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1 Introduction

Many important industrial problems involve multiphase fluid
flows [1–4]. The multiphase fluid flows are related to many physi-
cal problems, such as the non-Newtonian flow, microtube flow,
droplet impact on a solid surface, and Marangoni convection.
However, the modeling and simulation of multiphase flows are
difficult because of the moving interfaces.

We consider two incompressible and immiscible fluids in a
two-dimensional domain X ¼ X1 [ X2 and define the interface as
C ¼ X1 \ X2 (see Fig. 1). The equations governing the motion of
the two fluids are the modified Navier–Stokes equations:

q
@u

@t
þ u � ru

� �
¼ �rpþr � g ruþruT

� �� �
þ SFþ qg (1)

r � u ¼ 0 (2)

where uðx; tÞ is the velocity, pðx; tÞ is the pressure, qðx; tÞ is the
density, gðx; tÞ is the viscosity, g is the gravitational force, the
superscript T denotes the transpose, x ¼ ðx; yÞ are Cartesian coor-
dinates, and t is the time variable. The continuum surface force
(CSF) model [5] is used to represent the singular surface tension
force:

SF ¼ �rjdCn (3)

where r is the surface tension coefficient, j is the mean curvature
of the interface, dC is the surface d function, and n is the unit
normal vector to the interface from fluid 1 to fluid 2.

We focus on the review of three methods for simulating two-
phase flows. The level set method (LSM) [6–35] uses a level set
function to capture the interface. The phase-field method (PFM)
[36–67] uses an order parameter to capture the interface, and the
immersed boundary method (IBM) [68–91] uses Lagrangian
marker points to track the interface. We will provide a detailed
description of the basic techniques of each method.

LSM, first introduced in Ref. [6], is a popular computational
technique for capturing moving interfaces (see Refs. [16,20] for

reviews). For the two-phase flows, the authors in Ref. [8] first
introduced a reinitialization procedure to maintain the level set
function as a distance function. In this method, a smoothed d func-
tion is used to adapt the CSF framework.

PFM is an increasingly popular method for modeling the
dynamics of multiphase fluids (see Refs. [39,66] for reviews). In
PFM, there is a diffuse-interface with a finite width between two
phases. The density, viscosity, and other physical quantities are
characterized by an order parameter, which is governed by the
modified Cahn–Hilliard equation. The Cahn–Hilliard equation
was first proposed by Cahn and Hilliard to describe the initial
stage of spinodal decomposition [92] and it models the interface
dynamics, including the surface minimization, topological
changes, and phase separation.

IBM was originally developed to model the blood flow in the
heart [68,69]. Since then, a number of modifications and improve-
ments have been proposed (refer to Refs. [78,81] for reviews).
The authors in Ref. [70] used the d function to construct an indica-
tor function to distinguish the fluid properties. The interface is
also numerically diffused by the use of d function to efficiently
and conveniently distribute boundary forces.

The paper is organized as follows: 1) In Sec. 2, we present the
governing equations for LSM, PFM, and IBM, 2) We summarize
the formulas of surface tension force in Sec. 3, 3) We describe the
treatment for the variable density and viscosity functions in Sec.
4, 4) We discuss volume conservation problems in Sec. 5, 5) In
Sec. 6, we present the numerical method to solve the discrete
Navier–Stokes equations and respective equations for the inter-
face, 6) Numerical results are presented in Sec. 7, and 7) Finally,
conclusions are drawn in Sec. 8.

Fig. 1 Schematic of a two-phase domain
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2 Governing Equations and Interface Representation

The three methods share common modified Navier–Stokes
equations (1) and (2). In this section, we briefly describe the level
set function, phase-field function, and Lagrangian variable for
representing the interface of the two immiscible fluids. We then
introduce the corresponding governing equations for evolving the
interface. We also briefly discuss the advantages and disadvan-
tages of each method.

2.1 LSM. The interface of two phases is defined implicitly
using the level set function /ðx; tÞ. Here, / is taken to be the
signed distance from the interface C and it becomes the distance
function satisfying jr/j ¼ 1. We take the value of / to be zero at
the interface C. Thus, / has an opposite sign in each phase; see
Fig. 2.

The evolution of the level set function / is governed by the
transport equation

/t þ u � r/ ¼ 0 (4)

During the process of interface evolution, / tends to deviate from
the signed distance function. However, because the density and
surface tension depend on /, we should maintain / as the signed
distance function [8,10]. Therefore, at each time step, a reinitiali-
zation step is needed to recover to the signed distance function
without changing its zero level set. Specifically, taking the func-
tion / at time t as an initial condition, we solve the reinitialization
equation to the steady state

@d

@s
ðx; sÞ ¼ Sð/ðx; tÞÞ 1� rdðx; sÞj jð Þ (5)

dðx; 0Þ ¼ /ðx; tÞ (6)

where s is the pseudotime and Sð/Þ is the sign function. For the
numerical implementation, we use a smoothed sign function

Sbð/Þ ¼ /=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ b2

p
, where b is usually one or two grid lengths.

For more details, we refer to Ref. [19]. After solving up to the
steady state, /ðx; tÞ is replaced by dðx; ssÞ, where ss is the steady-
state time. There are efficient ways to solve Eqs. (5) and (6) to the
steady state by using the fast marching method [11].

Advantages of LSM include the simplicity to implement, ability
to capture the merging and breakup of interfaces automatically,
and flexibility to describe the complex interface geometry. How-
ever, typical LSM has a lack of mass conservation. This could
lead to nonphysical interface motions, which severely deteriorate
the accuracy and stability of the simulation results. Therefore,
many approaches have been developed to resolve the mass conser-
vation problem for LSM, which will be described in Sec. 5.1.

2.2 PFM. In PFM, a thin finite interface is used to separate
two homogeneous phases. This method uses an order parameter /
that is a measure of the relative composition or volume fraction of
the two components. The function / is distributed continuously

on thin interfacial layers and uniformly in the bulk phases as
shown in Fig. 3. Here, the order parameter is defined by / � 1 in
fluid 1 and / � �1 in fluid 2, while the interface C is defined by
/ ¼ 0. The sharp fluid interfaces are replaced by thin (but non-
zero) thickness transition regions.

The evolution of the phase-field function / is governed by the
advective Cahn–Hilliard equation as follows:

@/
@t
þr � ð/uÞ ¼ MDl (7)

l ¼ F0ð/Þ2 � e2D/ (8)

where M is the constant mobility, l is the chemical potential,
Fð/Þ ¼ ð1� /2Þ2=4 is the bulk energy density that has two min-
ima corresponding to the two stable phases of the fluid, and e is a
measure of interface thickness. It is convenient to use the dimen-
sionless Peclet number, which is defined as Pe ¼ UcLc=M, where
Uc is the characteristic velocity and Lc is the characteristic length
(refer to Ref. [52] for details).

As shown in Fig. 4, from the choice of an equilibrium profile

/ðxÞ ¼ tanhðx=ð
ffiffiffi
2
p

eÞÞ on the infinite domain, the concentration
field varies from �0:9 to 0:9 over a distance of about

n ¼ 2
ffiffiffi
2
p

e tanh�1ð0:9Þ [41]. We note that n ¼ OðeÞ, and, in the
sharp interface limit e! 0, the classical Navier–Stokes equations
and jump conditions are recovered [39].

PFM shares the advantages of LSM. Moreover, because the
order parameter has physical meanings, it can be applied to
many physical phase states such as miscible, immiscible, and par-
tially miscible ones. However, the phase-field functions change
quickly near the interface and, hence, must be well resolved. In
other words, a relatively large number of grid points near the
interface are needed. Choosing appropriate parameter e value is
important for the accurate calculations. Taking too large e can

Fig. 2 (a) Zero contour of the signed distance function / and
(b) surface plot of / with the zero contour

Fig. 3 (a) Zero contour of the order parameter / and (b) sur-
face plot of / with the zero contour

Fig. 4 Concentration profile across the diffused interface
region with the thickness n
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make nonphysical solutions, while too small e leads to numerical
difficulties.

2.3 IBM. In IBM, the interface C between two fluids is
described by the parametric function Xðs; tÞ, where 0 � s � L and
L is the length of the boundary (see Fig. 5). The fluid velocity
uðx; tÞ is an Eulerian variable, whereas the interface boundary
velocity Uðs; tÞ is defined at the Lagrangian variable Xðs; tÞ, by
using the d function and velocity uðx; tÞ. The two-dimensional
Dirac d function d2ðxÞ is defined by the product of one-
dimensional Dirac d functions, d2ðxÞ ¼ dðxÞdðyÞ.

The evolution of the interface is governed by

@Xðs; tÞ
@t

¼ Uðs; tÞ (9)

Uðs; tÞ ¼
ð

X
uðx; tÞd2ðx� Xðs; tÞÞdx (10)

First, the flow is computed in the computational domain with
surface tension forces generated by the immersed boundary.
The fluid reacts to the existence of the boundary via the singu-
lar force, which is spread to the surrounding Eulerian points
using a discrete d function. The immersed boundary is then
advected by the fluid velocity obtained from interpolating the
Eulerian points.

IBM has the principal advantage over the other two methods
because it can use a large number of interfacial marker points to
accurately handle the interface geometry. The major drawback is
the difficulty of topological change unless the additional work for
geometric problems is considered. Because the interface between
two fluids moves discretely, area conservation does not, in gen-
eral, hold. We will discuss the mass conservation problem for
IBM in Sec. 5.3.

2.4 Multiphase and Multicomponent System. We briefly
describe the multiphase and multicomponent system for each
method. Let us consider N-phase fluid flows. In LSM, the motion
of the interfaces is given by

@/i

@t
þ u � r/i ¼ 0 for i ¼ 1;…;N (11)

where the separate level set function /i, which is positive in phase
i and negative outside; please refer to Refs. [15,18,23] for more
details. In PFM, let c ¼ ðc1; c2;…; cN�1Þ be the phase variable
with c1 þ c2 þ � � � þ cN ¼ 1 [66,67]. The motion of the interfaces
is given by

@c

@t
þr � ðcuÞ ¼ MDl (12)

l ¼ F0ðcÞ � e2D/ (13)

In IBM, the evolution of the interface is governed by

dXi

dt
¼ Ui (14)

where Xi represents the position of a marker point on the interface
Ci and Ui is the velocity at Xi. Please refer to Refs. [75,77] for
more details.

3 Surface Tension Force

We describe how to define the surface tension force for LSM,
PFM, and IBM.

3.1 LSM. In LSM, the surface tension force is given by

SF ¼ �rr� r/
jr/j

� �
dað/Þ

r/
jr/j (15)

Here, / is the level set function, and the interface curvature jð/Þ
can be calculated by jð/Þ ¼ r � r/=jr/jð Þ. r is the surface
tension coefficient. Using Ref. [68], the smoothed d function
dað/Þ [8,9] is defined as

dað/Þ ¼
1

2a
þ 1

2a
cos

p/
a

� �
; if j/j � a;

0; otherwise

8<
: (16)

3.2 PFM. In PFM, a surface tension force formulation, based
on CSF, is given by

SF1 ¼ �
3
ffiffiffi
2
p

4
rer � r/

jr/j

� �
jr/jr/ (17)

Here, / is the phase-field function, and e is a small positive
parameter in Eqs. (7) and (8). SF1 comes from the CSF frame-
work [54]. Similar to the surface tension formula in LSM,
r � r/=jr/jð Þ accounts for the interface curvature jð/Þ. We
note that some other surface tension force formulas driven by
thermodynamics are frequently used in PFM for two-phase flows.
These include:

SF2 ¼
3
ffiffiffi
2
p

4
rer � jr/j2I �r/�r/

	 

(18)

SF3 ¼
3
ffiffiffi
2
p

r
4e

lr/ (19)

SF4 ¼ �
3
ffiffiffi
2
p

r
4e

/rl (20)

where I is the unit tensor dij and the term r/�r/ is the usual
tensor product defined by ðr/�r/Þij ¼ ð@/=@xiÞð@/=@xjÞ

In SF2, r/�r/ is induced elastic stress due to the mixing of
the different species [36,48]. SF3 was derived in Ref. [38]. SF4,
chemical potential formulation, was proposed by Ref. [41].
The formulas for SF that have been applied in the literature
are as follows: SF1 [54,60,61], SF2 [36,40,44,45,48,52,], SF3

[37,38,43,46], and SF4 [41,42,49,58,60].

3.3 IBM. In IBM, the surface tension force is given by

SFðx; tÞ ¼
ð

C
fðs; tÞd2ðx� Xðs; tÞÞds (21)

Fig. 5 Immersed boundary configuration Xðs; tÞ for represent-
ing the interface C
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fðs; tÞ ¼ r
@2Xðs; tÞ
@s2

(22)

where fðs; tÞ is the boundary force density. Note that
@2Xðs; tÞ=@s2 accounts for the interface curvature j.

4 Variable Density and Viscosity

The density and viscosity are constant within a fluid but can
take different values in each phase. Here, the three methods use a
similar tactic to identify the different phases. Let qi and gi, i ¼ 1,
2, be the density and viscosity of fluid i, respectively. The density
and viscosity values are determined by

q ¼ q2 þ ðq1 � q2ÞH (23)

g ¼ g2 þ ðg1 � g2ÞH (24)

where H is the Heaviside (step) function whose value is one in
fluid 1 and zero in fluid 2. We illustrate the three discrete Heavi-
side functions used in the three methods in Fig. 6.

4.1 LSM. For LSM, because the jump in phase properties
across the interface may lead to numerical difficulties, it needs to
be smoothed [8]. Hence, Hð/Þ is replaced by a smoothed Heavi-
side function as

Hað/Þ ¼

0; if / < �a;
1

2
1þ /

a
þ 1

p
sin

p/
a

� �� �
; if j/j � a;

1; if / > a

8>><
>>: (25)

where 2a corresponds to the interface thickness (a > 0). Note that
H0að/Þ ¼ dað/Þ. The regularized density and viscosity are then
defined as

qð/Þ ¼ q2 þ ðq1 � q2ÞHað/Þ (26)

gð/Þ ¼ g2 þ ðg1 � g2ÞHað/Þ (27)

The interface thickness depends on the grid size h and should be
chosen as small as possible for accuracy but large enough to stabi-
lize the system. When a is relatively small, e.g., a ¼ 0:5h, the
interface tends to be staggered. In contrast, if a is relatively large,
e.g., a ¼ 3:0h, the interface tends to be smeared. The values of a
that have been applied in the literature are as follow: 0:5h [24], h
[33], 1:5h [8,21,26], 2h [12,28], 2:5h [9], and 3h [12].

4.2 PFM. The density and viscosity are linear functions of
the phase field [47,54]. The density and viscosity of the mixture
are defined as

qð/Þ ¼ q2 þ ðq1 � q2Þ
1þ /

2
(28)

gð/Þ ¼ g2 þ ðg1 � g2Þ
1þ /

2
(29)

The harmonic interpolation for the variable density and viscosity
can also be used [48] as

1

qð/Þ ¼
1

2

1þ /
q1

þ 1� /
q2

� �
(30)

1

gð/Þ ¼
1

2

1þ /
g1

þ 1� /
g2

� �
(31)

4.3 IBM. For IBM, we introduce an indicator function Hðx; tÞ
[70], which has the characteristics of the Heaviside function. Let
us define a gradient field

rHðx; tÞ ¼ �
ð

C
nðXðs; tÞÞd2ðx� Xðs; tÞÞds (32)

which is nonzero near the interface and zero in the other domain.
To find the indicator function, we solve Poisson’s equation

DHðx; tÞ ¼ �r �
ð

C
nðXðs; tÞÞd2ðx� Xðs; tÞÞds (33)

with the Dirichlet boundary condition. Then, the variable fluid
properties q and l can be represented by

qðHÞ ¼ q2 þ ðq1 � q2ÞH (34)

gðHÞ ¼ g2 þ ðg1 � g2ÞH (35)

5 Volume Conservation

5.1 LSM. One of the main drawbacks of LSM is its lack of
mass conservation. This leads to nonphysical motions of the inter-
face, which severely deteriorate the accuracy and stability of the
simulation results [10]. Several methods for improving mass con-
servation have been proposed. The authors in Refs. [13,22,32]
take full advantage of LSM for better curvature approximation
using the volume of fluid (VOF) method. In Refs. [14,30], a
boundary condition capturing method developed from the ghost
fluid method (GFM) models the pressure jump directly, leading to
no need to add the surface tension force SF. The surface tension is
modeled directly by imposing a pressure jump across the inter-
face. The exact jumps in density and viscosity are allowed so that
the nonphysical finite width interface smeared by d function can
be replaced by a sharp interface. In Refs. [17,27], the authors pre-
sented a hybrid particle LSM to improve the mass conservation
and interface resolution by using Lagrangian marker particles to
rebuild the level set in underresolved regions.

Besides the above studies, in Refs. [24,31], the authors demon-
strated another way to conserve mass. Instead of using a reinitiali-
zation process, they use the regularized characteristic function.
An initialization step, formulated as a conservation law, is used to
preserve the smooth profile. Another technique is the so-called
volume-fraction level set approach [25], where an alternative for-
mulation of the Heaviside function is used for property evaluation
and mass conservation correction.

Fig. 6 (a) Smoothed Heaviside function Hað/Þ for LSM, (b) ð1þ /Þ=2 for PFM, and
(c) Indicator function H for IBM.
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Recently, a geometry-based reinitialization scheme for the level
set function was compared to the widely used partial differential
equation-based scheme [34]. The authors show that the algorithm
is well suited to curvilinear grids, and mass is also conserved by
means of a localized mass correction.

5.2 PFM. As the evolution of the phase-field function / is
governed by the fourth-order Cahn–Hilliard equation, which natu-
rally conserves mass, and because there is a critical balance
between nonlinear and diffusive terms, the solution’s thin transi-
tion layers do not deteriorate dynamically [57,64]. However, in
Ref. [57], the authors pointed out that, even though the phase-field
variable / is conserved globally, simulating two-phase flows with
Cahn–Hilliard diffusion causes a droplet to shrink spontaneously
when / shifts from its expected values in the bulk phase. In addi-
tion, the global mass conservation does not imply that the mass
enclosed by the zero contour of / remains constant.

We note that there is another approach in PFM using the
Allen–Cahn equation [56,62,65]. Its implementation is easier than
using the Cahn–Hilliard equation because only second-order
derivative term is shown in the Allen–Cahn equation.

5.3 IBM. When an exact projection method is used to solve
the Navier–Stokes equations, the velocity field on the Eulerian
grid is discretely divergence-free. However, this does not guaran-
tee that the velocity field interpolated by the d function is continu-
ously divergence-free. This results in a loss of volume for a closed
interface [71,85]. Furthermore, because the interface moves in a
discrete manner, there is also a lack of volume conservation in
this process. In Refs. [90,91], the authors developed a volume-
preserving scheme with negligibly additional computational cost.
This scheme corrects the interface location normal to the interface
so that the volume of one fluid remains constant.

When high Reynolds numbers are used, the local accuracy of
the interface is important, and the smooth force distribution is less
desirable. Thus, many researchers have considered that the sharp
interface is represented by using the immersed boundary, includ-
ing the immersed interface methods (IIM) [93–96]. The force
term is heavily connected with the employed discretization
schemes. Besides solving two-phase flows, there are many studies
for simulating flows in the complex boundaries; refer to Refs.
[97–101].

6 Numerical Solution

In this section, we present a series of numerical solutions on a
staggered marker-and-cell mesh [102] in which pressure and indi-
cator functions are stored at the cell centers and velocities are
defined at the cell edges (Fig. 7(a)). Let a computational domain
X ¼ ða; bÞ � ðc; dÞ be partitioned in Cartesian geometry. Let Nx

and Ny be the number of cells in the x- and y-directions, respec-
tively. We assume a uniform mesh with mesh spacing
h ¼ ðb� aÞ=Nx ¼ ðd � cÞ=Ny. The center of each cell Xij is
located at xij ¼ ðxi; yjÞ ¼ ðaþ ði� 0:5Þh; cþ ðj� 0:5ÞhÞ for i
¼ 1;…;Nx and j ¼ 1;…;Ny. We denote the discrete computa-
tional domain Xh ¼ fxijg. In IBM, N Lagrangian points
Xn

l ¼ ðxn
l ; y

n
l Þ for l ¼ 1;…;N are used to discretize the immersed

boundary (Fig. 7(b)). In LSM and PFM, a grid function /ij is used.
At the n-th time step, we have a velocity field un, which is

divergence-free, and a surface tension calculated by /n (or the
boundary configuration Xn). We seek unþ1, pnþ1, and /nþ1 (or
Xnþ1) that are the solutions of the following semi-implicit
scheme:

qn unþ1 � un

Dt
¼ �qnun � rdun �rdpnþ1

þrd � gn rdun þ ðrdunÞT
	 
h i

þ SFn þ qng

(36)

rd � unþ1 ¼ 0 (37)

where g ¼ ð0;�gÞ, with g being the gravitational acceleration.
Here, rd� and rd are the discrete divergence and gradient opera-
tors, respectively. The projection method, introduced by Chorin
[103], is applied to solve the incompressible Navier–Stokes equa-
tions. We refer the readers to Refs. [8,12,90,91,102] for the discre-
tization approach. An outline of the main procedures in one time
step is as follows:

Step 1. Compute the surface tension force SFn using /n (or
Xn). A detailed description of the discretization of SFn for
each method is given in Sec. 6.1. We calculate the density qn and
viscosity gn using /n (or Xn). The numerical formulas for the vari-
able density and viscosity are drawn in Sec. 6.2.

Step 2. Solve the Navier–Stokes equations to get unþ1 and pnþ1

from un and SFn. We first solve an intermediate velocity field ~un:

~un � un

Dt
þ un � rdun ¼ 1

qn
rd � gn rdun þ ðrdunÞT

	 
h i
þ 1

qn
SFn þ g (38)

The resulting finite difference equations are written out explicitly:

~un
iþ1

2
;j ¼ un

iþ1
2
;j � Dtðuux þ vuyÞniþ1

2
;j þ

Dt

qn
iþ1

2
;j

SFx�edge

iþ1
2
;j

þ Dt

qn
iþ1

2
;j

2ðguxÞx þ ðguyÞy þ ðgvxÞy
	 
n

iþ1
2;j

(39)

~vn
i;jþ1

2
¼ vn

i;jþ1
2
� Dtðuvx þ vvyÞni;jþ1

2
þ Dt

qn
i;jþ1

2

SFy�edge

i;jþ1
2

þ Dt

qn
i;jþ1

2

ðgvxÞx þ ðguyÞx þ 2ðgvyÞy
	 
n

i;jþ1
2

�gDt (40)

where we define qn
iþ1

2;j
¼
�
qn

iþ1;j þ qn
ij

�
=2. qn

i;jþ1
2

, SFx�edge

iþ1
2
;j

, and

SFy�edge

i;jþ1
2

are similarly defined. The advection terms are defined by

ðuux þ vuyÞniþ1
2
;j

¼ un
iþ1

2
;j
�un

x
iþ1

2
;j
þ 1

4
vn

i;j�1
2

þ vn
iþ1;j�1

2

þ vn
i;jþ1

2

þ vn
iþ1;jþ1

2

	 

�un

y
iþ1

2
;j

(41)

and

ðuvx þ vvyÞni;jþ1
2

¼ vn
i;jþ1

2

�vn
y

i;jþ1
2

þ 1

4
un

i�1
2;j
þ un

i�1
2;jþ1
þ un

iþ1
2;j
þ un

iþ1
2;jþ1

	 

�vn

x
i;jþ1

2

(42)

Fig. 7 (a) Velocities and pressure near the cell Xij and (b)
Lagrangian points Xl in the computational domain X.
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where the values �un
x

iþ1
2
;j

and �un
y

iþ1
2
;j

are computed using the upwind
procedure

�un
x

iþ1
2
;j
¼

un
iþ1

2;j
� un

i�1
2;j

h
; if un

iþ1
2
;j
> 0;

un
iþ3

2;j
� un

iþ1
2;j

h
; otherwise

8>>><
>>>:

(43)

and

�un
y

iþ1
2
;j
¼

un
iþ1

2
;j
� un

iþ1
2
;j�1

h
; if vn

i;j�1
2

þ vn
iþ1;j�1

2

þ vn
i;jþ1

2

þ vn
iþ1;jþ1

2

> 0;

un
iþ1

2
;jþ1
� un

iþ1
2
;j

h
; otherwise

8>>><
>>>:

(44)

The quantities �vn
x

i;jþ1
2

and �vn
y

i;jþ1
2

are similarly computed. The viscos-

ity terms are defined by

2ðguxÞx þ ðguyÞy þ ðgvxÞy
	 
n

iþ1
2
;j
¼ 2

h
gn

iþ1;j

un
iþ3

2;j
� un

iþ1
2;j

h
� gn

ij

un
iþ1

2;j
� un

i�1
2;j

h

 !
þ 1

4
gn

iþ1;jþ1 þ gn
i;jþ1 þ gn

ij þ gn
iþ1;j

	 
 un
iþ1

2;jþ1
� un

iþ1
2;j

h2

� 1

4
gn

iþ1;j þ gn
ij þ gn

i;j�1 þ gn
iþ1;j�1

	 
 un
iþ1

2
;j
� un

iþ1
2
;j�1

h2
þ 1

4
gn

iþ1;jþ1 þ gn
i;jþ1 þ gn

ij þ gn
iþ1;j

	 


�
vn

iþ1;jþ1
2

� vn
i;jþ1

2

h2
� 1

4
gn

iþ1;j þ gn
ij þ gn

i;j�1 þ gn
iþ1;j�1

	 
 vn
i;j�1

2

� vn
i�1;j�1

2

h2
(45)

and

ðgvxÞx þ ðguyÞx þ 2ðgvyÞy
	 
n

i;jþ1
2

¼ 1

4
gn

iþ1;jþ1 þ gn
i;jþ1 þ gn

ij þ gn
iþ1;j

	 
 vn
iþ1;jþ1

2

� vn
i;jþ1

2

h2
� 1

4
gn

iþ1;j þ gn
ij þ gn

i;j�1 þ gn
iþ1;j�1

	 


�
vn

i;jþ1
2

� vn
i�1;jþ1

2

h2
þ 1

4
gn

iþ1;jþ1 þ gn
i;jþ1 þ gn

ij þ gn
iþ1;j

	 
 un
iþ1

2
;jþ1
� un

iþ1
2
;j

h2

� 1

4
gn

iþ1;j þ gn
ij þ gn

i;j�1 þ gn
iþ1;j�1

	 
 un
iþ1

2
;j
� un

iþ1
2
;j�1

h2

þ 2

h
gn

i;jþ1

vn
i;jþ3

2

� vn
i;jþ1

2

h
� gn

ij

vn
i;jþ1

2

� vn
i;j�1

2

h

 !
(46)

We then solve the following equations for the advanced pressure
field at the (nþ 1)-th time step:

unþ1 � ~un

Dt
¼ � 1

qn
rdpnþ1 (47)

rd � unþ1 ¼ 0 (48)

Applying the discrete divergence operator and divergence-free
Eq. (48) to Eq. (47), we obtain Poisson’s equation for the pressure
at the time (nþ 1):

rd �
1

qn
rdpnþ1

� �
¼ 1

Dt
rd � ~un (49)

where

rd �
1

qn
rdpnþ1

� �
ij

¼
pnþ1

iþ1;j � pnþ1
ij

h2qn
iþ1

2
;j

�
pnþ1

ij � pnþ1
i�1;j

h2qn
i�1

2
;j

þ
pnþ1

i;jþ1 � pnþ1
ij

h2qn
i;jþ1

2

�
pnþ1

ij � pnþ1
i;j�1

h2qn
i;j�1

2

(50)

and

rd � ~un
ij ¼

~un
iþ1

2
;j
� ~un

i�1
2
;j

h
þ

~vn
i;jþ1

2

� ~vn
i;j�1

2

h
(51)

The boundary condition for the pressure is

n � rdpnþ1 ¼ n �
�
� qn unþ1 � un

Dt
� qnðu � rduÞn

þ
�
gn rdun þ ðrdunÞT
	 
�

þ SFn þ qng

�
(52)

where n is the unit normal vector to the domain boundary. For
example, if we use a periodic boundary condition on the horizon-
tal boundaries and Dirichlet condition on the top and bottom
boundaries, then Eq. (52) is reduced as

n � rdpnþ1 ¼ n � SFn þ qngð Þ (53)

The resulting linear system of Eq. (49) is solved using a multigrid
method [104], specifically V-cycles with a Gauss–Seidel relaxa-
tion. The divergence-free velocities unþ1 and vnþ1 are then
obtained using Eq. (47):
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unþ1
iþ1

2
;j
¼ ~un

iþ1
2
;j �

Dt

qn
iþ1

2
;j
h

�
pnþ1

iþ1;j � pnþ1
ij

�
(54)

vnþ1
i;jþ1

2

¼ ~vn
i;jþ1

2
� Dt

qn
i;jþ1

2

h

�
pnþ1

i;jþ1 � pnþ1
ij

�
(55)

Step 3. Once the updated fluid velocity unþ1 has been deter-
mined, we can find the new level set and phase-field /nþ1 (or
Xnþ1). We will describe this in Sec. 6.3.

This completes a single time step.

6.1 Discretization of Surface Tension Force. In this section,
we present the discretization of the surface tension forces.

6.1.1 LSM. In LSM, the surface tension force is given by

SFn
ij ¼ �rrd �

m

jmj

� �
ij

dað/ijÞ
rd/ij

rd/ij



 

 (56)

Vertex-centered normal vectors are obtained by differentiating the
level set in the four surrounding cells. For example, the normal
vector at the top right vertex of cell Xij is given by

miþ1
2
;jþ1

2

¼ mx
iþ1

2;jþ1
2
;my

iþ1
2
;jþ1

2

	 

¼
�

/iþ1;jþ/iþ1;jþ1�/ij�/i;jþ1

2h
;
/i;jþ1þ/iþ1;jþ1�/ij�/iþ1;j

2h

�
(57)

The curvature is calculated at cell centers from the vertex-
centered normals [5] and is given by

jð/ijÞ ¼ rd �
m

jmj

� �
ij

¼ 1

2h

 
mx

iþ1
2
;jþ1

2

þ my

iþ1
2
;jþ1

2

jmiþ1
2
;jþ1

2
j þ

mx
iþ1

2
;j�1

2

� my

iþ1
2
;j�1

2

jmiþ1
2
;j�1

2
j

�
mx

i�1
2
;jþ1

2

� my

i�1
2;jþ1

2

jmi�1
2
;jþ1

2
j �

mx
i�1

2
;j�1

2

þ my

i�1
2;j�1

2

jmi�1
2
;j�1

2
j

!
(58)

The cell-centered normal is the average of the vertex normals:

rd/ij ¼
miþ1

2
;jþ1

2
þmiþ1

2
;j�1

2
þmi�1

2
;jþ1

2
þmi�1

2
;j�1

2

4
(59)

6.1.2 PFM. In PFM, the surface tension force is given by

SFn
ij ¼ �

3
ffiffiffi
2
p

4
rerd �

m

jmj

� �
ij

jrd/ijjrd/ij (60)

where the discretization is similar to that in LSM.
Figure 8 shows examples of the smoothed d function dað/Þ and

ejr/j2 for LSM and PFM, respectively. The level set / ¼ x and
phase-field / ¼ tanhðx=ð

ffiffiffi
2
p

eÞÞ functions are given for each
method. The other parameters h ¼ 1=32, a ¼ 3h, and
e ¼ 6h=½2

ffiffiffi
2
p

tanh�1ð0:9Þ� are used.

6.1.3 IBM. In IBM, the discretization of the force density fn

is defined by the boundary configuration Xn. For l ¼ 1;…;N,

fn
l ¼

r
Dslþ1

2

Xn
lþ1 � Xn

l

Dslþ1

� Xn
l � Xn

l�1

Dsl

� �
(61)

where Dsl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxl � xl�1Þ2 þ ðyl � yl�1Þ2

q
is the Lagrangian mesh

size and r is a surface tension coefficient. Here, Dslþ1
2

¼ ðDsl þ Dslþ1Þ=2. For implementation, because the interface is
close, Xn

0 ¼ Xn
N and Xn

Nþ1 ¼ Xn
1. The boundary force is then

spread into the nearby lattice points of the fluid:

SFn
ij ¼

XN

l¼1

fn
l d

2
hðxij � Xn

l ÞDslþ1
2

(62)

for i ¼ 1;…;Nx and j ¼ 1;…;Ny, where d2
h is a two-dimensional

discrete d function:

d2
hðxÞ ¼

1

h2
w

x

h

	 

w

y

h

	 

(63)

where wðrÞ=h is a one-dimensional discrete d function. Common
d functions include two-point, three-point, four-point, six-point,
and four-point cosine functions [78,83,86]. The motivation
for this particular choice of the function wðrÞ is given in
Refs. [68,78]. The formulas that have been applied in the literature
are as follows: two-point [93], three-point [76,87], four-point
[90,91], six-point [73,84], and four-point cosine [68,71,80,89].
wðrÞ for the d functions are as follows:

two-point function

wðrÞ ¼ 1� jrj; if jrj � 1;
0; otherwise

�
(64)

three-point function

wðrÞ ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3r2 þ 1
p

3
; if jrj � 1

2
;

5� 3jrj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3ð1� jrjÞ2 þ 1

q
6

; if
1

2
� jrj � 3

2
;

0; otherwise

8>>>>>><
>>>>>>:

(65)

four-point function

wðrÞ ¼

3� 2jrj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p
8

; if jrj � 1;

5� 2jrj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p
8

; if 1 � jrj � 2;

0; otherwise

8>>>>><
>>>>>:

(66)

Fig. 8 Smoothed d functions for LSM and PFM with h 5 1=32,
a 5 3h, and e 5 6h=½2

ffiffiffi
2
p

tanh�1ð0:9Þ�
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six-point function

wðrÞ ¼

61

112
� 11

42
jrj � 11

56
r2 þ 1

12
jrj3 þ

ffiffiffi
3
p

336
ð243þ 1584jrj � 748r2

�1560jrj3 þ 500r4 þ 336jrj5 � 112r6Þ1=2; if 0 � jrj � 1;

21

16
þ 7

12
jrj � 7

8
r2 þ 1

6
jrj3 � 3

2
wðjrj � 1Þ; if 1 � jrj � 2;

9

8
� 23

12
jrj þ 3

4
r2 � 1

12
jrj3 þ 1

2
wðjrj � 2Þ; if 2 � jrj � 3;

0; otherwise

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(67)

four-point cosine function

wðrÞ ¼
1þ cosðpr=2Þ

4
; if jrj � 2;

0; otherwise

8<
: (68)

The discrete d functions may produce nonphysical force oscilla-
tions when dealing with moving boundaries or free interfaces.
However, the oscillations can be controlled by careful selection of

the discrete d function [82]. In Ref. [86], the authors carried out
the stability analysis of the feedback forcing scheme for the
virtual boundary method for various types of regularized d func-
tions. They showed that the stability regime could be widen by
including more supported points for the d function. A smoothing
technique was developed to construct the discrete functions from
regular ones, which can significantly reduce the nonphysical oscil-
lations [88]. For example, a smoothed four-point function w	 can
be written as

w	ðrÞ ¼

12þ p� 8r2

32
; if 0 � jrj � 1

2
;

2þ ð1� jrjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ 8jrj � 4r2

p
8

�
arcsin

ffiffiffi
2
p
ðjrj � 1Þ

� �
8

; if
1

2
� jrj � 3

2
;

68� p� 48jrj þ 8r2

64
þ ðjrj � 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�14þ 16jrj � 4r2

p
16

þ
arcsin

ffiffiffi
2
p
ðjrj � 2Þ

� �
16

; if
3

2
� jrj � 5

2
;

0; otherwise

8>>>>>>>>>><
>>>>>>>>>>:

(69)

Figure 9(a) shows the regularized d functions associated with
Eqs. (64)–(67) and Fig. 9(b) depicts the four-point d functions
associated with four-point, four-point cosine, and smoothed four-
point functions.

6.2 Variable Density and Viscosity. In this section, we pres-
ent the approximations for the variable density and viscosity.

6.2.1 LSM. In LSM, we define the variable density and vis-
cosity by

qn
ij ¼ q2 þ q1 � q2ð ÞHað/n

ijÞ (70)

gn
ij ¼ g2 þ g1 � g2ð ÞHað/n

ijÞ (71)

where Hað/Þ is from Eq. (25).

6.2.2 PFM. In PFM, we define the variable density and vis-
cosity by

qn
ij ¼ q2 þ q1 � q2ð Þ

1þ /n
ij

2
(72)

gn
ij ¼ g2 þ g1 � g2ð Þ

1þ /n
ij

2
(73)

6.2.3 IBM. We present an algorithm for the discrete indicator
function [74,79,90]. Let Gn

ij be the discretization of the right-hand
side of Eq. (32):

Gn
ij ¼

XN

i¼1

nn
l d

2
hðxij � Xn

l ÞDslþ1
2

(74)

where Dslþ1
2
¼ Ds1 þ Dslþ1ð Þ=2. To calculate the unit normal vec-

tor nn
l at Xn

l , we use a quadratic polynomial approximation with

three points Xn
l�1, Xn

l , and Xn
lþ1. First, let xðsÞ ¼ a1s2 þ b1sþ c1

and yðsÞ ¼ a2s2 þ b2sþ c2, and assume ðxð�DslÞ; yð�DslÞÞ
¼ Xn

l�1, ðxð0Þ; yð0ÞÞ ¼ Xn
l , and xðDslþ1Þ; yðDslþ1Þð Þ ¼ Xn

lþ1. We

then calculate the coefficients a1, b1, and c1 as follows:
Fig. 9 (a) Regularized delta functions and (b) Four-point d
functions.
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a1

b1

c1

0
B@

1
CA ¼

Ds2
l �Dsl 1

0 0 1

Ds2
lþ1 Dslþ1 1

0
B@

1
CA
�1

xðDslÞ
xð0Þ

xðDslþ1Þ

0
B@

1
CA (75)

And the coefficients a2, b2, and c2 are similarly calculated.
Finally, the unit normal vector is approximated by

nl ¼
ðys;�xsÞ
ðxs; ysÞj j






s¼0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ b2
2

q ðb2;�b1Þ (76)

We then solve Poisson’s equation using the multigrid method
[104] with homogeneous Dirichlet boundary conditions:

DdHn
ij ¼ rd � Gn

ij (77)

In IBM, we can define the variable density and viscosity by

qn
ij ¼ q2 þ q1 � q2ð ÞHn

ij (78)

gn
ij ¼ g2 þ g1 � g2ð ÞHn

ij (79)

6.3 Update the Interface. In this section, we describe the
discretization of the interface advection process.

6.3.1 LSM. The evolution of level set / is given by

/nþ1 ¼ /n � Dtðunþ1 � r/nÞ (80)

The convective term is discretized as

unþ1 � r/n
� �

ij
¼

unþ1
iþ1

2
;j
þ unþ1

i�1
2
;j

2h
�/n

iþ1
2;j
� �/n

i�1
2;j

	 


þ
vnþ1

i;jþ1
2

þ vnþ1
i;j�1

2

2h
�/n

i;jþ1
2
� �/n

i;j�1
2

	 

(81)

where the edge values �/n
i61

2
;j and �/n

i;j61
2

are computed using the

essentially nonoscillatory (ENO) scheme derived in Ref. [7]. For

example, the procedure for computing the quantity �/n
iþ1

2;j
is as

follows:

k ¼
i; if unþ1

iþ1
2;j

 0;

iþ 1; otherwise

(
(82)

a ¼
/n

kj � /n
k�1;j

h
(83)

b ¼
/n

kþ1;j � /n
kj

h
(84)

d ¼
a; if jaj � jbj;
b; otherwise

�
(85)

�/n
iþ1

2
;j ¼ /n

ij þ
h

2
dð1� 2ðk � iÞÞ (86)

The quantities �/n
i;j�1

2
and �/n

i;j61
2

are computed in a similar manner.

6.3.2 PFM. The phase-field function /n is evolved by apply-
ing the nonlinear splitting stabilized (NLSS) scheme [105,106] to
the Cahn–Hilliard equation:

/nþ1 � /n

Dt
¼ �rd � ð/nunþ1Þ þMDdl

nþ1 �MDd/
n (87)

lnþ1 ¼ ð/nþ1Þ3 � e2Dd/
nþ1 (88)

where

rd � ð/nunþ1Þij ¼
1

2h
/n

iþ1;j þ/n
ij

	 

unþ1

iþ1
2
;j
� /n

ij þ/n
i�1;j

	 

unþ1

i�1
2
;j

	 

þ 1

2h
/n

i;jþ1 þ/n
ij

	 

vnþ1

i;jþ1
2

� /n
ij þ/n

i;j�1

	 

vnþ1

i;j�1
2

	 

(89)

and

Dd/
n
ij ¼

/n
iþ1;j þ /n

i;jþ1 � 4/n
ij þ /n

i�1;j þ /n
i;j�1

h2
(90)

We use a nonlinear full approximation storage (FAS) multigrid
method [49]. The nonlinearity is treated using one step of New-
ton’s iteration. A pointwise Gauss–Seidel relaxation scheme is
used as the smoother in the multigrid method [104].

6.3.3 IBM. Once the updated fluid velocity unþ1 has been
determined, we can find the velocity Unþ1 and then the new posi-
tion Xnþ1 of the immersed boundary points. This is done using a
discretization of Eqs. (9) and (10). That is, for l ¼ 1;…;N,

Unþ1
l ¼

XNx

i¼1

XNy

j¼1

unþ1
ij d2

hðxij � Xn
l Þh2 (91)

Xnþ1
l ¼ Xn

l þ DtUnþ1
l (92)

7 Numerical Examples

In this section, we perform the following numerical examples,
calculating the pressure difference, comparing the droplet defor-
mation under shear flow, and simulating the falling droplet using
each method. Throughout the experiments, we use the surface ten-
sion formula [17] for PFM and four-point function [66] for IBM.
We take five reinitialization steps for LSM. The results show that
five iterations are enough to accurately recover the distance
function.

7.1 Pressure Difference. We theoretically and numerically
calculate the pressure difference of a droplet. In the absence of
viscous, gravitational, and other external forces, the pressure
gradient is balanced by the surface tension force rp ¼ SF. By
Laplace’s formula for an infinite cylinder surrounded by a back-
ground fluid at zero pressure, the exact pressure difference is
½p�e ¼ r=r, where r is the droplet radius and r is a surface tension
coefficient [5]. The numerical pressure difference ½p�h is calcu-
lated by

½p�h ¼ max
xij2Xh

pij � min
xij2Xh

pij (93)

where pij is the pressure in the computational domain Xh.
For the numerical simulation, the droplet is placed at the center

of the unit domain X ¼ ð0; 1Þ � ð0; 1Þ and its radius is r ¼ 0:25.
The pressure differences are computed with h ¼ 1=2n, for n ¼ 5,
6, and 7. We employ r ¼ 5 with the constant density and viscosity
q ¼ 1 and g ¼ 1. Therefore, the pressure difference is ½p�e ¼ 20.
For example, using the 64� 64 mesh grid, numerical results for
the pressure are shown in Fig. 10. For other parameters, we set
a ¼ 0:03 in LSM, e ¼ 0:03 in PFM, and N ¼ 800 in IBM.

Table 1 lists the numerical pressure difference ½p�h with a dif-
ferent mesh grid for each method. The numerical pressure differ-
ence ½p�h reaches a qualitative agreement with the theoretical
value as the mesh is refined.

7.2 Deformation of Droplet Under Shear Flow. We simu-
late the droplet deformation under shear flow. A single droplet X1

in an ambient fluid X2 between two parallel plates is
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schematically depicted in Fig. 11. The shear flow is generated by
the Dirichlet boundary condition u ¼ ð6 _cy; 0Þ at the top and bot-
tom boundary, where _c is the shear rate. We use the periodic con-
dition for the x-direction.

We consider the density and viscosity ratios of the droplet to
ambient fluid to have unit values and neglect the influence of the
gravitational force. This problem is nondimensionalized by the
undeformed droplet radius R. We define the Reynolds number
Re ¼ q2R2 _c=g2 and capillary number Ca ¼ g2R _c=r. The Weber
number can then be written as We ¼ Re � Ca. The Navier–Stokes
equations (1) and (2) are nondimensionalized as

@u

@t
þ u � ru ¼ �rpþ 1

Re
Duþ 1

We
SF (94)

r � u ¼ 0 (95)

To measure the magnitude of the droplet deformation, we use
the Taylor deformation number D, defined as D ¼ ðL� BÞ=
ðLþ BÞ, where L and B are the major and minor droplet semiaxes,
shown in Fig. 11.

First, we compare the deformation number of the three methods
with the results of Ref. [72]. For the initial state, the droplet radius
is R ¼ 0:5, centered at ð0; 0Þ in the computational domain
X ¼ ð�1; 1Þ � ð�1; 1Þ. The shear rate _c ¼ 1, 32� 32 mesh grid,
and time step Dt ¼ 0:0005 are used. For other parameters, a ¼ h
is used in LSM, e ¼ 0:07 and Pe ¼ 1=e are used in PFM, and
N ¼ 402 is used in IBM. Figure 12 shows the deformation number

with different Re and Ca numbers. The results are in a good agree-
ment with those studied in Ref. [72].

Next, we compare the results of the three methods by the long
evolution. For the initial state, the droplet radius is R ¼ 0:5 and its
center is ð0; 0Þ in X ¼ ð�2; 2Þ � ð�1; 1Þ. We take the other
parameters as: Re ¼ 5, Ca ¼ 0:6, and _c ¼ 1. The 256� 128 mesh
grid and time step Dt ¼ 0:0002 are used. For LSM, the parameter
a ¼ 3h is used. For PFM, a Peclet number Pe ¼ 0:1=e and
e ¼ 0:06 are used. For IBM, we fix the number of Lagrangian
marker points as 1000. Figure 13(a) shows that the droplet shapes
at the time t ¼ 8. These shapes are in qualitative agreement for
each result. We also plot the deformation number D with the time
t in Fig. 13(b). The difference between the curves for all methods
is small at all times.

7.3 Simulation of the Falling Droplet. Simulating a falling
droplet is a classical test problem in two-phase flows. We demon-
strate the adaptability of the three methods by simulating a falling
droplet X1 surrounded by the ambient fluid X2 under a gravita-
tional force. We use the periodic and zero Dirichlet boundary con-
ditions for the x- and y-directions of velocity field, respectively.

We nondimensionalize the governing equation based on the
properties of the ambient fluid, including the dimensionless pa-
rameters, Reynolds number Re ¼ q2UcLc=g2, Weber number
We ¼ q2U2

c Lc=r, and Froude number Fr ¼ U2
c=ðgLcÞ, where Uc is

the characteristic velocity, Lc is the characteristic length, and q2,
g2 are the density and viscosity of the ambient fluid, respectively.
We consider the viscosity ratio of the droplet and ambient fluid to
have the unit value. The nondimensionalized Navier–Stokes equa-
tions (1) and (2) can be written as

q
@u

@t
þ u � ru

� �
¼ �rpþ 1

Re
Duþ 1

We
SFþ q

Fr
g (96)

r � u ¼ 0 (97)

Fig. 10 Numerical pressure field p for (a) LSM, (b) PFM, and (c) IBM

Fig. 11 Schematic illustration of droplet deformation under
shear flow

Fig. 12 Deformation number D as a function of time t compar-
ing with results (solid lines) in Ref. [72]

Table 1 Pressure difference ½p�h with r 5 5 and r 5 0:25 for
different mesh sizes

Mesh 32� 32 64� 64 128� 128

LSM 20.491 20.118 20.057
PFM 17.681 19.441 19.984
IBM 20.066 20.035 20.020
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We set the droplet density to q1 ¼ 3 and ambient fluid density to
q2 ¼ 1. We consider a circular droplet with radius R ¼ 0:25
centered at ð0:5; 1:5Þ in the computational domain X
¼ ð0; 1Þ � ð0; 2Þ. We take the characteristic parameters as
Uc ¼ Lc ¼ 1, and set r ¼ 0:04 and g1 ¼ g2 ¼ 0:01, then the
dimensionless parameter values are Re ¼ 100, We ¼ 25, and
Fr ¼ 1=g. The gravitational force is set to g ¼ ð0;�1Þ. The
128� 256 mesh grid, space step h ¼ 1=64, and time step
Dt ¼ 0:0002 are used. We consider the effect of the gravitational
force together with the relatively small interfacial tension.

In LSM, the parameter a in the smoothed Heaviside function
determines the interfacial thickness for the transition of fluid prop-
erties. An appropriate value of a will give a reasonable droplet

evolution. Figure 14 shows the evolution of the droplet shape for
different values of a. For a narrow interface a ¼ 0:5h, the droplet
shrinks compared to those of the other parameters a ¼ h and 2h. It
can also be seen that there is no evident shape difference for larger
values of a ¼ h, 2h. Our comparison can suggest that a ¼ 1:5h is
accurate enough.

In PFM, the Peclet number plays an important role in the inter-
face evolution. To investigate the effect of the Peclet number
and determine an appropriate value, we consider three different
Peclet numbers Pe ¼ 0:1=e, 1=e, and 10=e, where e ¼ 4h=
½2

ffiffiffi
2
p

tan�1ð0:9Þ�. The droplet contours at different times and Pec-
let numbers are shown in Fig. 15. The droplet shape is flatter in
the case of Pe ¼ 0:1=e, while the diffuse interface is smeared out
or compressed in the case of Pe ¼ 10=e. These could lead to inac-
curate and nonphysical results. Compared with the results of
LSM, Pe ¼ 1=e is a better choice.

In IBM, we consider the effect of the distribution of marker
points on the evolution of droplet. The initial marker points are
evenly distributed as follows: Let N be the nearest integer number
of 2pRm=h, where m is an integer. Dsl is approximately taken as

Fig. 15 Evolution of the droplet using different Peclet number
(a) Pe 5 0:1=e, (b) Pe 5 1=e, and (c) Pe 5 10=e in PFM. The con-
tours are drawn at times t 5 0, 2.5, and 4.5 from top to bottom.
Contour levels are �0:9, �0:45, 0, 0.45, and 0.9.

Fig. 16 Evolution of the droplet in IBM (a) without and (b) with
deletion and addition procedures. The marker points are drawn
at times t 5 0, 2:5, and 4:5 from top to bottom.

Fig. 14 Evolution of the droplet using different interfacial
thickness parameter (a) a 5 0:5h, (b) a 5 h, and (c) a 5 2h in
LSM. The contours are drawn at times t 5 0, 2.5, and 4.5 from
top to bottom. Contour levels are �2h, �h, 0, h, and 2h.

Fig. 13 (a) Interfaces of the three methods and (b) Deformation
numbers as a function of time.
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h=m. We use a moderate number m ¼ 4 and, therefore, N ¼ 804
for the initial droplet. Figure 16(a) shows the time evolution of
droplet shape with a fixed number N. Note that Dsl is varied by
the flow field. The droplet shape is well maintained up to t ¼ 2:5,
but marker points become concentrated at t ¼ 4:5, making the
connected line heavily intertwined and eventually leading to a
collapse of the droplet shape. To overcome this problem, we adap-
tively add and delete marker points so that 0:1h < Dsl < 0:5h.
Figure 16(b) shows the evolution of droplet shape with the dele-
tion and addition procedures. The number of marker points as a
function of time is shown in Fig. 17. The interface points are more
evenly distributed and the droplet shape remains good at t ¼ 4:5
in Fig. 16(b).

Finally, we compare the droplet evolution using the optimal
strategy of each method. Figure 18 shows a comparison of the
droplet shape at time t ¼ 0, 2:5, and 4:5 for three methods. As
shown in the figure, the droplet shapes are well matched at each

time, demonstrating their strong ability for accurate interfacial
representation.

7.4 Computational Cost. We compare the computational
cost of the shear flow and falling droplet simulations for each
method. The initial conditions and parameters follow those of
Figs. 13 and 18. Table 2 lists the central processing unit (CPU)
time of each method for calculating up to time t ¼ 3. We can see
that IBM has less computational cost than the other two methods
in the shear flow simulation. In this case, LSM and PFM have
additional computational costs such as the reinitialization and
Cahn–Hilliard equations. For the falling droplet test, the necessity
of solving an indicator function and redistributing marker points
by adding and deleting points accounts for the rapid CPU time in-
crement for IBM. Therefore, the CPU time cost of each method is
case by case, and the three methods have more or less similar
computational expense.

8 Discussion and Conclusions

From the numerical point of view, the three methods we have
described belong to the “diffuse interface” model because of the
use of the d function. The smeared-out interface by the d function
is in favor of computation of surface tension and fluid properties
even if it is a real sharp interface in the physical problems. For the
presentation of interface, there is a finite width for the phase-field
method, but it is “zero” width for the level set and immersed
boundary methods. Meanwhile, the interface is implicitly
expressed by the level set and phase-field methods and explicitly
by the immersed boundary method.

Because the interface is represented by an implicit level set
function, there is no need for special consideration of complex
interfacial topology changes with separation and merging. For the
level set method using reinitialization technique, the accuracy and
efficiency are greatly determined by that of reinitialization proce-
dure, and mass loss is a problem for the original level set method.
For the phase-field method, it shares the advantages with the level
set method that there is no need for tracking the interface explic-
itly. In the Cahn–Hilliard type phase-field model, we need to care-
fully select the Peclet number to make interface evolution
reasonable, and an appropriate interface width is also needed. For
the immersed boundary method, interface can be represented
accurately and explicitly by using a great number of Lagrangian
marker points. However, the distribution of marker points must be
carefully considered in case nonphysical or undesirable phenom-
ena occur.

In this paper, we applied the level set, phase-field, and
immersed boundary methods to the computation of two-phase
flows governed by the incompressible and immiscible Navier–
Stokes equations. We explained the numerical discretization of
each method, introduced their essential concepts, and discussed
the strengths and weaknesses. We then performed a series of nu-
merical experiments using each method. Using a pressure differ-
ence experiment, we validated each of the algorithms, showing
that the numerical solutions are qualitatively in agreement with
the theoretical value. By simulating the droplet deformation under
a shear flow, the three methods were preliminarily verified.
Finally, in the challenging simulation of a falling droplet, we dis-
cussed in detail the effects of different parameter values on the
evolution of the droplet. CPU time cost was also considered in
two simulations to compare the efficiency of each method. The

Fig. 18 Comparison of the falling droplet for the three meth-
ods with optimal parameters at time t 5 0, 2:5, and 4:5

Table 2 CPU times (s) for the shear flow and falling droplet
simulations. The calculations are run to the time t 5 3.

Case LSM PFM IBM

Shear flow 2018 2849 421
Falling droplet 2320 4538 3234

Fig. 17 Variation of the number of marker points as a function
of time in case of Fig. 16(b)
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results agreed reasonably well, demonstrating the ability of all
three methods to capture the interface of two-phase flows.
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