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SUMMARY

We investigate the classical Rayleigh–Taylor instability with a phase-field method. Despite of the long
history of numerical simulations for the Rayleigh–Taylor instability, almost all results were relatively short
time experiments. This is partly because of the way of treating the pressure boundary conditions. We
implement a time-dependent pressure boundary condition through a time-dependent density field at the
boundary. Owing to the pressure boundary treatment, we can perform long time evolutions resulting in
an equilibrium state. In addition to the bubble and spike fronts, we have found that the width of sides is
another important landmark on the interface of the Rayleigh–Taylor instability. Copyright � 2010 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

When a heavy fluid is superposed over a light fluid in a gravitational field, the fluid interface is
unstable. Any perturbation of this interface tends to grow with time, producing the phenomena
known as the Rayleigh–Taylor instability. The phenomena are the penetration of both heavy and
light fluids into each other. The Rayleigh–Taylor instability for a fluid in a gravitational field was
originally introduced by Rayleigh [1] and later applied to all accelerated fluids by Taylor [2]. This
instability has been applied to a wide range of problems, such as inertial confinement fusion [3],
supernova explosion [4], nuclear weapon explosion [5], oceanography [6], atmospheric physics
[7], and supernova remnant [8].

Many numerical methods have been proposed to study the Rayleigh–Taylor instability, including
boundary integral methods [9–12], front tracking methods [13–15], volume of fluid methods
[16, 17], lattice Boltzmann methods [18–20], level set methods [21–23], and phase-field methods
[24–26]. Although there are many numerical studies [2, 9, 10, 12, 18, 23, 24, 26–28] with short time
or large time simulation of the Rayleigh–Taylor instability, much less has been conducted long
time simulation of the instability. To the authors’ best knowledge, in the numerous papers found
in the literature, the calculations were stopped well before the system reached the equilibrium
configuration. Long time simulation of the Rayleigh–Taylor instability can be applied to a gravity
separator for separating oil and water. Complete separation time is the one of important factors in
designing the separator. With the previous methods, we do not evaluate a sufficient time to allow
the oil and water phases to separate by gravity. But, by a numerical simulation, we can calculate
a fully separation time of the mixture and use that time in deciding the length of the gravity
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separator. Therefore, an efficient and accurate numerical solution of long time evolution is needed
to better understand the Rayleigh–Taylor instability.

The governing equations for time-dependent incompressible viscous fluids are the Navier–Stokes
equations, together with the continuity and phase-field equations which are dimensional form
become

�(�)(ut +u·∇u) = −∇ p+��u+�(�)g, (1)

∇ ·u = 0, (2)

�t +∇ ·(�u) = M��, (3)

� = ��3 −��−k��, (4)

where u is the velocity, p is the pressure, �(�)=�1(1−�)/2+�2(1+�)/2 is the density, � is the
viscosity, g= (0,−g) is the gravity, M is the mobility, � is the generalized chemical potential. In
this paper the effect of the surface tension is negligible. We note that even though our phase-field
model can deal with a variable viscosity case straightforwardly, we focus on the viscosity matched
case since we are interested in long time simulation.

The paper is organized as follows. In Section 2, we derive the discrete scheme and numerical
solution. We also present the approximate projection method used to solve the discrete Navier–
Stokes equations. The numerical results are presented in Section 3. In Section 4, conclusions are
drawn.

2. NUMERICAL SOLUTION

An efficient approximation can be obtained by decoupling the solution of the momentum equations
from the solution of the continuity equation by a projection method [29–34]. The extension to 3D
is straightforward. We will focus on describing the idea in two-dimensions.

A staggered marker-and-cell mesh of Harlow and Welch [35] is used in which pressure and
phase fields are stored at cell centers and velocities at cell interfaces (Figure 1).

Let a computational domain be partitioned in Cartesian geometry into a uniform mesh with
mesh spacing h. The center of each cell, �ij, is located at (xi , y j )= ((i −0.5)h, ( j −0.5)h) for
i =1, . . . , Nx and j =1, . . . , Ny . Nx and Ny are the numbers of cells in the x- and y-directions,
respectively. The cell vertices are located at (xi+1/2, y j+1/2)= (ih, jh). We denote by ∇d , ∇d ·,

Figure 1. Velocities are defined at cell boundaries while the pressure and
phase field are defined at the cell centers.
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and �d the discrete gradient, divergence, and Laplacian, respectively. These are described in
Equations (7) and (11).

At the beginning of each time step, given un , �n , and pn , we want to find un+1, �n+1, and pn+1

which solve the following temporal discretization of dimensionless form of Equations (1)–(4) of
motion:

�n un+1 −un

�t
= −�n(u·∇du)n −∇d pn+1 + 1

Re
�dun + �n

Fr
g,

∇d ·un+1 = 0,

�n+1 −�n

�t
= 1

Pe
�d�n+1 − 1

Pe
�d�n −∇d ·(�u)n, (5)

�n+1 = (�n+1)3 −	2�d�n+1, (6)

where �n =�(�n) and g= (0,−1). The dimensionless parameters are the Reynolds number, Re=
�cUcLc/�, the Froude number, Fr =U 2

c /(gLc), the Peclet number, Pe=UcLc/(M�c), and the
Cahn number, 	=√

k/(�L2
c). The derivation of dimensionless form of Equations (1)–(4) is given

in the Appendix.
The outline of the main procedures in one time step is:

Step 1. Initialize u0 to be the divergence-free velocity field and �0.
Step 2. Solve an intermediate velocity field, ũ, which generally does not satisfy the incom-
pressible condition, without the pressure gradient term,

ũ−un

�t
=−un ·∇dun + 1

�n Re
�dun + 1

Fr
g.

The resulting finite difference equations are written out explicitly. They take the form

ũi+1/2, j = un
i+1/2, j −�t(uux +vuy)n

i+1/2, j

+ �t

h2�n
i+1/2, j Re

(un
i+3/2, j +un

i−1/2, j −4un
i+1/2, j +un

i+1/2, j+1+un
i+1/2, j−1),

ṽi, j+1/2 = vn
i, j+1/2 −�t(uvx +vvy)n

i, j+1/2 − �t

Fr

+ �t

h2�n
i, j+1/2 Re

(vn
i+1, j+1/2+vn

i−1, j+1/2−4vn
i, j+1/2+vn

i, j+3/2 +vn
i, j−1/2), (7)

where the advection terms, (uux +vuy)n
i+1/2, j and (uvx +vvy)n

i, j+1/2, are defined by:

(uux +vuy)n
i+1/2, j = un

i+1/2, j ū
n
xi+1/2, j

+
vn

i, j−1/2 +vn
i+1, j−1/2+vn

i, j+1/2+vn
i+1, j+1/2

4
ūn

yi+1/2, j
,

(uvx +vvy)n
i, j+1/2 =

un
i−1/2, j +un

i−1/2, j+1+un
i+1/2, j +un

i+1/2, j+1

4
v̄n

xi, j+1/2
+vn

i, j+1/2v̄
n
yi, j+1/2

.

The values ūn
xi+1/2, j

and ūn
yi+1/2, j

are computed using the upwind procedure. The procedure is

ūn
xi+1/2, j

=

⎧⎪⎪⎨
⎪⎪⎩

un
i+1/2, j −un

i−1/2, j

h
if un

i+1/2, j>0

un
i+3/2, j −un

i+1/2, j

h
otherwise
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and

ūn
yi+1/2, j

=

⎧⎪⎪⎨
⎪⎪⎩

un
i+1/2, j −un

i+1/2, j−1

h
if vn

i, j−1/2 +vn
i+1, j−1/2+vn

i, j+1/2+vn
i+1, j+1/2>0

un
i+1/2, j+1 −un

i+1/2, j

h
otherwise.

The quantities v̄n
xi, j+1/2

and v̄n
yi, j+1/2

are computed in a similar manner.
Then, we solve the following equations for the advanced pressure field at (n+1) time step.

un+1 − ũ
�t

= − 1

�n
∇d pn+1, (8)

∇d ·un+1 = 0. (9)

With application of the divergence operator to Equation (8), we find that the Poisson equation
for the pressure at the advanced time (n+1)

∇d ·
(

1

�n
∇d pn+1

)
= 1

�t
∇d ·ũ, (10)

where we have made use of Equation (9) and the terms are defined as follows:

∇d ·
(

1

�n
∇d pn+1

ij

)
=

1

�n
i+1/2, j

pn+1
i+1, j+

1

�n
i−1/2, j

pn+1
i−1, j+

1

�n
i, j+1/2

pn+1
i, j+1+

1

�n
i, j−1/2

pn+1
i, j−1

h2

−

1

�n
i+1/2, j

+ 1

�n
i−1/2, j

+ 1

�n
i, j+1/2

+ 1

�n
i, j−1/2

h2
pn+1

ij ,

∇d ·ũij = ũi+1/2, j − ũi−1/2, j

h
+ ṽi, j+1/2 − ṽi, j−1/2

h
,

(11)

where �n
i+1/2, j = (�n

ij +�n
i+1, j )/2 and the other terms are similarly defined.

The boundary condition for the pressure is

n·∇d pn+1 =n·
(

−�n un+1 −un

�t
−�n(u·∇du)n + 1

Re
�dun + �n

Fr
g
)

,

where n is the unit normal vector to the domain boundary.
In our application of the phase-field to the Rayleigh–Taylor instability, we will use a periodic

boundary condition to vertical boundaries and no slip boundary condition to the top and bottom
domain. Therefore,

n·∇d pn+1 =n· �n

Fr
g i.e.

�p

�y
=− �n

Fr
at y =0 and y = L y .

The resulting linear system of Equation (10) is solved using a multigrid method [36], specifically,
V-cycles with a Gauss–Seidel relaxation. Then the divergence-free normal velocities un+1 and
vn+1 are defined by:

un+1 = ũ− �t

�n
∇d pn+1 i.e.,

un+1
i+1/2, j = ũi+1/2, j − �t

�n
i+1/2, j h

(pi+1, j − pij), vn+1
i, j+1/2 = ṽi, j+1/2 − �t

�n
i, j+1/2h

(pi, j+1 − pij).
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We implement the unconditionally gradient stable scheme in Equations (5) and (6) with a
nonlinear multigrid method. For a detailed description of the numerical method used in solving
these equations, please refer to References [37, 38].

Since we are interested in long time simulations, mass conservation is an important factor.
Therefore, we use a conservative discretization of the convective part of the phase-field equation (5):

((�u)x +(�v)y)n
ij =

un
i+1/2, j (�

n
i+1, j +�n

ij)−un
i−1/2, j (�

n
ij +�n

i−1, j )

2h

+
vn

i, j+1/2(�n
i, j+1 +�n

ij)−un
i, j−1/2(�n

ij +�n
i, j−1)

2h
.

These complete the one time step.

3. NUMERICAL RESULTS

In this section, we test the pressure boundary condition to validate the performance of the phase-
field scheme. We also perform the following numerical tests for the Rayleigh–Taylor instability:
effect of the Peclet number, convergence test, long time evolution, relation between the density
ratio and interface length, relation between the Atwood number and the width of the bubble and
spike fluid, evolution of interface with alternate density ratios, evolution of interface of random
amplitude, and effect of the Capillary number. Note that, in these simulations, we used Equation (2)
as the continuity equation since we focus on the pressure boundary treatment. However, in the
case of the large density ratio, the continuity equation can no longer be reduced to Equation (2). In
that case, we should use �t +∇ ·(�u)=0 as the continuity equation and we expect that the results
would be different.

3.1. Pressure field distribution with different density ratios

The difference between the current scheme and previous studies of the Rayleigh–Taylor instability
is the pressure boundary treatment. To demonstrate the ability of the current scheme, we test the
pressure boundary condition for three cases with �1/�2 =1, 1

2 , and 1
4 , respectively. In Figure 2, the

circles represent the pressure with �1/�2 =1, the stars that with �1/�2 = 1
2 , the diamonds that with

(a) (b)

Figure 2. The pressure for different density ratios: the circles represent the pressure
with �1/�2 =1, the stars that with �1/�2 = 1

2 , the diamonds that with �1/�2 = 1
4 ,

and the solid line denotes the analytic solution.
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�1/�2 = 1
4 , and the solid line denotes the analytic solution. The pressure is decreasing and is in

inverse proportion to density ratio. These numerical results agree well with the analytic solution.

3.2. Effect of the Peclet number

The Rayleigh–Taylor instability would occur for any perturbation along the interface between a
heavy fluid on top of a lighter fluid and is characterized by the density ratio between the two fluids.
The density difference is represented by the Atwood number At = (�2 −�1)/(�2 +�1), where �1
and �2 are the densities of the lighter and heavier fluid, respectively. In this section, we investigate
the effect of the Peclet number, demonstrate the convergence of our scheme numerically, and
simulate the Rayleigh–Taylor instability for a long time. Unless otherwise specified, we take the
initial state as

�(x, y,0)= tanh

(
y−2−0.1cos(2
x)√

2	

)
(12)

on the computational domain �= (0,1)×(0,4), which represents a planar interface superimposed
by a perturbation of wave number k =1 and amplitude 0.1. The density ratio is �2 :�1 =3:1,
i.e. At=0.5. We use the simulation parameters such as the uniform time step, �t =0.00125

√
2,

	=0.01, and Re=3000.
In order to investigate the effect of the Peclet number, we consider the evolution of the interface

with different Peclet numbers. The initial state is given in Equation (12) and the zero-level set
is shown in Figure 3(a). In this test, the number of grid points is 128×512. The evolutions of
the interface with different Peclet numbers Pe=0.01/	, 1/	, and 100/	, respectively, are shown in
Figures 3(b)–(d). In the case of Pe=0.01/	, the evolution of the interface did not fully happen (we
cannot see the rolling-up of the falling fluid). And in the case of Pe=100/	, the contour line is not
uniform. Therefore, the appropriate Peclet number is Pe=1/	. It is clear that the interface evolution
is significantly affected by Pe numbers. Increasing Pe numbers results in non-smooth concentration
profile, whereas decreasing Pe numbers results in too much diffusion. Unless otherwise mentioned,
we use the Peclet number Pe=1/	 in our study.

3.3. Convergence test

We perform a number of simulations for a sample initial problem on a set of increasingly finer
grids. The initial state is taken in Equation (12). The numerical solutions are computed on the
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Figure 3. (a) The zero-level set of the initial profile, �(x, y,0)= tanh((y−2−0.1cos(2
x))/
√

2	). The
effect of the Peclet number on the temporal evolution of the interface at dimensionless time t =1.75:

(b) Pe=0.01/	; (c) Pe=1/	; and (d) Pe=100/	. Contour levels are −0.9, −0.7, . . . ,0.7, 0.9.
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Figure 4. The evolution of the interface at dimensionless time t =1.75: (a) 64×256;
(b) 128×512; and (c) 256×1024.

uniform grids, h =1/2n , and with corresponding time steps, �t =0.16
√

2h for n =6, 7, and 8. For
the interface parameter 	, we want to have smaller 	 as the grid size h is refined. One possible
choice is 	= O(hk), where k satisfy the condition, 0<k<1. Note that k cannot be greater than one
because we also want to have a finite number of grid points across interface. For the convergence
test, we choose k = 1

2 , i.e. 	=0.08
√

2h. Other parameters are the same as used in Section 3.2.
Figures 4(a)–(c) are the evolutions of the interface with different grid sizes 64×256, 128×512, and
256×1024, respectively. The main difference between Figures 4(a)–(c) is in the vortex. The vortices
on the finest grid (256×1024) have a spiral, while on the coarsest grid (64×256)there is no
rolling-up. The results suggest that the vortex depends on grid resolution (Figure 4(d)).

3.4. Long time evolution of the Rayleigh–Taylor instability

Figure 5 shows the y-coordinate of the top of the rising fluid (a bubble) and the bottom of the
falling fluid (a spike). The initial state is given in Equation (12) (this is the same initial condition
as H. Ding et al. [25], Guermond et al. [27], and Tryggvason [39]) and the number of grid points
is 128×512. The results in Figure 5 show that our result and the previous results of H. Ding et al.,
Guermond et al., and Tryggvason are in good agreement. The evolution of the interface is shown
in Figure 6 at t =0, 1, 1.5, 1.75, 2, 2.25, 2.5, 6, 8, 12, 18, 24, 30, and 50 in the time scale of
Tryggvason which is related to ours by tTryg = t

√
At . The rolling-up of the falling fluid can be

clearly seen. At time t =50, the heavier fluid has been fallen down completely.

3.5. Relation between the density ratio and the interface length

In this section, we consider the relation between the density ratio and the interface length. The
interface length L is defined by

L(�)=
Nx∑

i=1

Ny∑
j=1

3
√

2	

4
|∇d�ij|2h2,

where

∇d�ij =
(

�i+1, j −�ij

h
,
�i, j+1 −�ij

h

)
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Figure 5. The y-coordinate of the tip of the falling and rising fluid versus dimensionless time: solid line
denotes the present solution, the open circles represent the solution of H. Ding et al., the open triangles

that of Guermond et al., and the open diamonds that of Tryggvason.
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Figure 6. Long time evolution of the Rayleigh–Taylor instability simulation with At =0.5. The
dimensionless times are shown below each figure.
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Figure 7. The interface length for different density ratios: the thick solid line represents the interface
length with �2/�1 =2 (Case 1) and the solid line that with �2/�1 =3 (Case 2).

is a finite difference approximation to the gradient operator. The initial state is given in Equation (12)
on �= (0,1)×(0,4). We take h = 1

64 , 	=0.014, and Re=3000. The time steps corresponding to the

density ratios, �t =0.00125
√

2/(�2/�1), are used and the calculations are run up to dimensionless
time T =50. In Figure 7, the interface lengths (until the heavier fluid has been fallen down
completely) with different density ratios are shown. The thick solid and solid line represents the
interface length with �2/�1 =2 and 3, respectively. The inscribed small figures are the concentration
fields at the indicated dimensionless times. These results give us two conclusions. First, as the
density ratio (�2/�1) is higher, the interface length approaches the equilibrium solution faster
(the interface length, is equal to 1, represents that the numerical solution approaches the equilibrium
solution). Second, as the density ratio is lower, the interface length grows longer. In case of high
density ratio, an interface shape during evolution is simple. But in case of low density ratio, an
interface shape during evolution is complex. Hence, many vortices, occur in low density ratio,
make interface length long.

3.6. Relation between the Atwood number and the width of the bubble and spike fluid

Another important test is the comparison between the Atwood number and the width of
the bubble and spike fluid. We simulate with a grid size 128×512 and a computational
domain �= (0,1)× (0,4). The initial condition is �(x, y,0)= tanh((y−2−0.05cos(2
x))/

√
2	)

(Figure 8(a)), 	=0.01, �t =0.00125
√

2, and Re=3000 are used. The calculations are run up
to the tip of the bubble until it reaches 2.5. The evolutions of the interface with different
Atwood numbers At =0.1, 0.2, 0.3, 0.4, and 0.5, respectively, are shown in Figures 8(b)–(f).
We measure the width at the position of the half distance from two tangent lines (denoted by
dashed lines) of bubble and spike (Figure 9(a)). Figure 9(b) shows the ratio of the width of the
bubble (bw) and spike (sw) fluid versus the Atwood number. The ratio is in proportion to the
Atwood number because the width of the bubble becomes wide and that of the spike becomes
narrow.

3.7. Evolution of interface with alternate density ratios

In the simulations, a 128×512 mesh is used on �= (0,1)×(0,4) and we employ �t =0.00125
√

2,
	=0.01, At =0.5, and Re=3000. In the first experiment, we take the initial condition as shown
in Figure 10(a) (first column). The wave number is k =1 and amplitude is 0.1. The results are
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Figure 8. (a) The initial profile, �(x, y,0)= tanh((y−2−0.05cos(2
x))/
√

2	). (b), (c), (d), (e), and (f) are
the evolutions of the interface with different Atwood numbers At =0.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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Figure 9. (a) We measure the width at the position of the half distance from two tangent
lines (denoted by dashed lines) of bubble and spike and (b) The ratio of the width of the

bubble (bw) and spike (sw) fluid versus Atwood number.

presented in Figure 10(a) (from second column to seventh column). In the second experiment,
we take the initial condition as shown in Figure 10(b) (first column). The results are presented
in Figure 10(b) (from second column to seventh column). Observe that the current scheme is
robust.

3.8. Evolution of interface of random amplitude

In this section, we demonstrate the capability of the current scheme with complex initial
configuration. The initial condition is �(x, y,0)= tanh((y−0.5+0.01rand(y))/

√
2	), where the

random number, rand(y), is in [−1,1] and has zero mean (Figure 11(a)). A 1024×256 mesh
is used on �= (0,4)×(0,1) and we choose �t =0.00063

√
2, 	=0.007, At =0.5, Re=3000.

The evolutions of the interface at dimensionless times t =1.5, 2.0, and 2.5, respectively, are shown
in Figures 11(b)–(d). As each row shows, the current scheme can straightforwardly deal with
complex initial configuration.
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Figure 10. Long time evolution of the Rayleigh–Taylor instability simulation with At =0.5. The dimen-
sionless times are shown below each figure.

3.9. Effect of the capillary number

In order to investigate the effect of the Capillary number, we consider the following equations:

�(�)(ut +u·∇u) = −∇ p+ 1

Re
�u− 3

√
2	

4W e
∇ ·

( ∇�

|∇�|
)

|∇�|∇�+ �(�)

Fr
g,

∇ ·u = 0,

�t +∇ ·(�u) = 1

Pe
��,

� = �3 −�−	2��,

where the dimensionless parameter is the Weber number, W e=�cU 2
c Lc/�, and � is the interfacial

tension coefficient. The Capillary number represents the relative effect of viscous forces versus
interfacial tension acting across an interface between two immiscible fluids. It is defined as Ca =
Uc�/�, i.e. Ca =W e/Re.
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Figure 11. Evolution of interface of random amplitude. The dimensionless times are shown below each
figure: (a) t =0; (b) t =1.5; (c) t =2.0; and (d) t =2.5.

To show how the Capillary number affects the stability, we take the initial state as given in
Equation (12). A 128×512 mesh is used on �= (0,1)×(0,4) and we employ �t =0.00125

√
2,

	=0.01, At =0.5, and Re=3000. Figures 12(a) and (b) show evolutions of the interface with
different Capillary number Ca =0.1 and 0.005, respectively. In the case of Ca =0.1, the Ca
number is high (i.e. interfacial tension is low) compared with the gravitational force. As a result,
the interface becomes unstable (Figure 12(a)). On the other hand, in the case of Ca =0.005, the
interface becomes stable, though it started with the same initial perturbation. Because the Ca
number is low compared with the gravitational force.

4. CONCLUSION

The purpose of this paper is twofold: to introduce a new computing method for the time-dependent
calculation of the interaction of two incompressible fluids and to present new long time evolution
results in the study of the Rayleigh–Taylor instability. The key to the success of the method is the
treatment of the pressure boundary. To demonstrate the accuracy and efficiency of the method, we
carried out numerical experiments such as pressure field distribution with different density ratios,
effect of the Peclet number, convergence test, long time evolution, interface length with different
density ratios, relation between Atwood number and width of the bubble and spike fluid, evolution
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Figure 12. The effect of the Capillary number on the temporal evolution
of the interface: (a) Ca=0.1 and (b) Ca=0.005.

of interface with alternate density ratios, evolution of interface of random amplitude, and effect of
the Capillary number.

Our main concern in this paper was the pressure boundary condition for two incompressible
fluids. Owing to the pressure boundary treatment, we could perform long time evolution of the
Rayleigh–Taylor instability with small Atwood number. Usually, the density ratio cannot be very
large because of the numerical instability. With the large density ratio, the continuity equation can
no longer be reduced to ∇ ·u=0. As a future research plan, the new pressure boundary condition
will be applied to the compressible Navier–Stokes–Cahn–Hilliard equations (NSCH):

(�u)t +∇ ·(�uu) = −∇ p+ 1

Re
�u+ �

Fr
g,

�t +∇ ·(�u) = 0,

�t +∇ ·(�u) = 1

Pe
��,

� = �3 −�−	2��.

APPENDIX A: NONDIMENSIONAL GOVERNING EQUATION

To restate the dimensional NSCH system in dimensionless form, we define the dimensionless
variables as

x ′ = x

Lc
, u′ = u

Uc
, t ′ = tUc

Lc
, p′ = p

�cU 2
c
, g′ = g

g
, �′ = �

�c
, �′ = �

�c
,

where Lc is the characteristic length, which is taken to be the shortest length of the problem
domain in the axial direction, Uc is the characteristic velocity, �c is the characteristic density
defined as that of light fluid, i.e. �c =�1, g is the gravitational acceleration, and �c is �, which
is �=�(�3 − �

��− k
���)=�c�

′. Substituting these variables into the governing Equations (1)–(4)
we have

�′(u′
t ′ +u′ ·∇′u′) = −∇′ p′+ �

�cUcLc
�′u′+ gLc

U 2
c

�′g′, (A1)

∇′ ·u′ = 0, (A2)
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�t ′ +∇′ ·(�u′) = M�c

UcLc
�′�′, (A3)

�′ = �3 − �

�
�− k

�L2
c
��. (A4)

Dropping the primes and considering �=�, Equations (A1)–(A4) become

�(ut +u·∇u) = −∇ p+ 1

Re
�u+ �

Fr
g,

∇ ·u = 0,

�t +∇ ·(�u) = 1

Pe
��,

� = �3 −�−	2��.

The dimensionless physical parameters are the Reynolds number, Re, Froude number, Fr , Peclet
number, Pe, Cahn number, 	, given by

Re= �cUcLc

�
, Fr = U 2

c

gLc
, Pe= UcLc

M�c
, 	=

√
k

�L2
c
.

Using Uc = (gLc)1/2, we have Re=�cUcLc/�=�cg1/2Lc
3/2/� and Fr =U 2

c /gLc =gLc/gLc =1.
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