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Abstract. We propose a fast and robust finite difference method for Merton’s
jump diffusion model, which is a partial integro-differential equation. To speed up
a computational time, we compute a matrix so that we can calculate the non-local
integral term fast by a simple matrix-vector operation. Also, we use non-uniform
grids to increase efficiency. We present numerical experiments such as evaluation
of the option prices and Greeks to demonstrate a performance of the proposed
numerical method. The computational results are in good agreements with the
exact solutions of the jump-diffusion model.

1. Introduction

The derivative securities pricing abilities of the jump-diffusion option pricing
model generally provide more efficient and robust valuation [7, 11]. The Black–
Scholes (BS) model, proposed by Fischer Black and Myron Scholes in 1973 [1], is a
mathematical method for option price and is given by

∂u(x, t)
∂t

+
1
2
σ2x2 ∂2u(x, t)

∂x2
+ rx

∂u(x, t)
∂x

− ru(x, t) = 0,

where x is the underlying asset, t is the time, u(x, t) is the value of an option at
t on x, σ is the volatility, and r is the risk neutral interest rate. According to
the Merton’s jump-diffusion model based on a Poisson process [10], we are able to
describe as the following equation: dx/x = (µ − λk)dt + σdW + (η − 1)dU , where
dW is the standard Brownian motion and dU is a Poisson process of intensity λ,
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i.e., dU is 0 or 1 with probability 1− λdt or λdt, respectively. Here η is taken to be
a lognormally distributed jump amplitude with probability density

G̃(η) =
1

δη
√

2π
e
− 1

2

(
log(η)

δ

)2

,

where k is the expectation E(η − 1) given by e0.5δ2 − 1. Since the Brownian motion
and Poisson process are supposed to be uncorrelated, the asset price jumps from
x to xeξ if a jump occurs. Then, we are able to get a partial integro-differential
equation given by

∂u

∂t
+

σ2x2

2
∂2u

∂x2
+ (r − λk)x

∂u

∂x
− ru + λ

(∫ ∞
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u(xeξ, t)G(ξ)dξ − u

)
= 0,(1.1)

where G(ξ) = 1√
2πδ

e−
1
2
( ξ

δ
)2 . The authors in [2] proposed implicit-explicit Runge–

Kutta methods for the time integration to solve the integral term explicitly, giving
higher-order accuracy schemes under weak stability time-step restrictions. Kwon and
Lee developed a second-order convergent finite difference method to solve partial
integro-differential equations which describe the behavior of option prices under
jump-diffusion models [8]. This paper is organized as follows. In Section 2, we
describe the proposed numerical scheme in detail. In Section 3, we present numerical
experiments to validate accuracy and efficiency of our proposed algorithm. In Section
4, conclusions are drawn.

2. Numerical Solution

2.1. Discretization with finite differences We will use a finite difference method
[5] to numerically solve Eq. (1.1). By changing variable τ = T − t, where T is ma-
turity, we can rewrite Eq. (1.1) as follows:
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.(2.1)
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Figure 1. A non-uniform grid.
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The jump-diffusion equation is discretized on a grid defined by x0 = 0 and xi+1 =
xi + hi for i = 0, · · · , Nx − 1, where Nx is the number of grid intervals and hi is the
grid spacing, see Fig. 1. And we assume that xNx = Smax, xNx+1 = Smax + hNx−1,
and xNx+2 = eSmax. Let us denote the numerical approximation of the solution by
un

i ≈ u(xi, n∆τ), where ∆τ = T/Nτ is the time-step size and Nτ is the total number
of time-steps. By applying an implicit scheme to Eq. (2.1), we have

un+1
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where the first and second derivatives are defined as
(
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and Ib
ag(ξ)∆ξ is an approximate numerical quadrature of

∫∞
−∞ g(ξ)dξ. Using the

composite Simpson’s rule, we can rewrite Eq. (2.2) as

αiu
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We impose the zero Dirichlet boundary condition at x = 0 and the linear bound-
ary condition at x = Smax [13]. The matrix form of the linear system (2.3) can be
rewritten as



β1 γ1 0 . . . 0
α2 β2 γ2 . . . 0
...

. . . . . . . . .
...

0 . . . αNx−1 βNx−1 γNx−1

0 . . . 0 αNx − γNx βNx + 2γNx
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.

We solve the linear system by using the Thomas algorithm, which inverts a tri-
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diagonal matrix directly. Next, we consider the numerical quadrature of the following
integral term

∫ ∞

−∞
u(xeξ, τ)G(ξ)dξ.(2.4)

To evaluate the integral term (2.4), we truncate the infinite domain (−∞,∞) to
[a, b]. Let us consider [a, b] = [−1, 1] case to be concrete. Therefore we use the
composite Simpson’s rule for the numerical integration.

I1
−1u
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ξ, n∆τ
)

G (ξ)∆ξ(2.5)

= I1
−1g(ξ)∆ξ =

∆ξ

3


g(ξ0) + 2

M/2−1∑

j=1

g(ξ2j) + 4
M/2∑

j=1

g(ξ2j−1) + g(ξM )


 ,

where M is a positive even integer. Figure 2(a) shows a schematic illustration of the
option price u(x, τ) and G(xeξ) function.
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Figure 2. (a) Schematic illustration of the option price u(x, τ) and
G(xie

ξ) function. (b) Linear interpolation of u(x, τ) at x = xie
ξj .

To accelerate the computation, we save the linear interpolation factors at each
point xi before the main time-step iterations. The factor matrix A is defined as

A = (mi,j)Nx×(M−1),(2.6)

where mi,j = (xie
ξj −xij )/hij , xij ≤ xie

ξj < xij+1, for some 0 ≤ ij ≤ Nx +1. Then,
we have g(ξj) = (mi,ju

n
ij

+ (1−mi,j)un
ij+1)G(ξj), which is schematically illustrated

in Fig. 2(b).
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3. Numerical Experiment

In this section, we perform various numerical tests to show efficiency and ro-
bustness of the proposed numerical scheme under the jump-diffusion model. All
computations were run in MATLAB version 7.7 [12].

3.1. European call option We consider a European call option whose payoff is
given as u(x, 0) = max(x−K, 0), where K is strike price. We will use K = 100, r =
0.03, σ = 0.3, λ = 0.1, δ = 0.1, and uniform grid sizes h unless otherwise specified.
Closed-form solution uexact(x, t) of jump-diffusion model for European call option is
formulated as an infinite series of Black, Scholes, and Merton’s model [1, 10]:

uexact(x, τ) =
∞∑

n=0

e−λ̂τ (λ̂τ)n

n!
[xΦ(d1,n)−Ke−rnτΦ(d2,n)],(3.1)
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√
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,
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δ2

2 − 1, σ2
n = σ2 +

nδ2

τ
, Φ(d) =

1√
2π

∫ d

−∞
e−

x2

2 dx.

We sum Eq. (3.1) up to n = 200. Figure 3 shows the payoff function and two
numerical solutions at τ = 1 with the BS and the BS with jump-diffusion models.
Here, we take h = 1 and ∆τ = 1/360. The result shows that the option values
with the jump-diffusion model are larger than those with the BS model without the
jump-diffusion.
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Figure 3. Payoff function and two numerical solutions at τ = 1 with
the BS and the BS with jump-diffusion models.
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3.2. Effect of interval size on the numerical quadrature To find a suitable
interval [−b, b] for numerical integration, we test the effect of b on the results with
M = 50. Figure 4 shows the numerical solutions at τ = 1 with various values of
b, such as 0.2, 0.3, 0.4, 0.8, 1, and 2. The result suggests that b = 1 is accurate
enough. Therefore, we will use [−1, 1] in the calculation of the integral term (2.5)
from now on.
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Figure 4. Numerical solutions at τ = 1 with various values of b, such
as, 0.2, 0.3, 0.4, 0.8, 1, and 2.

3.3. Convergence test We perform a convergence test to verify the accuracy of
the proposed numerical method in this paper. In this test, we use the following
parameters: Smax = 300, and T = 1. The numerical solutions are computed with
the uniform grids h = 22−n and the uniform time-steps ∆τ = 250h2 for n = 1, 2,
and 3. We denote the error as e = u− uexact, where u and uexact are the numerical
and analytic solutions, respectively. And we calculate its discrete l2-norm error as

‖e‖2 =
√∑Nx

i=1 e2
i /Nx. Table 1 shows the l2-norm errors and convergence rates

for numerical solutions with respect to h. This result indicates that the scheme is
first-order accurate in time and second-order accurate in space.

Table 1. l2-norm errors and convergence rates for numerical solu-
tions on uniform grid with respect to h.

h 2 1 0.5

error 0.0081574192 0.0020578644 0.0005628202
rate 1.986965 1.870402
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3.4. Computation of the Greeks We compute the Greeks by using the proposed
scheme and compare them with the closed-form solutions. Delta (∆) is the first
derivative with respect to the underlying asset x.

∆ =
∂uexact

∂x
=

∞∑

n=0

e−λ̂τ (λ̂τ)n

n!
Φ(d1,n) ≈ uNt
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i−1

2h
.

Gamma (Γ) is the second derivative with respect to the underlying asset x.
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√
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i+1 − 2uNt
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h2
.

Vega (V) is the derivative with respect to volatility σ.
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∂uexact

∂σ
=

∞∑
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e−λ̂τ (λ̂τ)n

n!
x
√

τ√
2π

e−0.5d2
1,n ≈ uNt

i (σ + 0.5∆σ)− uNt
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∆σ
.

Rho (ρ) is the derivative with respect to the risk-free interest rate r.
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∂uexact

∂r
=

∞∑
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n!
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.

Theta (Θ) is the derivative with respect to the time t.
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τ
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]
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i

2∆τ
.

The parameters used in the calculations of numerical and closed-form solutions
are as follows: ∆σ = 0.1, ∆r = 0.01, ∆t = 1/360, Smax = 300, and h = 1 on uniform
grid. Figure 5(a), (b), (c), (d), and (e) are the results of ∆, Γ, V, ρ, and Θ from the
numerical and closed-form solutions, respectively.

3.5. Efficiency of non-uniform grid In this section, we show the efficiency of
non-uniform grid on jump-diffusion model. We first evaluate the numerical solution
with Smax = 600, Nx = 4800 and Nτ = 1440 on uniform grid. The following Table
2 represents the l2-norm error and relative CPU time on uniform and non-uniform
grids, respectively.
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Figure 5. Comparison between the numerical and closed-form solu-
tions for the Greeks. (a), (b), (c), (d), and (e) are the results of ∆,
Γ, V, ρ, and Θ, respectively.

Table 2. Comparison with l2-norm error on the interval [80, 120]
and relative CPU time for numerical solutions on uniform and non-
uniform grid.

Nx error relative CPU time

Uniform grid 4800 9.20e-4 1
Adaptive grid 1086 1.03e-3 0.19391

Here, l2-norm error is evaluated on the interval [80, 120], which is indicated a
neighborhood of the exercise price 100. And we have numerical solution on non-
uniform grid, which is defined as

x = [0 1.11 : 1.11 : 38.89 40 : 0.25 : 160 164.89 : 4.89 : 595.11 600].

In Table 2, 1 in CPU time of uniform grid stands for the relative calculation time
for uniform grid. And the CPU time of non-uniform grid is scaled with that of
the uniform grid. Through this test, we can confirm that non-uniform grid is more
efficient than the uniform grid.

4. Conclusions

In this paper, we presented an efficient, fast, and robust finite difference method
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for the valuation of European call options with jump-diffusion processes. The mathe-
matical model for the process is a partial integro-differential equation (1.1), Merton’s
jump diffusion model. To speed up the computational time, we computed the factor
matrix A in (2.6) so that we can calculate the non-local integral term fast by a
simple matrix-vector operation. Also, we used non-uniform grids to increase effi-
ciency. We presented numerical experiments such as evaluation of the option prices
and the Greeks to demonstrate the performance of the proposed numerical method.
The computational results were in good agreements with the exact solutions of the
jump-diffusion model.
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