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We present an unconditionally stable hybrid finite element method for solving the Allen–
Cahn equation, which describes the temporal evolution of a non-conserved phase-field
during the antiphase domain coarsening in a binary mixture. Its various modified forms
have been applied to image analysis, motion by mean curvature, crystal growth, topology
optimization, and two-phase fluid flows. The hybrid method is based on the operator split-
ting method. The equation is split into a heat equation and a nonlinear equation. An impli-
cit finite element method is applied to solve the diffusion equation and then the nonlinear
equation is solved analytically. Various numerical experiments are presented to confirm
the accuracy and efficiency of the method. Our simulation results are consistent with pre-
vious theoretical and numerical results.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

To model antiphase domain coarsening in a binary alloy, the following Allen–Cahn (AC) equation was introduced [1]:
@/ðx; tÞ
@t

¼ � F 0ð/ðx; tÞÞ
�2 þ D/ðx; tÞ; x 2 X; t > 0; ð1Þ
where X � R2 is a domain. The quantity /ðx; tÞ is defined as the difference of concentrations / ¼ cA � cB, where cA and cB are
the mass fractions of components A and B in a binary mixture. The function Fð/Þ ¼ 0:25ð/2 � 1Þ2 is the Helmholtz free energy
density. The small positive constant � is the gradient energy coefficient related to the interfacial energy. The system is com-
pleted by taking initial and natural boundary conditions n � r/ ¼ 0, where n is normal to @X. The AC equation is a gradient
flow with the Ginzburg–Landau free energy
Eð/Þ :¼
Z

X

Fð/Þ
�2 þ

jr/j2

2

 !
dx:
To show the total energy Eð/Þ is non-increasing in time, we differentiate the energy Eð/Þ with respect to time t
dEð/Þ
dt

¼
Z

X

F 0ð/Þ
�2 /t þr/ � r/t

� �
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where we have used the homogeneous Neumann boundary condition. The AC equation has been solved by using various
numerical approaches such as the finite element, finite difference, and Fourier-spectral methods [2–7]. The various modified
forms of AC equation have been applied to image analysis [8–10], motion by mean curvature [11–14], crystal growth [15,16],
topology optimization [17,18], and two-phase fluid flows [19,20]. In general, finite element method (FEM) is better than
finite difference method (FDM) in dealing with complicated domain problems. In FDM framework, a hybrid scheme was used
in [3]. However, it is not used in FEM. Therefore, the objective of this paper is to develop an unconditionally stable hybrid
finite element method for solving the Allen–Cahn equation.

This paper is organized as follows. In Section 2, we describe the numerical solution algorithm of the AC equation. The
numerical results showing the robustness and superiority of the proposed scheme are presented in Section 3. In Section 4,
conclusions are drawn.

2. Numerical solution

We present an unconditionally stable hybrid scheme for solving the AC equation using the finite element method. Let
H1ðXÞ denote the trial solution space. We partition X into a set T h consisting of a triangular element s. Let

Vh ¼ fw 2 Cð�XÞ : wjs is linear 8s 2 T hg � H1ðXÞ be the finite element space. Let fxigN
i¼1 be the nodes of T h and let fgig

N
i¼1

be the linear basis functions such that gi 2 Vh;giðxjÞ ¼ dij, for i, j ¼ 1; � � � ;N, where N is the dimension of the discrete space.

We denote /i as the approximation of /ðxiÞ and define as /h ¼
PN

i¼1/igi. We formally split the AC equation (1) into the heat
and nonlinear differential equations as follows:
@/ðx; tÞ
@t

¼ D/ðx; tÞ; ð2Þ

@/ðx; tÞ
@t

¼ � F 0ð/ðx; tÞÞ
�2 : ð3Þ
We numerically solve Eq. (2) by using a fully implicit finite element method and analytically solve Eq. (3) by using the
method of separation of variables. First, given /n

h, the finite element approximation to Eq. (2) is to find /�h such that for
all wh 2 Vh
/�h � /n
h

Dt
;wh

� �
þ ðr/�h;rwhÞ ¼ 0; ð4Þ
where Dt is the time step and ð�; �Þ is the inner product. Eq. (4) leads to the standard Galerkin method ðM þ dtKÞ/�h ¼ M/n
h ,

where M ¼ ðmijÞ and K ¼ ðkijÞ are the mass and stiffness matrices with elements mij ¼ ðgi;gjÞ and kij ¼ ðrgi;rgjÞ. Because
the standard Galerkin method does not guarantee the maximal principle [22], we use the lumped mass method

ðM þ dtKÞ/�h ¼ M/n
h , where M obtained by taking for its diagonal elements �mii ¼

PN
j¼1mij. For the implementation, we refer

to [21]. Second, by the method of separation of variables, Eq. (3) is solved analytically with the initial condition /�h.
/nþ1
h ¼ /�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��
2Dt
�2 þ /�h

� �2 1� e�
2Dt
�2

� �r : ð5Þ
In summary, to calculate /nþ1
h from /n

h , we solve Eqs. (4) and (5).
The stability of the proposed numerical scheme should be studied to get a reasonable solution. We prove that the pro-

posed scheme is unconditionally stable. Assume that k/nk1 6 1. The stability analysis [22] shows that the lumped mass
method of Eq. (4) is unconditionally stable. In addition, the inequality j/�j 6 k/nk1 is satisfied by the maximal principle
for the heat equation, and it implies that k/�k1 6 1. And, for the Eq. (5), we have the inequality
j/nþ1
i j ¼ j/�i jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e�
2Dt
�2 þ ð/�i Þ

2 1� e�
2Dt
�2

� �r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ð/�i Þ
2 � 1

� �
e�

2Dt
�2

s 6 1 ð6Þ
Therefore, we can conclude that if k/nk1 � 1, then k/nþ1k1 � 1. And, because the initial condition is given as k/0k1 � 1, the
proposed scheme is stable for any time step size.

3. Numerical results

We perform numerical tests such as a convergence test, phase separation, and motion by mean curvature to validate the
accuracy and efficiency of the proposed method.
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3.1. The convergence test

We demonstrate that the numerical scheme is first- and second-order accurate in time and space, respectively. A quan-
titative estimate of convergence rate is obtained by performing a number of simulations with a set of decreasing space or
time step size. For the test problem, we use the traveling wave solution of Eq. (1)
/ðx; y; tÞ ¼ 1
2

1� tanh
x� st

2
ffiffiffi
2
p
�

� �
;

where s ¼ 3=
ffiffiffi
2
p
�

� �
is the speed of the traveling wave [2]. The numerical solution with the initial condition /ðx; y;0Þ is solved

on the computational domain X ¼ ð�1;1Þ � ð�1;1Þ. The mesh is the set of regular triangular elements as shown in Fig. 1. We
denote the mesh step size h as the length of legs of right triangles on the regular mesh.

The error of the numerical solution is defined as e ¼ ðe1; e2; . . . ; eNÞ, where ei ¼ /Nt
i � /iðTÞ for i ¼ 1; . . . ;N. For each test, we

evolve the discrete equations to time T ¼ 0:25=s with � ¼ 0:03 and h ¼ 2�7. To estimate the rate of convergence for time,
Dt ¼ 0:01=2n�1 are used for n ¼ 1;2;3;4. To estimate the rate of convergence for space, the parameters Dt ¼ T=104 and
h ¼ 2�n are used for n ¼ 3;4;5;6. Tables 1 and 2 show the discrete l2 and maximum norms of the errors and rates of conver-
gence for time and space, respectively. These results show that the scheme is indeed first- and second-order accurate in time
and space, respectively.

3.2. Phase separation

We consider the spinodal decomposition of a binary mixture. On the square and circle domains, Fig. 2 shows the evolu-
tions of the phase separation with the initial condition /ðx; y;0Þ ¼ 0:01randðx; yÞ, where randðx; yÞ is a random value between
�1 and 1. The time step size Dt ¼ 2E�6 and � ¼ 0:02 are used. For simulating on the square domain, the domain is
X ¼ ð�1;1Þ � ð�1;1Þ with 257� 257 mesh grid points. For simulating on the disk, the domain is a disk of which the radius
is 1.

Fig. 2 shows the non-increasing trends of the scaled discrete total energy Eð/nÞ=Eð/0Þ. The dashed and solid lines are the
temporal evolutions of the total energies on the rectangular and circular domains, respectively. The inscribed small figures
are evolutions at the associated times. We draw the level contours from �0:8 to 0:8 increasing by factor to 0:2. These numer-
ical results agree well with the total energy dissipation property. At the early stage of the phase separation, the diffuse inter-
faces are smeared and the level contours are widely distributed. On the boundary, the contact angle of the phase is
apparently remained to the right angle.

3.3. Mean curvature flow

We present the numerical simulation of surface evolution according to the mean curvature. Eq. (1) was formally shown
that the zero level contour of / evolves to the normal direction velocity V with the mean curvature j [1,23]. In two dimen-
sional space,
V ¼ �j ¼ �1=R; ð7Þ
Fig. 1. Regular triangular mesh: (a) 9� 9 and (b) 17� 17 mesh grids.



Table 1
The errors and rates of convergence for time.

Dt 0:05=s Rate 0:025=s Rate 0:0125=s Rate 0:00625=s

kek1 3:48E�3 0:99 1:75E�3 0:99 8:82E�4 0:92 4:66E�4

Table 2
The errors and rates of convergence for space.

Mesh 17� 17 Rate 33� 33 Rate 65� 65 Rate 129� 129

kek1 5:05E�2 1:61 1:66E�2 2:38 3:17E�3 2:24 6:72E�4

Fig. 2. Non-dimensional discrete total energy Eð/nÞ=Eð/0Þ.
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where R is the radius of curvature at the point on the curve. If we set the initial condition as the circular region and denote
the initial radius as R0. The radius at time t is denoted as RðtÞ. Then Eq. (7) becomes dRðtÞ=dt ¼ �1=RðtÞ. The solution is

RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 � 2t
q

. Thus the area AðtÞ at time t is AðtÞ ¼ p R2
0 � 2t

� �
.

Fig. 3(a) shows the temporal evolution of two-dimensional circular shape. The initial condition is given by a circle where
the center is ð0;0Þ with a radius 0:9, which is the ticker line. Fig. 3(b) shows the decreasing area due to the motion by mean
curvature. The solid line is an exact area and the circles are the numerical area. For the initial condition, we set as
/ðx; y;0Þ ¼ tanh½ð0:9�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ=ð

ffiffiffi
2
p
�Þ� on the computational domain X ¼ ð�1;1Þ � ð�1;1Þ with 257� 257 grid points,

time step size Dt ¼ 1E�6, and � ¼ 0:0188.
Fig. 4 shows the evolution of a star-shaped interface in a curvature-driven flow on the computational domain

X ¼ ð�2;2Þ � ð�1;1Þ. The regular mesh contains 257� 129 grid points. The other parameters are Dt ¼ 1E�5 and
� ¼ 0:0075. The initial configuration is defined as follows: /ðx; y;0Þ ¼ tanh dðx; yÞ=ð

ffiffiffi
2
p
�Þ

� �
, where
dðx; yÞ ¼ 0:6þ 0:2 sinð5hÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25x2 þ y2

p
ð8Þ
and h ¼ atan2ðy; xÞ, which is a variation of the arc-tangent function in computer languages. The tips of the star move inward,
while the gaps between the tips move outward. Once the form deforms to a circular shape, the radius of the circle shrinks
with increasing speed.

Fig. 5 shows the temporal evolution of the rectangular shape. The initial configuration is given by
/ðx; y;0Þ ¼ tanh dðx; yÞ=ð

ffiffiffi
2
p
�Þ

� �
, where
dðx; yÞ ¼ �max jx� 1j � 0:7; jy� 0:5j � 0:1f g: ð9Þ
The computation is performed on 257� 129 mesh points with � ¼ 0:03 and Dt ¼ 1E�5. The ticker line represents the initial
configuration and the succeeding contour lines are incremented by the time interval 5E�3. The tip where the two sides meet



Fig. 3. Mean curvature flow of the circle.

Fig. 4. Evolution of a star-shaped interface in a curvature-driven flow.

Fig. 5. Temporal evolution of the two-dimensional dumbbell shape.
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has a large curvature. The contour lines are shrinking to the center of the rectangle. But lines on the top and bottom side are
not evolved until the adjacent sides are curved.

3.4. Complicated domains

Fig. 6 shows the spinodal decomposition on the strip-like domain at t ¼ 0:02. Let CðsÞ ¼ ð0:1s cosðsÞ;0:1s sinðsÞÞ;
p < s < 12p, be a smooth curve with its length 11p, where s is the arc length parameter. We define a strip-like domain X along
CðsÞwith its width 0:4 by X ¼ fCðsÞ þ zmðsÞ : p < s < 12p;�0:2 < z < 0:2g, where mðsÞ is a unit normal vector of CðsÞ. The tem-
poral step size Dt ¼ 5E�6 and � ¼ 0:05 are used. The mesh contains 44;926 triangular elements and 24;905 nodes. The initial
state is /ðx; y;0Þ ¼ 0:1randðx; yÞ. Fig. 6(b) shows the triangular mesh of a part of Fig. 6(a).

Fig. 7 shows the spinodal decomposition on the sequential T-junctions at time t ¼ 0:0004. The time step size Dt ¼ 1E�7
and � ¼ 0:005 are used. The initial state is /0 ¼ 0:01randðx; yÞ. The mesh contains 256;611 triangular elements and 133;720



Fig. 6. Snapshot of a later stage of spinodal decomposition in a spiral domain.

Fig. 7. Snapshot of a later stage of spinodal decomposition in a T-junction domain.
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nodes. T-junctions is a micro-fluidic device that offers capabilities for the precise handling of small fluid volumes dispersed
as droplets [24].

4. Conclusions

We apply the hybrid numerical scheme for solving AC equation based on the finite element method. We numerically
demonstrate the phase separation and non-increasing total energy. And we apply our solver to the examples for simulating
the motion by mean curvature and phase separation on the complicated domains.
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