with the subcycling time step �τ and the initial

condition, 	 j (0) = I j . That is, for j = 1 , . . . , M 2 , 

	 j ((s + 1)�τ ) = 	 j (s �τ ) − �τ
F ′ α(	 j (s �τ )) 

ε2 
, for s = 0 , . . . , N τ − 1 . (15) 

Finally, we keep the non-uniform grid I and the numerical solutions 	 j (�t) for I j ∈ I, j = 1 , . . . , M 2 for later use. 

Now, we consider the appropriate value of �τ to stably integrate Eq. (9) for the given α, ε, and temporal step �t . If

I j = −1 , 0 , or 1, then from Eq. (14) we have 

	 j ((s + 1)�τ ) = I j , for s = 0 , . . . , N τ − 1 . (16) 

Next, let us assume 0 < I j < 1 and 	 j (0) = I j , then from Eq. (14) we have 

	 j (�τ ) = I j − �τ
F ′ α(I j ) 

ε2 
. (17) 

As shown in Fig. 6 , F ′ α(I j ) = 0 . 5 α(I α
j 

− 1) I α−1 
j 

< 0 for 0 < I j < 1 , therefore, we have 	 j (�τ ) > 0 from Eq. (17) . 

We want to bound 	 j (�τ ) by one. That is, I j − �τF ′ α(I j ) /ε
2 < 1 and �τ should satisfy �τ < ε2 (I j − 1) /F ′ α(I j ) . Because

ε2 (I j − 1) /F ′ α(I j ) is decreasing with respect to I j on the interval 0 < I j < 1 , we compute the limit of ε2 (I j − 1) /F ′ α(I j ) as I j 
6 
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approaches one, that is, 

�τ ≤ lim 

I j → 1 

ε2 (I j − 1) 

F ′ α(I j ) 
= lim 

I j → 1 

ε2 

F ′′ α (I j ) 
= 

2 ε2 

α2 
, (18) 

where we have used L’H ̂ o pital’s Rule. Similarly, if −1 < I j < 0 , then we have the same condition to Eq. (18) . Therefore, we

showed that if | I j | ≤ 1 and �τ < 2 ε2 /α2 , then we have 

| 	 j ((s + 1)�τ ) | ≤ 1 , for s = 0 , . . . , N τ − 1 . (19) 

The condition �τ < 2 ε2 /α2 implies N τ > α2 �t/ (2 ε2 ) . We set N τ = [ α2 �t/ (2 ε2 )] + 1 unless otherwise specified. Here, [ x ]

is the greatest integer less than or equal to x . Note that, for accurate computation, we can use a large value of N τ . 

Next, we solve the following linear equation by the Crank–Nicolson finite difference method [34] : 

∂φ(x , t) 

∂t 
= �φ(x , t) . (20) 

We discretize Eq. (20) using the Crank–Nicolson method: 

φk +1 
mn − φk 

mn 

�t 
= 

1 

2 

(
�h φ

k 
mn + �h φ

k +1 
mn 

)
, (21) 

where the discrete Laplacian operator �h φ
k 
mn = (φk 

m +1 ,n 
+ φk 

m −1 ,n 
+ φk 

m,n +1 
+ φk 

m,n −1 
− 4 φk 

mn ) /h 2 , and solve Eq. (21) using the

linear multigrid method [35] . It is well known that the Crank–Nicolson method applied to the heat equation with central

finite differences in space is unconditionally stable using the von Neumann stability analysis [34] . Therefore, the overall 

numerical solution algorithms are unconditionally stable because both the nonlinear and linear solution operators are un- 

conditionally stable. We note that the proposed scheme also satisfies the maximum principle: if ‖ φk ‖ ∞ 

≤ 1 for any k, then

‖ φk +1 ‖ ∞ 

≤ 1 , which is easily derived from the boundedness of the solution operators. 

3. Numerical experiments 

In this section, we perform various computational experiments such as total energy dissipation, stability, accuracy, mo- 

tion by mean curvature, effects of the model and numerical parameters to demonstrate the accuracy and efficiency of the 

proposed method. Unless otherwise specified, we use M 1 = M 2 = 101 and N τ = 4 . In the multigrid method, two Gauss–Seidel

iterations are used for the relaxation steps with a tolerance, 1 . 0 E − 7 . 

3.1. Energy dissipation 

First, we examine the energy dissipation over time with respect to each order α = 2 , 4 , 6 , 8 , and 10. The two-

dimensional discrete energy E(φk ) is calculated as follows: 

E(φk ) = 

N x ∑ 

m =1 

N y ∑ 

n =1 

F (φk 
mn ) 

ε2 
h 

2 + 

N x −1 ∑ 

m =1 

N y −1 ∑ 

n =1 

(φk 
m +1 ,n − φk 

mn ) 
2 + (φk 

m,n +1 − φk 
mn ) 

2 

2 

. (22) 

A simple extension to the three-dimensional space yields the following discrete energy, 

E(φk ) = 

N x ∑ 

m =1 

N y ∑ 

n =1 

N z ∑ 

o=1 

F (φk 
mno ) 

ε2 
h 

3 

+ h 

N x −1 ∑ 

m =1 

N y −1 ∑ 

n =1 

N z −1 ∑ 

o=1 

(φk 
m +1 ,no − φk 

mno ) 
2 + (φk 

m,n +1 ,o − φk 
mno ) 

2 + (φk 
mn,o+1 − φk 

mno ) 
2 

2 

. (23) 

Fig. 7 shows the non-dimensional discrete total energy dissipation in the two- and three-dimensional space, respectively, 

over time up to various orders α = 2 , 4 , 6 , 8 , and 10. The computational domain is given as � = (−1 . 2 , 1 . 2) × (−1 . 2 , 1 . 2)

and the final time is set to t = 0 . 4 for the two-dimensional case; similar settings are given, � = (−1 . 2 , 1 . 2) × (−1 . 2 , 1 . 2) ×
(−1 . 2 , 1 . 2) and t = 0 . 2 for the three-dimensional case. The parameter values used are N x = N y = N z = 128 , h = 2 . 4 / 128 , �t =
1 . 0 E − 4 , and ε = 0 . 05 . Here, the initial conditions are set to be φ0 

mn = 1 if (x m 

, y n ) ∈ (20 h, 108 h ) × (20 h, 108 h ) ; otherwise

φ0 
mn = −1 and φ0 

mno = 1 if (x m 

, y n , z o ) ∈ (20 h, 108 h ) × (20 h, 108 h ) × (20 h, 108 h ) ; otherwise φ0 
mno = −1 in the two- and three-

dimensional space, respectively. Note that the energy is normalized by E(φ1 ) to fix the starting value as 1. 

3.2. Stability of the proposed scheme 

We demonstrate the unconditional stability of the proposed scheme with a numerical simulation of phase separation in 

a binary mixture. The initial condition is given as random perturbation with the maximum amplitude 0.5 on the computa- 

tional domain � = (−1 . 2 , 1 . 2) × (−1 . 2 , 1 . 2) : 

φ(x, y, 0) = 0 . 5 rand (x, y ) , (24) 
7 
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Fig. 7. Dissipation of non-dimensional discrete total energy E (φk ) / E (φ1 ) with various orders over time in the (a) two- and (b) three-dimensional space, 

respectively. 

Fig. 8. Snapshots after 50 time step iterations with three different temporal step sizes. 

 

 

 

where rand (x, y ) is a random value uniformly distributed between −1 and 1. We use the following parameters: α = 2 ,

N x = N y = 128 , h = 2 . 4 / 128 , and ε = 0 . 05 . Fig. 8 (a)–(c) illustrate the snapshots at 50 time step iterations with different

temporal steps �t = 0 . 02 h 2 , 0 . 2 h 2 , and 2 h 2 , respectively. The numerical solutions do not blow up when large temporal

step sizes are used, therefore, the scheme is unconditionally stable. 
8 
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Fig. 9. Numerical traveling wave solution with an initial profile φ(x, y, 0) = 0 . 5(1 − tanh ((x − 0 . 3) / (2 
√ 

2 ε))) . 

Table 1 

l 2 -norm error and temporal convergence rates with various �t at 

t = 0 . 004 . 

�t 1.0E-4 Rate 5.0E-5 Rate 2.5E-5 

error 9.9364E-3 1.99 2.5098E-3 2.01 6.2318E-4 

Table 2 

l 2 -norm error and temporal convergence rates with various h at t = 

0 . 0 0 01 . 

N x 64 Rate 128 Rate 256 

error 8.4875E-5 1.98 2.1569E-5 1.94 5.6025E-6 

 

 

 

 

 

 

 

 

 

 

3.3. Convergence tests using traveling wave solutions 

We perform convergence tests to validate the rate of convergence of the proposed algorithm using traveling wave solu- 

tions. When α = 2 , we have a traveling wave solution for the AC equation: 

φ(x, y, t) = 0 . 5 

(
1 − tanh 

(
x − 0 . 3 − st 

2 

√ 

2 ε

))
, (25) 

where s = 3 / ( 
√ 

2 ε) is the speed of the traveling wave [36] . We take an initial condition on a domain � = (0 , 1) × (0 , 1 / 8)

as 

φ(x, y, 0) = 0 . 5 

(
1 − tanh 

(
x − 0 . 3 

2 

√ 

2 ε

))
. (26) 

Fig. 9 shows the numerical and the analytical solutions at t = 0 . 003 . The solutions are the slices at y = h/ 2 . The parameter

values used are N x = 128 , N y = N x / 8 , h = 1 / 128 , �t = 1 . 0 E − 5 , and ε = 0 . 02 . 

The following tests verify that the proposed method is second-order accurate both in space and in time. First, we com-

pute the discrete l 2 -norm error with various temporal step sizes �t and a fixed fine spatial step size h . We use the initial

condition (26) and the parameters N x = 1024 , N y = N x / 8 , h = 1 /N x , M 1 = M 2 = 501 , ε = 0 . 04 . Here, the final time is fixed

to t = 0 . 004 , the total number of time steps are used as N t = 40 , 80 , 160 , the temporal step size is defined as �t = T /N t ,

and N τ = N t / 10 . We define the discrete l 2 -norm error as follows: 

‖ e N t 
N x 

‖ 2 = 

√ 

1 

N x 

N x ∑ 

i =1 

(φN t 
i, 1 

− φ(x i , y 1 , N t �t)) 2 . 

The rate of convergence in time is defined as log 2 (‖ e N t N x 
‖ 2 / ‖ e 2 N t N x 

‖ 2 ) . Table 1 lists the l 2 -norm error and temporal convergence

rates. 

Next, we demonstrate the discrete l 2 -norm errors with various spatial step sizes h and a fixed fine temporal step size �t .

We use the same initial condition (26) and the parameters �t = 5 . 0 E − 7 , N t = 200 , M 1 = M 2 = 501 , N τ = 16 , and ε = 0 . 02 .

Here, N x = 64 , 128 , 256 , N y = N x / 8 , and h = 1 /N x , The rate of convergence in space is defined as log 2 (‖ e N t N x 
‖ 2 / ‖ e N t 2 N x 

‖ 2 ) .
Table 2 lists the l 2 -norm error and spatial convergence rates. 

From these convergence tests, we can confirm the proposed scheme is indeed second-order accurate in time and space. 
9 
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Fig. 10. Schematic illustration of the local coordinate r(x , t) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Motion by mean curvature 

In this section, we describe the intrinsic property, motion by mean curvature, of the AC equation with the high-order 

polynomial free energy. Let us consider the following signed distance of Cartesian coordinates x = (x, y ) and x = (x, y, z) in

the two- and three- dimensional space, respectively: r(x , t) = dist (x , �) sgn (φ(x , t)) , where � = { x | φ(x , t) = 0 } is a zero-

level set and sgn (·) is a sign function. Fig. 10 depicts the schematic illustration to the local coordinate r(x , t) . 

The outward unit normal vector to the interface is denoted by n = ∇φ/ |∇φ| , which implies identities n · n = 1 and

n · n r = 0 , where n r is the rate of change of n in the direction of local coordinate r(x , t) . Therefore, we can rewrite the

diffusion term �φ with the relation φr = −n · ∇φ as follows: 

�φ = ∇ · ∇φ = ∇ · (|∇φ| n ) = ∇ · ((∇φ · n ) n ) = ∇ · (−φr n ) 

= −∇φr · n − φr ∇ · n = −(∇φ) r · n − φr ∇ · n = (φr n ) r · n − φr ∇ · n 

= (φrr n + φr n r ) · n − φr ∇ · n = φrr − φr ∇ · n . 

In two-dimensional space, the following equality holds because it holds that ∇ · n = −κ with the principal curvatures κ, 

�φ = φrr + κφr . Then, the kinetic equation as follows: 

φt = −F ′ (φ) 

ε2 
+ φrr + κφr . (27) 

The equation holds −F ′ (φ) / ε2 + φrr ≈ 0 for the planar interface at equilibrium. Then, Eq. (27) is rewritten as φt = κφr and

we obtain the following equation r t = −φt /φr = −κ. since the velocity of zero level-set Γt = { (x, y ) : φ(x, y, t) = 0 } is given

as 

0 = 

d 

dt 
φ(r, t) 

∣∣∣∣
Γt 

= φr r t + φt . 

Therefore, every interface between the two phases operates with the velocity V, which holds given as V = −κ = −1 /R,

where R is the principal radius of curvatures at the point of the surface. In this way, we can obtain a similar result in

three-dimensional space. In three-dimensional space, because it holds that ∇ · n = −(κ1 + κ2 ) with the principal curvatures 

κ1 and κ2 , a similar derivation results in V = −(κ1 + κ2 ) = −( 1 /R 1 + 1 /R 2 ) , where R 1 and R 2 are the principal radius of

curvatures at the point of the surface. Please refer to [37] for more details. 

Let R 0 be the initial radius of circle. The radius at time t is denoted as R (t) and is defined by R (t) = 

√ 

R 2 
0 

− 2 t . In Fig. 11 ,

the initial condition is defined as 

φ(x, y, 0) = tanh 

( 

R 0 −
√ 

x 2 + y 2 √ 

2 ε

) 

(28) 

on the computational domain � = (−1 . 2 , 1 . 2) × (−1 . 2 , 1 . 2) with 256 × 256 mesh. Here, R 0 = 1 , h = 2 . 4 / 256 , ε = 0 . 05 , �t =
1 . 0 E − 4 , and α = 2 , 4 , 6 , 8 , 10 are used. 

Fig. 11 (a) shows the change of radius R (t) due to the motion by mean curvature of the AC equation until t = 0 . 4 . The

inscribed small figures are the zero-level contours corresponding times. Fig. 11 (b) and (c) are the snapshots of φ with α = 2

and α = 10 at t = 0 . 2 , respectively. Fig. 11 (d) shows the numerical transition width from −0 . 95 to 0.95 for α = 2 and α = 10

at t = 0 . 2 . From these results, we can observe that the AC equation with the high-order polynomial free energy has sharp

interfacial transition layer. 

Next, the evolution of a star-shaped interface with low- and high-order polynomial potentials are performed in the 

computational domain � = (−π, π) × (−π, π) , with mesh size N x = N y = 256 . Parameters are set as h = 2 π/ 256 , �t =
1 . 0 E − 4 , and ε = 0 . 03 . The initial configuration is defined as 

φ(x, y, 0) = tanh 

2 + 0 . 6 cos (10 tan 

−1 (y/x )) −
√ 

x 2 + y 2 √ 

2 ε
. (29) 

Fig. 12 shows the results of temporal evolutions using the AC equation with the low- and high-order polynomial free ener-

gies with α = 2 and 10. 
10 
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Fig. 11. (a) Change of radius R (t) over time with the order α = 2 , 4 , 6 , 8 , and 10. (b)–(c) Snapshots of φ with α = 2 and α = 10 at t = 0 . 2 , respectively. 

(d) Numerical transition width from −0 . 95 to 0.95 for α = 2 and α = 10 at t = 0 . 2 . 

Fig. 12. Temporal evolution of the AC equation with star-shaped initial condition at (a) t = 0 , (b) t = 500�t, (c) t = 10 0 0�t, and (d) t = 180 0�t, respec- 

tively. 

 

We then perform a sphere perturbed with a spherical harmonic mode to show the evolution with low- and high-order 

polynomial potentials in the computational domain � = (−1 . 2 , 1 . 2) × (−1 . 2 , 1 . 2) × (−1 . 2 , 1 . 2) , with mesh size N x = N y =
N z = 64 . Parameters are set as h = 2 . 4 / 64 , �t = 1 . 0 E − 4 , and ε = 0 . 03 . The initial configuration is defined as 

φ(x, y, z, 0) = tanh 

0 . 8 + 0 . 8 Y 10 , 7 (θ, ψ) −
√ 

x 2 + y 2 + z 2 √ 

2 ε
, (30) 

where Y 10 , 7 is a spherical harmonic [38] , 

θ = 

{
tan 

−1 y 
x 
, if x ∈ (0 , 32 h ) , 

π + tan 

−1 y 
x 
, otherwise. 

(31) 
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Fig. 13. Temporal evolution of the AC equation with 3 D star-shaped initial condition. Here, (a) α = 2 and (b) α = 10 are used. From left to right, the 

evolutionary times at each column are t = 0 , 100�t, 150�t, and 300�t, respectively. 

Fig. 14. Change of radius R (t) over time with the order α = 6 and various values of M 2 . 

 

 

 

 

 

 

is a polar angle, and ψ = cos −1 (z/ 
√ 

x 2 + y 2 + z 2 ) is the azimuthal ang le. Fig. 13 (a) and (b) show the results of temporal

evolutions at t = 0 , 100�t, 150�t, and 300�t using the AC equation with the low- and high-order polynomial free energy

with α = 2 and 10, respectively. 

From left to right, the evolutionary times at each column are t = 0 , 50�t, 100�t, and 500�t, respectively. 

3.5. Effect of M 2 on the accuracy of the method 

In this section, let us consider the effect of M 2 on the accuracy of the proposed method. We set the initial condition

(28) on domain � = (−1 . 2 , 1 . 2) × (−1 . 2 , 1 . 2) with N x = N y = 128 . The parameters for this test are used as follows: R 0 = 1 ,

α = 6 , h = 2 . 4 / 128 , ε = 0 . 09 , �t = 2 . 0 E − 4 , and N τ = 16 . When M 1 is fixed to 101, we use three values of M 2 , i.e., M 2 =
7 , 11 , and 15. We compare the radii R (t) of analytic and numerical solutions until the time t = 0 . 2 . As shown in Fig. 14 , 

a numerical solution is different from the analytic solution when a small value of M 2 are used. The result with M 2 = 15 is

sufficiently accurate. 
12 
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Fig. 15. Equilibrium states of φ(x, y, 0) = − cos (x ) for each α = 2 , 4 , 6 , 8 , and 10. 

Fig. 16. At t = 70�t, the numerical solutions of Eq. (32) with α = 2 , 4 , 6 , 8 , and 10. 

 

 

 

 

 

 

 

3.6. Equilibrium interfacial transition profiles 

To see the effect of different α on the equilibrium interfacial transition profiles, we perform the numerical experiment 

on the computational domain � = (0 , 2 π) × (0 , π/ 16) with N x = 128 and N y = 4 using the initial condition, φ(x, y, 0) =
− cos (x ) . In this test, the parameters are set to be h = 2 π/ 128 , ε = 0 . 2 , and �t = 1 . 0 E − 4 . We use five different α values,

i.e., α = 2 , 4 , 6 , 8 , and 10. Fig. 15 shows the equilibrium states at t = 30 0 0�t with various values of α. As the value of α
increases, the interfacial transition layer becomes sharper. 

3.7. Effect of α on the dynamics of the AC equation 

Let us consider the nonlinear term in Eq. (1) : 

∂ψ(t) 

∂t 
= −F ′ α(ψ(t)) 

ε2 
, t > 0 . (32) 

Fig. 16 shows the numerical solutions at t = 100�t of Eq. (32) for α = 2 , 4 , 6 , 8 , and 10 with h = 2 . 4 / 128 and ε = 0 . 075 .

Here, for simplicity, we use the explicit Euler’s method with �t = 1 . 0 E − 4 and S t = 4 : 

ψ 

k +1 = ψ 

k − �t 
F ′ α(ψ 

k ) 

ε2 
, (33) 

where the initial condition is ψ 

0 = φ. As the value of α increases, the evolution of the value of ψ is faster in the region

| φ| ≈ 0 and slower in the region | φ| ≈ 1 . 

To see this effect clearly, we perform the numerical experiment using the initial condition φ(x, y, 0) = −0 . 3 cos (x ) in

domain � = (0 , 2 π) × (0 , π/ 16) with 128 × 4 . Here, we use h = 2 π/ 128 , �t = 1 . 0 E − 4 , and ε = 0 . 2 for parameters. Fig. 17

shows the snapshots of the numerical solutions of the AC equation with the various values of α at t = 20 0 0�t . As we

expected, the evolutions with large values of α is slower than those with small values of α. 
13 
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Fig. 17. Snapshots of the numerical solutions of the AC equation with the initial condition φ(x, y, 0) = −0 . 3 cos (x ) . Here, t = 20 0 0�t and α = 2 , 4, 6, 8, 

and 10. 

Fig. 18. Temporal evolutions of zero-contour lines of φ with (a) α = 2 and (b) α = 10 . The times are given below each column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we present the effect of orders on the evolution of initially separated four squares on � = (0 , 2 π) × (0 , 2 π) . Here,

we use N x = N y = 256 , h = 2 π/ 256 , ε = 0 . 07 , �t = 1 . 0 E − 4 , and the final time t = 1 . The following initial condition is

employed: 

φ(x, y, 0) = 

{ 

1 if x ∈ (17 h, 122 h ) ∪ (134 h, 239 h ) , 
y ∈ (17 h, 122 h ) ∪ (134 h, 239 h ) , 

−1 otherwise. 
(34) 

Fig. 18 (a) shows the temporal evolution of zero-contour lines of φ with α = 2 and we can observe that the initially

separated four squares merged and became one closed curve. However, in the case of α = 10 , the four squares shrank

without merging, see Fig. 18 (b). 

Another example is a spiral on � = (−1 . 2 , 1 . 2) × (−1 . 2 , 1 . 2) , see the first column in Fig. 19 . The width of the spiral is

14 h . We define an initial value of φ as φ(x, y, 0) = 1 in the inside of spiral and otherwise φ(x, y, 0) = −1 . Here, N x = N y =
128 , h = 2 . 4 / 128 , �t = 1 . 0 E − 5 , and ε = h are used. In Fig. 19 (a) and (b), the results of temporal evolutions using the AC

equation with the low-order polynomial free energies ( α = 2 , 4 ) show the merging of interface, while using high-order free

energy ( α = 6 ) maintains the interface as shown in Fig. 19 (c). 

We perform a similar test in the three-dimensional space. The initial condition is shown in the first column in Fig. 20 . The

height of the three-dimensional spiral on � = (−1 . 2 , 1 . 2) × (−1 . 2 , 1 . 2) × (−1 . 2 , 1 . 2) is 58 h and the width is 8 h . The param-

eters used are N x = N y = N z = 64 , h = 2 . 4 / 64 , �t = 1 . 0 E − 4 , and ε = h . An initial value of φ is defined as φ(x, y, z, 0) = 1

in the inside of the spiral and otherwise φ(x, y, z, 0) = −1 . In Fig. 20 (a) and (b), the results of temporal evolutions using the

AC equation with the low-order polynomial free energy ( α = 2 , 4 ) show the merging of interface, while using high-order

free energy ( α = 6 ) maintains the interface as shown in Fig. 19 (c). 
14 
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Fig. 19. Temporal evolution of the AC equation with square spiral shape initial condition. Here, (a) α = 2 , (b) α = 4 and (c) α = 6 are used. From left to 

right, the evolutionary times at each column are t = 0 , 50�t, 100�t, and 500�t, respectively. 

Fig. 20. Temporal evolution of the AC equation with three-dimensional square spiral shape initial condition. Here, (a) α = 2 , (b) α = 4 and (c) α = 6 are 

used. From left to right, the evolutionary times at each column are t = 0 , 200�t, 500�t, and 800�t, respectively. 
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Fig. 21. (a) Evolution intervals (white circles) and pinning intervals (black circles). (b)–(e) Until t = 10 0 0 0�t, temporal evolutions of numerical solution of 

the AC equation with α = 2 for (b) ε = 0 . 6 h, (c) ε = 0 . 5 h, and of the AC equation with α = 4 for (d) ε = 0 . 7 h, (e) ε = 0 . 6 h . 

 

 

 

 

 

3.8. Effect of ε on the pinning phenomenon 

Finally, we study the pinning interval depending on the value of ε on � = (−1 . 2 , 1 . 2) × (−1 . 2 , 1 . 2) . Here, the initial

condition is used as 

φ(x, y, 0) = tanh 

( 

1 −
√ 

x 2 + y 2 √ 

2 ε

) 

. (35) 

The parameters are used as N x = N y = 128 , h = 2 . 4 / 128 , and �t = 1 . 0 E − 4 . For each polynomial free energy order α, the

black circles represent the intervals of ε value which make the interface be pinned. On the other hand, the white circles

represent evolution intervals. To illustrate the pinning phenomenon, we perform the numerical simulation of the AC equa- 

tion with α = 2 ( Fig. 21 (b) and (c)) and α = 4 ( Fig. 21 (d) and (e)) until t = 10 0 0 0�t . As shown in Fig. 21 (b) and (d), we can

observe that the initial circle shrinks using ε = 0 . 6 h and ε = 0 . 7 h, respectively. Meanwhile, we can observe that the initial

circle is pinned using ε = 0 . 5 h and ε = 0 . 6 h, in Fig. 21 (c) and (e), respectively. 

4. Conclusions 

In this study, we proposed an unconditionally stable numerical method for the AC equation with high-order (higher than 

fourth) polynomial free energy. High-order (greater than fourth) polynomial free energy potentials can be used in the total 

energy functional and can better represent interfacial dynamics of the AC equation. However, the AC equation with the high- 

order polynomial is getting stiffer as the polynomial order increases. To resolve this problem, we proposed an interpolation 

method. First, we solve the nonlinear double-well potential term using interpolation from the pre-computed values. Second, 

we solve the diffusion equation using the Crank–Nicolson method and multigrid method. The overall scheme is uncondi- 

tionally stable and we theoretically proved the unconditional stability. Various computational experiments were performed 

to demonstrate the accuracy and the robustness of the proposed method and we highlighted the different dynamics for 

the AC equation with polynomial free energy of various orders. The numerical results confirmed that the proposed method 

would be useful for modeling various interfacial phenomena. As future research, we will apply the developed scheme to 

incompressible multiphase fluid flow modeling and simulation. We will also investigate the unconditionally energy stable 

numerical schemes for the AC equation with high-order polynomial free energy. 
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