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We briefly review and investigate the performance of various boundary conditions such as Dirichlet, Neumann, linear, and partial
differential equation boundary conditions for the numerical solutions of the Black-Scholes partial differential equation. We use
a finite difference method to numerically solve the equation. To show the efficiency of the given boundary condition, several
numerical examples are presented. In numerical test, we investigate the effect of the domain sizes and compare the effect of various
boundary conditions with pointwise error and root mean square error. Numerical results show that linear boundary condition is
accurate and efficient among the other boundary conditions.

1. Introduction

We briefly review and perform a comparison study for
Dirichlet, Neumann, linear, and partial differential equation
(PDE) boundary conditions (BCs) for the Black-Scholes (BS)
partial differential equations. Let 𝑆 and 𝑡 denote the price of
the underlying asset and time, respectively.Then, the value of
the option 𝑢(𝑆, 𝑡) is governed by the BS equation [1]:

𝜕𝑢 (𝑆, 𝑡)

𝜕𝑡
+
1

2
(𝜎𝑆)
2 𝜕
2
𝑢 (𝑆, 𝑡)

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑢 (𝑆, 𝑡)

𝜕𝑆
= 𝑟𝑢 (𝑆, 𝑡) ,

for (𝑆, 𝑡) ∈ R+ × [0, 𝑇) ,
(1)

where 𝜎 is a constant volatility of the asset and 𝑟 > 0 is a
constant riskless interest rate.The final condition is the payoff
function Λ(𝑆) at expiry 𝑇:

𝑢 (𝑆, 𝑇) = Λ (𝑆) . (2)

It is difficult to find the analytic solutions of (1) and (2)
for exotic options. Therefore we need to use a numerical

approximation. To obtain an approximation of the option
value, one can compute a solution of the BS equations (1)
and (2) using a finite difference method (FDM) [2–8], finite
element method [9–11], finite volume method [12–14], a fast
Fourier transform [15–17], and also their optimal BC [18].
Here, we consider FDM approach to solve the BS PDE. See
[1, 19–24] for more details for FDM applied to option pricing.
To solve the BS PDE using the FDM, we need to truncate the
infinite domain to a finite domain and have to use an artificial
BC. To reduce large errors in the numerical solution due to
this approximation of the BCs, the truncated domainmust be
large enough. Thus the purpose of this paper is to investigate
the effects of several BCs on the numerical solutions for the
BS PDE (1) and (2).

The outline of the paper is as follows. In Section 2,
we formulate the generalized version of the BS PDE. And
we explain five cases which are Dirichlet I, Dirichlet II,
Neumann, linear, and PDEBCs. Section 3 presents the results
of the numerical experiments and the conclusions are drawn
in Section 4.
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Figure 1: Uniform grid with a spatial step size ℎ.

2. Numerical Solution

Let 𝑥 = 𝑆 be the value of the underlying asset price and let
𝜏 = 𝑇 − 𝑡 be the time to expiry; then (1) becomes a more
natural initial value problem

𝜕𝑢 (𝑥, 𝜏)

𝜕𝜏
=
1

2
(𝜎𝑥)
2 𝜕
2
𝑢 (𝑥, 𝜏)

𝜕𝑥2
+ 𝑟𝑥

𝜕𝑢 (𝑥, 𝜏)

𝜕𝑥
− 𝑟𝑢 (𝑥, 𝜏) ,

for (𝑥, 𝜏) ∈ Ω × (0, 𝑇]

(3)

with an initial condition 𝑢(𝑥, 0) = Λ(𝑥) for 𝑥 ∈ Ω =

(0, 𝐿). Here we truncate the infinite domain into a finite
domain since the infinite domain cannot be represented in
the computer [23].

2.1. Discretization with Finite Difference Method. We apply
the FDM for solving (3) numerically. Let us first discretize
the given computational domain Ω = [0, 𝐿] as a uniform
grid with a spatial step size ℎ = 𝐿/𝑁

𝑥
and a temporal step

size Δ𝜏 = 𝑇/𝑁
𝑡
, where𝑁

𝑥
is the number of subintervals (see

Figure 1) and𝑁
𝑡
is the number of time steps.

Let us denote the numerical approximation of the solu-
tion as

𝑢
𝑛

𝑖
≡ 𝑢 (𝑥

𝑖
, 𝜏
𝑛
) = 𝑢 (𝑖ℎ, 𝑛Δ𝜏) , (4)

where 𝑖 = 0, 1, . . . , 𝑁
𝑥
and 𝑛 = 0, 1, . . . , 𝑁

𝑡
. By applying the

fully implicit-in-time and space-centered difference scheme
to (3), we have

𝑢
𝑛+1

𝑖
− 𝑢
𝑛

𝑖

Δ𝜏
=
𝜎
2
𝑥
2

𝑖

2

𝑢
𝑛+1

𝑖−1
− 2𝑢
𝑛+1

𝑖
+ 𝑢
𝑛+1

𝑖+1

ℎ2

+ 𝑟𝑥
𝑖

𝑢
𝑛+1

𝑖+1
− 𝑢
𝑛+1

𝑖−1

2ℎ
− 𝑟𝑢
𝑛+1

𝑖
.

(5)

We can rewrite (5) by

𝛼
𝑖
𝑢
𝑛+1

𝑖−1
+ 𝛽
𝑖
𝑢
𝑛+1

𝑖
+ 𝛾
𝑖
𝑢
𝑛+1

𝑖+1
= 𝑏
𝑖
, (6)

where 𝛼
𝑖
= 𝑟𝑥
𝑖
/2ℎ − 𝜎

2
𝑥
2

𝑖
/2ℎ
2, 𝛽
𝑖
= 1/Δ𝜏 + 𝜎

2
𝑥
2

𝑖
/ℎ
2
+ 𝑟,

𝛾
𝑖
= −𝑟𝑥

𝑖
/2ℎ − 𝜎

2
𝑥
2

𝑖
/2ℎ
2, and 𝑏

𝑖
= 𝑢
𝑛

𝑖
/Δ𝜏.

In order to solve the linear system (6), we need to know
𝑢
𝑛

0
and 𝑢

𝑛

𝑁
𝑥

for all 𝑛 = 0, . . . , 𝑁
𝑡
. At 𝑥 = 0, we simply set

𝑢
𝑛

0
= 0. Next, we present five different boundary conditions

for specifying the values of 𝑢𝑛
𝑁
𝑥

.

2.2. Boundary Conditions. In solving the BS equation numer-
ically, there are many BCs. In this section, we introduce five
BCs,which are used to solve the BS equation.We focus on two

options: European call option and cash-or-nothing option.
The payoff functions are given by

𝑢 (𝑥, 0) = max (𝑥 − 𝐾, 0) , (7)

𝑢 (𝑥, 0) = {
𝐶 if 𝑥 > 𝐾

0 otherwise,
(8)

for the European call option and the cash-or-nothing option,
respectively. Here 𝐾 is the strike price and 𝐶 denotes the
return value at expiration if the option is in-the-money.
We have closed-form solutions for these options. For the
European call option, the closed-form solution of the BS
equation is

𝑢 (𝑥, 𝜏) = 𝑥𝑁 (𝑑
1
) − 𝐾𝑒

−𝑟𝜏
𝑁(𝑑
2
) ,

∀𝑥 ∈ [0, 𝐿] , ∀𝜏 ∈ [0, 𝑇] ,

(9)

𝑑
1
=

ln (𝑥/𝐾) + (𝑟 + (1/2) 𝜎2) 𝜏
𝜎√𝜏

, 𝑑
2
= 𝑑
1
− 𝜎√𝜏, (10)

where𝑁(𝑑) = (1/√2𝜋) ∫
𝑑

−∞
exp(−𝑥2/2)𝑑𝑥 is the cumulative

distribution function for the standard normal distribution
[25]. For the cash-or-nothing option, the closed form solution
is

𝑢 (𝑥, 𝜏) = 𝐶𝑒
−𝑟𝜏
𝑁(𝑑
2
) . (11)

2.2.1. Dirichlet I Boundary Condition. From (9), we can
observe that𝑁(𝑑

1
) and𝑁(𝑑

2
) are close to one when 𝑥 is large

enough.Therefore, Dirichlet BC for the European call option
is defined by

𝑢 (𝐿, 𝜏) = 𝐿 − 𝐾𝑒
−𝑟𝜏 (12)

for a sufficiently large 𝐿. By (12), we use 𝑢
𝑛+1

𝑁
𝑥

= 𝑥
𝑁
𝑥

−

𝐾𝑒
−𝑟(𝑛+1)Δ𝜏. Using this, we can rewrite (6) as

(
(

(

𝛽
1
𝛾
1

0 ⋅ ⋅ ⋅ 0

𝛼
2
𝛽
2

𝛾
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⋅ ⋅ ⋅ 0

.

.

. d d d
.
.
.

0 ⋅ ⋅ ⋅ 𝛼
𝑁
𝑥
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𝛽
𝑁
𝑥
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𝛾
𝑁
𝑥
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0 ⋅ ⋅ ⋅ 0 𝛼
𝑁
𝑥
−1

𝛽
𝑁
𝑥
−1

)
)

)

(
(
(
(

(

𝑢
𝑛+1

1

𝑢
𝑛+1

2

.

.

.

𝑢
𝑛+1

𝑁
𝑥
−2

𝑢
𝑛+1

𝑁
𝑥
−1

)
)
)
)

)

=
(
(
(

(

𝑏
1

𝑏
2

.

.

.

𝑏
𝑁
𝑥
−2

𝑏
𝑁
𝑥
−1
− 𝛾
𝑁
𝑥
−1
(𝐿 − 𝐾𝑒

−𝑟(𝑛+1)Δ𝜏
)

)
)
)

)

.

(13)

Likewise, we have 𝑢𝑛+1
𝑁
𝑥

= 𝐶𝑒
−𝑟(𝑛+1)Δ𝜏 for the cash-or-nothing

option.

2.2.2. Dirichlet II Boundary Condition. The other Dirichlet
boundary condition is simply setting the boundary values to
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be fixed all the time with the payoff value. For the max call
option, we set 𝑢𝑛+1

𝑁
𝑥

= 𝐿 − 𝐾:

(
(

(

𝛽
1
𝛾
1

0 ⋅ ⋅ ⋅ 0

𝛼
2
𝛽
2

𝛾
2

⋅ ⋅ ⋅ 0

.

.

. d d d
.
.
.

0 ⋅ ⋅ ⋅ 𝛼
𝑁
𝑥
−2

𝛽
𝑁
𝑥
−2

𝛾
𝑁
𝑥
−2

0 ⋅ ⋅ ⋅ 0 𝛼
𝑁
𝑥
−1

𝛽
𝑁
𝑥
−1

)
)

)

(
(
(

(

𝑢
𝑛+1

1

𝑢
𝑛+1

2

.

.

.

𝑢
𝑛+1

𝑁
𝑥
−2

𝑢
𝑛+1

𝑁
𝑥
−1

)
)
)

)

=
(
(

(

𝑏
1

𝑏
2

.

.

.

𝑏
𝑁
𝑥
−2

𝑏
𝑁
𝑥
−1
− 𝛾
𝑁
𝑥
−1
(𝐿 − 𝐾)

)
)

)

.

(14)

For the cash-or-nothing option, we set 𝑢𝑛+1
𝑁
𝑥

= 𝐶. This
boundary condition was used in [26].

2.2.3. Neumann Boundary Condition. To specify values for
the derivative of the solution at the boundary of the spatial
domain, we have the following equation from (9):

𝜕𝑢 (𝑥, 𝜏)

𝜕𝑥
= 𝑁 (𝑑

1
) . (15)

Therefore, for a sufficiently large 𝐿, we assume

𝜕𝑢 (𝐿, 𝜏)

𝜕𝑥
= 1, (16)

which we call by Neumann BC for European call option.
Equation (16) can be discretized as (𝑢𝑛+1

𝑁
𝑥

− 𝑢
𝑛+1

𝑁
𝑥
−1
)/ℎ = 1; that

is, 𝑢𝑛+1
𝑁
𝑥

= 𝑢
𝑛+1

𝑁
𝑥
−1
+ ℎ. Therefore, we have

(
(

(

𝛽
1
𝛾
1

0 ⋅ ⋅ ⋅ 0

𝛼
2
𝛽
2

𝛾
2

⋅ ⋅ ⋅ 0

.

.

. d d d
.
.
.

0 ⋅ ⋅ ⋅ 𝛼
𝑁
𝑥
−2

𝛽
𝑁
𝑥
−2

𝛾
𝑁
𝑥
−2

0 ⋅ ⋅ ⋅ 0 𝛼
𝑁
𝑥
−1

𝛽
𝑁
𝑥
−1
+ 𝛾
𝑁
𝑥
−1

)
)

)

(
(
(
(

(

𝑢
𝑛+1

1

𝑢
𝑛+1

2

.

.

.

𝑢
𝑛+1

𝑁
𝑥
−2

𝑢
𝑛+1

𝑁
𝑥
−1

)
)
)
)

)

=
(
(

(

𝑏
1

𝑏
2

.

.

.

𝑏
𝑁
𝑥
−2

𝑏
𝑁
𝑥
−1
− ℎ𝛾
𝑁
𝑥
−1

)
)

)

.

(17)

Similarly, applying BC in terms of the first derivative of 𝑥 for
the cash-or-nothing option, we can get

𝜕𝑢 (𝑥, 𝜏)

𝜕𝑥
=
𝐶𝑒
−(𝑟𝜏+𝑑

2

2
/2)

𝑥𝜎√2𝜋𝜏

(18)

from (11). Therefore, we can assume

𝜕𝑢 (𝐿, 𝜏)

𝜕𝑥
= 0 (19)

for a sufficiently large 𝐿. This represents Neumann BC for
cash-or-nothing option. We now replace (19) with the one-
sided derivative (𝑢𝑛+1

𝑁
𝑥

− 𝑢
𝑛+1

𝑁
𝑥
−1
)/ℎ = 0; that is, 𝑢𝑛+1

𝑁
𝑥

= 𝑢
𝑛+1

𝑁
𝑥
−1
.

2.2.4. Linear Boundary Condition. Linear boundary condi-
tion assumes that the second derivative of the option value
with respect to the underlying asset price 𝑥 vanishes to zero
for the large value of the asset price. To demonstrate this,
we consider (9) at the right end of the domain. The second
derivative value is given by

𝜕
2
𝑢 (𝑥, 𝜏)

𝜕𝑥2
=

𝑒
−𝑑
2

1
/2

𝜎√2𝜋𝜏𝑥
. (20)

If the asset price approaches to the large value 𝐿, we assume

𝜕
2
𝑢 (𝐿, 𝜏)

𝜕𝑥2
= 0, (21)

whichwe call by linear BC for European call option. Equation
(21) can be discretized as (𝑢𝑛+1

𝑁
𝑥
−1
− 2𝑢
𝑛+1

𝑁
𝑥

+ 𝑢
𝑛+1

𝑁
𝑥
+1
)/ℎ
2
= 0. By

this relation, we obtain the boundary value as 𝑢𝑛+1
𝑁
𝑥
+1
= 2𝑢
𝑛+1

𝑁
𝑥

−

𝑢
𝑛+1

𝑁
𝑥
−1
. By substituting this in (3), we get

(
(
(

(

𝛽
1
𝛾
1

0 ⋅ ⋅ ⋅ 0

𝛼
2
𝛽
2

𝛾
2

⋅ ⋅ ⋅ 0

.

.

. d d d
.
.
.

0 ⋅ ⋅ ⋅ 𝛼
𝑁
𝑥−1

𝛽
𝑁
𝑥−1

𝛾
𝑁
𝑥−1

0 ⋅ ⋅ ⋅ 0 𝛼
𝑁
𝑥

− 𝛾
𝑁
𝑥

𝛽
𝑁
𝑥

+ 2𝛾
𝑁
𝑥

)
)
)

)

(
(
(

(

𝑢
𝑛+1

1

𝑢
𝑛+1

2

.

.

.

𝑢
𝑛+1

𝑁
𝑥
−1

𝑢
𝑛+1

𝑁
𝑥

)
)
)

)

=
(
(

(

𝑏
1

𝑏
2

.

.

.

𝑏
𝑁
𝑥
−1

𝑏
𝑁
𝑥

)
)

)

.

(22)

Similarly, for the cash-or-nothing option, we have

𝜕
2
𝑢 (𝑥, 𝜏)

𝜕𝑥2
= −

𝐶𝑑
1
𝑒
−(𝑟𝜏+𝑑

2

2
/2)

𝜎2𝜏√2𝜋𝑥2
(23)

from (11). Therefore, for a sufficiently large 𝐿, we have

𝜕
2
𝑢 (𝐿, 𝜏)

𝜕𝑥2
= 0. (24)

In this case, we can obtain the same BC as European call
option.
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Figure 2: Values 𝑢(𝑥, 𝜏) of (a) European call option and (b) cash-or-nothing option at 𝜏 = 0 and 𝜏 = 1, respectively.

2.2.5. PDE Boundary Condition. Next we consider the PDE
BC [23, 27]. Using the BS equation itself, we derive the BC.
We use one-sided discretization:

𝑢
𝑛+1

𝑁
𝑥

− 𝑢
𝑛

𝑁
𝑥

Δ𝜏
=

𝜎
2
𝑥
2

𝑁
𝑥

2

𝑢
𝑛+1

𝑁
𝑥

− 2𝑢
𝑛+1

𝑁
𝑥
−1
+ 𝑢
𝑛+1

𝑁
𝑥
−2

ℎ2

+ 𝑟𝑥
𝑁
𝑥

𝑢
𝑛+1

𝑁
𝑥

− 𝑢
𝑛+1

𝑁
𝑥
−1

ℎ
− 𝑟𝑢
𝑛+1

𝑁
𝑥

,

(25)

where the drift and volatility terms are discretized by using
one-sided derivatives. The linear system of𝑁

𝑥
equations can

be written in the following matrix form:

(
(

(

𝛽
1
𝛾
1

0 ⋅ ⋅ ⋅ 0

𝛼
2
𝛽
2

𝛾
2

⋅ ⋅ ⋅ 0

.

.

. d d d
.
.
.

0 ⋅ ⋅ ⋅ 𝛼
𝑁
𝑥
−1

𝛽
𝑁
𝑥
−1

𝛾
𝑁
𝑥
−1

0 ⋅ ⋅ ⋅ 𝛼
𝑁
𝑥

𝛽
𝑁
𝑥

𝛾
𝑁
𝑥

)
)

)

(
(
(

(

𝑢
𝑛+1

1

𝑢
𝑛+1

2

.

.

.

𝑢
𝑛+1

𝑁
𝑥
−1

𝑢
𝑛+1

𝑁
𝑥

)
)
)

)

=
(
(
(

(

𝑏
1

𝑏
2

.

.

.

𝑏
𝑁
𝑥
−1

𝑏
𝑁
𝑥

)
)
)

)

,

(26)

where 𝛼
𝑁
𝑥

= −𝜎
2
𝑥
2

𝑁
𝑥

/2ℎ
2, 𝛽
𝑁
𝑥

= 𝜎
2
𝑥
2

𝑁
𝑥

/ℎ
2
+ 𝑟𝑥
𝑁
𝑥

/ℎ, 𝛾
𝑁
𝑥

=

1/Δ𝜏 − 𝜎
2
𝑥
2

𝑁
𝑥

/2ℎ
2
− 𝑟𝑥
𝑁
𝑥

/ℎ + 𝑟, and 𝑏
𝑁
𝑥

= 𝑢
𝑛

𝑁
𝑥

/Δ𝜏.

3. Numerical Experiments

To compare the above five BCs, we perform the numerical
tests with European vanilla call option and cash-or-nothing
option. Figures 2(a) and 2(b) show European call option and
cash-or-nothing option prices at 𝜏 = 0 and 𝜏 = 1 on Ω =

[0, 300], respectively. Here, 𝜎 = 0.35 and 𝑟 = 0.05 are used.
In the Appendix, we provide MATLAB codes for the closed-
form solutions of these options.

In the following sections, unless otherwise specified, we
use strike price 𝐾 = 100, cash 𝐶 = 1, the risk-free interest
rate 𝑟 = 0.05, and volatility 𝜎 = 0.35.

3.1. Convergence Test. First, we investigate the convergence of
the numerical solutions with different BCs. To show this, we
calculate the root mean square error with respect to spatial
and temporal step sizes. Root mean square error (RMSE) is
defined by

RMSE = √

1

𝑁
∑

𝑥
𝑗
∈[0.8𝐾,1.2𝐾]


𝑢
𝑛

𝑗
− V𝑛
𝑗



2

, (27)

where𝑁 is the number of grid points on [0.8𝐾, 1.2𝐾]. Here,
𝑢 is exact solution and V is numerical solution.

Table 1 represents the RMSE of European vanilla call
option with five different BCs for varying ℎ and Δ𝜏 at 𝑇 = 1.
As shown in Table 1, we can observe that the RMSE converges
to zero with decreasing space and time step sizes. From now
on, we will use the Δ𝜏 = 0.025 and ℎ = 0.5 for the following
numerical tests.
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Table 1: RMSE for European call option with varying ℎ and Δ𝜏 with five different BCs.

ℎ
Δ𝜏

0.2 0.1 0.05 0.025
Dirichlet I

2.0 1.4525𝑒 − 3 1.4168𝑒 − 3 1.3986𝑒 − 3 1.3894𝑒 − 3

1.0 2.5706𝑒 − 4 2.5075𝑒 − 4 2.4754𝑒 − 4 2.4592𝑒 − 4

0.5 4.5474𝑒 − 5 4.4359𝑒 − 5 4.3790𝑒 − 5 4.3504𝑒 − 5

Dirichlet II
2.0 1.4560𝑒 − 3 1.4197𝑒 − 3 1.4010𝑒 − 3 1.3917𝑒 − 3

1.0 2.5768𝑒 − 4 2.5126𝑒 − 4 2.4797𝑒 − 4 2.4631𝑒 − 4

0.5 4.5583𝑒 − 5 4.4445𝑒 − 5 4.3867𝑒 − 5 4.3574𝑒 − 5

Neumann
2.0 1.4533𝑒 − 3 1.4173𝑒 − 3 1.3989𝑒 − 3 1.3896𝑒 − 3

1.0 2.5719𝑒 − 4 2.5085𝑒 − 4 2.4759𝑒 − 4 2.4595𝑒 − 4

0.5 4.5490𝑒 − 5 4.4375𝑒 − 5 4.3799𝑒 − 5 4.3509𝑒 − 5

Linear
2.0 1.4535𝑒 − 3 1.4174𝑒 − 3 1.3989𝑒 − 3 1.3896𝑒 − 3

1.0 2.5724𝑒 − 4 2.5086𝑒 − 4 2.4756𝑒 − 4 2.4595𝑒 − 4

0.5 4.5505𝑒 − 5 4.4377𝑒 − 5 4.3800𝑒 − 5 4.3509𝑒 − 5

PDE
2.0 1.4532𝑒 − 3 1.4173𝑒 − 3 1.3989𝑒 − 3 1.3896𝑒 − 3

1.0 2.5715𝑒 − 4 2.5084𝑒 − 4 2.4759𝑒 − 4 2.4595𝑒 − 4

0.5 4.5476𝑒 − 5 4.4373𝑒 − 5 4.3799𝑒 − 5 4.3509𝑒 − 5

3.2. Pointwise Error on Different Domain Size 𝐿. To study the
effects of the various BCs, we perform the numerical tests
on different domain size 𝐿. For comparison, we compute
the pointwise error as the absolute difference between the
numerical solution 𝑢num and the closed-form solution 𝑢ex;
that is, error = |𝑢ex − 𝑢num|.

First, we take the payoff of a European vanilla call
option (7). In Figure 3, left and right columns represent the
option values and the pointwise errors versus 𝑥, respectively.
In Figure 3, we compare the numerical results with three
different domain sizes 𝐿 = 150, 200, and 300. As domain size
is large, there is no difference between the numerical results
with five different boundary conditions and analytic solution
at 𝑥 = 𝐿. Also, pointwise error in [0.8𝐾, 1.2𝐾] decreases
when the domain size increases.

As second example, we test cash-or-nothing option.
Similar to the previous case, we have same results as shown
in Figure 4. When 𝐿 is large, the pointwise error decreases.
However, when the domain size is not sufficiently large, we
have gap between the analytic and numerical solutions.

Therefore, it is important to choose the domain size 𝐿.
Also, to reduce the numerical error, we need to choose the
proper boundary condition.

3.3. Root Mean Square Error. The following numerical tests
illustrate RMSE of various BCs with different 𝑟 and 𝜎. First
we consider European call option with ℎ = 0.5, Δ𝑡 = 0.025,

𝑇 = 1, and 𝐿 = 300. Figures 5(a) and 5(b) represent the RMSE
against the interest rate 𝑟 and the volatility 𝜎, respectively.
Here, we use 𝜎 = 0.35 and 𝑟 = 0.05 in Figures 5(a) and 5(b),
respectively. As we can observe from Figure 5(a), the RMSE
increases as 𝑟 is large. Also, the RMSE versus 𝜎 has similar
behavior in Figure 5(a). Through this test, we can see that
Dirichlet I and Neumann BCs are more efficient than other
BCs in case of 𝑟 and 𝜎.

Now, we consider cash-or-nothing option with ℎ = 0.5,
Δ𝑡 = 0.025, 𝑇 = 1, and 𝐿 = 300. Figure 6 shows the RMSE
of various BCs versus 𝑟 and 𝜎. Here, we use 𝜎 = 0.35 and
𝑟 = 0.05 in Figures 6(a) and 6(b), respectively. In this test, we
can observe that Dirichlet II and Neumann BCs have lower
RMSE than the other BCs for various 𝑟 and 𝜎.

Figure 7 illustrates RMSE of various BCs versus time
𝑇 with European call option and cash-or-nothing option,
respectively. As shown in Figure 7(a), we can see that the
choice of BCs is important when 𝜏 is large. In addition, we can
confirm that Neumann BC is efficient to reduce numerical
error. Similarly, we observe that Neumann BC is efficient
when 𝐿 is small or 𝑇 is large in Figure 7(b).

4. Conclusion

In this paper, we reviewed and studied the performance
of the five different boundary conditions such as Dirichlet,
Neumann, linear, and partial differential equation boundary
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Figure 3: Comparison of European call option values (left column) and pointwise error (right column) with five BCs on different domain:
(a) 𝐿 = 150, (b) 𝐿 = 200, and (c) 𝐿 = 300, respectively.
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Figure 4: Comparison of cash-or-nothing option values (left column) and pointwise error (right column) with five BCs on different domain:
(a) 𝐿 = 150, (b) 𝐿 = 200, and (c) 𝐿 = 300, respectively.
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Figure 5: RMSE of various BCs versus (a) 𝑟 and (b) 𝜎 with European call option.

0 0.02 0.04 0.06 0.08 0.1
2.6

2.7

2.8

2.9

r

RM
SE

×10
−3

Dirichlet I
Dirichlet II
Neumann

Linear
PDE

(a)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

RM
SE

𝜎

Dirichlet I
Dirichlet II
Neumann

Linear
PDE

(b)

Figure 6: RMSE of various BCs versus (a) 𝑟 and (b) 𝜎 with cash-or-nothing option.

conditions for the numerical solutions of the BS partial differ-
ential equation.We used a finite differencemethod to numer-
ically solve the BS equation with the five different BCs. To
show the efficiency of the given boundary condition, several
numerical examples such as a convergence test, domain size
effect, and parameter effect are presented. Numerical results
suggested that the linear boundary condition is accurate and
efficient among the other boundary conditions. As a future

research, we will investigate the BCs on themultidimensional
BS equations.

Appendix

Evaluation of European call option price from call: we
describe the formula, in MATLAB code, as shown in
Algorithm 1.
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Figure 7: RMSE of various BCs versus 𝑇 with (a) European call option and (b) cash-or-nothing option.

% European call option

clear;clc;clf;K=100;L=3∗K;T=1.0;sigma=0.35;r=0.05;Nx=L+1;dt=0.01;

Nt=round(T/dt); x=linspace(0,L,Nx); h=x(2)-x(1);payoff=max(x-K,0);
d1=(log(x/K)+(r+sigma∧2/2)∗T)/(sigma∗sqrt(T));d2=d1-sigma∗sqrt(T);

exact=x.∗normcdf(d1)-K∗exp(-r∗T).∗normcdf(d2);grid on; hold on

plot(x,payoff,‘k-’,x,exact,‘k-’,‘LineWidth’,1) axis image,

axis ([0 300 -12.5 220])

Algorithm 1

% Cash-or-nothing options

clear;clc;clf;K=100;L=3∗K;T=1;sigma=0.35;r=0.05;Nx=L+1;dt=0.01;Nt=round(T/dt);

x=linspace(0,L,Nx);h=x(2)-x(1);
for i=1:Nx

if (x(i) <= K)

payoff(i)=0.0;

else payoff(i)=1.0;

end

end

d=(log(x/K)+(r-sigma∧2/2)∗T)/(sigma∗sqrt(T));exact=1.0∗exp(-r∗T).∗normcdf(d); grid on;

hold on;plot(x,payoff,‘k-’,x,exact, ‘r-’, ‘LineWidth’,1)axis ([0 300 -0.05 1.05])

Algorithm 2

In a similar way, we can obtain the closed formof cash-or-
nothing option, for MATLAB code as shown in Algorithm 2.
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