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In this paper, we investigate motion by mean curvature using the Allen–Cahn (AC) equation

in two and three space dimensions. We use an unconditionally stable hybrid numerical scheme

to solve the equation. Numerical experiments demonstrate that we can use the AC equation

for applications to motion by mean curvature. We also study the curve-shortening flow with

a prescribed contact angle condition.
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1 Introduction

We study the evolution of curves and surfaces under the mean curvature flow by using

the AC equation [1]:

φt(x, t) = −F ′(φ(x, t))

ε2
+ Δφ(x, t), x ∈ Ω, t > 0, (1.1)

where Ω ⊂ �d (d = 2, 3) is a domain. The AC equation is originally introduced to describe

motion of the interfaces in materials. Here, the phase-field φ is a non-conserved order

parameter. The function F(φ) = 0.25(φ2 − 1)2 is the Helmholtz free-energy functional.

The small constant ε is the gradient energy coefficient related to the interfacial energy.

In this paper, we study the AC equation with and without the contact angle boundary

conditions.

The study of free boundary problems can be separated into two groups: diffuse-interface

problems and geometric evolutionary problems [18]. A typical diffuse-interface description

of an antiphase domain wall motion is well established by using the AC equation [1]. This

equation is also known that it corresponds to the mean curvature flow as the geometric

evolution equation [17, 32, 72–74].

Let us first consider the mean curvature flow in the field of differential geometry. We

can define that a family of surfaces {M} in �d is said to be moving by mean curvature

provided that

∂x

∂t
= H(x, t)n(x, t), x ∈ M, 0 < t,
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where H(x, t) and n(x, t) denote mean curvature and outer normal of the surface M at

(x, t). Namely, normal velocity of the surface simply equals its mean curvature.

From a different point of view, motion by mean curvature can be considered as the

singular limit of the AC equation. The AC model, based on the Ginzburg–Landau

theory, is used to describe microstructure phenomena. It describes a microstructure using

non-conserved order parameter φ. This parameter takes distinct constant values in each

of the coexisting ordered states and varies smoothly across the interface between two

different states. The interface then can be represented as the zero level-set of the order

parameter. For this reason, the AC equation is often referred to as the diffuse-interface

model. One of the properties of the AC equation is that the zero level solution converges

to the mean curvature flow. Thus, the interfacial region between two different regions

±1 evolves by the mean curvature flow. In this paper, we consider the solution of the

AC equation as the diffuse-interface model, and compare with the geometric evolution

equation.

Many of the previous works have studied the mean curvature flow on developing

numerical schemes. In front tracking method, Barrett, Garcke and Nürnberg proposed the

parametric finite element approximation of geometric curve evolutions for curve networks

and anisotropic surface [11] and surface clusters [9]. They also studied the coupled surface

and grain boundary motion in bi- and tricrystals in [10]. As an application for BMO

algorithm [60], Ruuth and his collaborators developed the diffusion-generated methods

for multiple grains [68].

On the application of the geometric flow, Mullins [62] initially proposed the mean

curvature flow to model the formation of grain boundaries in annealing metals. Gurtin [46]

derived the mean curvature flow as a model for motion of the interface, and Angenent

and Gurtin [3] developed motion for perfect conducts. The AC equation is used for a

phase-field model that approximates motion by mean curvature [1, 20, 61].

In addition, the sharp-interface limit of the gradient flow dynamics was investigated

in [8,32,73,74], and interface area and interface curvature problems were studied by [66].

There were also level-set formulations of viscosity solutions for hypersurfaces by Chen

et al. [21] and a geometrical approach [7]. Independently, Evans and Spruck [33–36],

and Soner [72] also introduced motion by level-set methods. Ilmanen [52] showed that

this limit is actually one of the Brakke’s motions [16] by the mean curvature solution.

In the radial symmetric case, Bronsard and Kohn [17] derived that, as ε → 0, the zero

level-set of φ approaches a surface, which moves with a normal velocity equal to the

mean curvature of the surface. On the one hand, the pioneering geometric works for the

curve-shortening flow were done by Tso [75], Gage and Hamilton [40], and Grayson [42].

Further details can be found in [29, 31, 44] and references therein. The hypersurfaces of

higher codimension where we assign its velocity vector by mean curvature vector to form

the more than codimension 1, is not well known about singularities. Recently, higher

codimension for the mean curvature flow has also received attention [2, 4, 19, 71], and on

the other hand, the solution of the AC equation has been considered for De Giorgi’s

conjecture [41, 64]. As for the curvature driven flow, there are also a lot of applications

for the anisotropic mean curvature flow [14], image process [30, 57, 69], phase separation

and damage [48], grain boundary motion [63], fluid dynamics [37], pulsating wave [27]

and smoothing triangular surface [77].
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Various numerical methods have been applied to illustrate the motion by mean

curvature. Among them are level set methods [23–25, 47], finite element methods

[11,12,26,28,38,39], and Delaunay tessellations [15]. But there is no geometric verification

or numerical evidence for phase-field methods in terms of motion by mean curvature.

Applying the stable and hybrid scheme [56], we confirm that numerical experiments give

good agreements with geometrical results under the mean curvature flow.

Here, we describe how the algorithm works from numerical aspects, and show some

numerical simulations including two- and three-dimensional cases. Since the family of

solutions whose zero level sets of the AC equation follows the mean curvature flow,

the validity of the numerical algorithm can be demonstrated by its geometric evolution

equation. Thus, the results of numerical experiments with and without the prescribed con-

tact angle boundary condition verify theoretical understanding under the mean curvature

flow. The main content is divided in four parts. In Section 2, we discuss the mean curvature

flow driven by the AC equation. An unconditionally stable hybrid numerical method for

the AC equation is described in Section 3. Examples and numerical tests for closed curves

are given in Section 4. We consider a planar curve having end-points moving freely along

a boundary with prescribed contact angles in Section 5. In summary, Section 6 concludes

with a discussion of test results.

2 Allen–Cahn equation for motion by mean curvature

It is known that in the limit of small ε the zero level solution reduces to motion by mean

curvature of the interface between the stable ±1 phases [1, 32, 67]. We briefly show that

the interface moves with normal velocity proportional to their mean curvature. We design

a new coordinate in the neighbourhoods of the surface φ = 0. Let us define r = r(x, y, z, t)

as the signed distance of (x, y, z) from φ = 0, where r < 0, if φ(x, y, z, t) > 0 and r > 0,

if φ(x, y, z, t) < 0. First, we denote the outer unit normal to the surface by n = ∇φ/|∇φ|.
Then, it deduces n ·n = 1 and n ·nr = 0, where nr is the rate of change of n in the direction

of r coordinate, (see Figure 1).

Now the term Δφ can be rewritten as follows:

Δφ = ∇ · ∇φ = ∇ · (|∇φ|n) = ∇ · ((∇φ · n)n) = ∇ · (−φrn)

= −∇φr · n − φr∇ · n = −(∇φ)r · n − φr∇ · n = (φrn)r · n − φr∇ · n

= (φrrn + φrnr) · n − φr∇ · n = φrr + (κ1 + κ2)φr.

where κ1 and κ2 are the principal curvatures of the surface. Since the divergence of unit

normal vector to a surface is equal to the negative of mean curvature (κ1 + κ2), the last

equality holds. Then, we can have it for the kinetic equation:

φt = −F ′(φ)

ε2
+ φrr + (κ1 + κ2)φr, (2.1)

For the planar interface at equilibrium, the following equation holds

−F ′(φ)

ε2
+ φrr ≈ 0. (2.2)
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φ ≈ 1

φ ≈ −1

φ = 0

r

n

−n

Figure 1. Illustration of an interface showing the order parameter, φ, and unit normal, n.

Therefore, equation (2.1) can be rewritten as

φt = (κ1 + κ2)φr. (2.3)

At all times, we denote the zero level-set by Γt = {(x, y, z)| φ(x, y, z, t) = 0}. Then, the

velocity of zero level-set Γt is given by

0 =
d(φ(r, t))

dt

∣∣∣∣
Γt

= φrrt + φt ⇒ rt = −φt/φr = −(κ1 + κ2). (2.4)

Therefore, all surfaces between two phases move with the velocity V , which is given by

V = −(κ1 + κ2) = −
(

1

R1
+

1

R2

)
, (2.5)

where R1, R2 are the principal radii of curvatures at the point of the surface.

3 Numerical scheme

In this section, for simplicity of exposition, we describe a numerical scheme for the AC

equation in two dimensions. A three-dimensional numerical scheme is analogously defined.

A computational domain is partitioned into a uniform mesh with mesh size h. The centre

of each cell, Ωij , is located at xij = (xi, yj) = (a+ (i− 0.5)h, b+ (j − 0.5)h) for i = 1, . . . , Nx

and j = 1, . . . , Ny . Here, Nx and Ny are the numbers of cells in the x- and y-directions,

respectively. Let φnij be approximations of φ(xi, yj , nΔt), where Δt = T/Nt, T , and Nt are

the temporal step size, final time, and the total number of time steps, respectively.

We use the unconditionally stable hybrid numerical method for solving the AC equation

[56]. The method is based on an operator splitting method [65], which is to split the original
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φi,0

1√
3 1 − 1√

3

φi+1,1φi,1φi−1,1

ψ2ψ1

Figure 2. The point φi,0 is defined in an exterior domain Ω for contact angle boundary conditions.

problem into a sequence of simpler problems:

φt = Δφ, (3.1a)

φt =
φ− φ3

ε2
. (3.1b)

As a first step, we solve equation (3.1a) by applying the Crank–Nicolson method, that is,

φ∗
ij − φnij

Δt
=

1

2
(Δhφ

∗
ij + Δhφ

n
ij), (3.2)

where Δh is the standard five point discretization. As a next step, equation (3.1b) is solved

analytically and the solution is given by

φn+1
ij =

φ∗
ij√

e− 2Δt

ε2 + (φ∗
ij)

2
(
1 − e− 2Δt

ε2

) . (3.3)

For more details of the unconditionally stable hybrid scheme, we refer the reader to [56].

For the contact angle boundary condition considered here, we implement the inter-

polation scheme introduced in [55] for the Cahn–Hilliard equation. Figure 2 illustrates

the interpolation stencil for contact angles. When we have contact angle ψ1 = 3π/4 on

boundary, boundary values are given by

φn+1
i,0 =

⎧⎨
⎩
φn+1
i+1,1 if φn+1

i−1,1 > φn+1
i+1,1,

φn+1
i−1,1 otherwise.

Similarly, we can extend this scheme to various contact angles by interpolations. For

instance, if the prescribed angle ψ2 = −5π/6 is given, then the boundary treatment is as

follows:

φn+1
i,0 =

⎧⎪⎨
⎪⎩

(
1 − 1√

3

)
φn+1
i,1 + 1√

3
φn+1
i+1,1 if φn+1

i−1,1 < φn+1
i+1,1,

1√
3
φn+1
i,1 +

(
1 − 1√

3

)
φn+1
i+1,1 otherwise.
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Table 1. l2-norm of the errors and convergence rates.

x-axis grid 64–128 Rate 128–256 Rate 256–512

l2 36.276e–4 2.02 8.9240e–4 1.97 2.2721e–4

To obtain an estimate of the rate of convergence, we perform a number of simulations

on increasingly finer grids. The initial data is given by

φ(x, y, 0) = tanh
0.3 −

√
(x− 0.5)2 + (y − 0.3/

√
2)2

√
2ε

on the computational domain, Ω = (0, 1) × (0, 1) with ε = 0.01, contact angles ψ1 = π/4,

ψ2 = −π/4, and temporal step size Δt = 1.0 × 10−5h. The numerical solutions are

computed on the uniform grids Δx = Δy = 1/2n = h for n = 6 to 9. For each simulation,

the calculation is run to time T = 2.5 × 10−5. We define the error of a grid to be the

discrete l2-norm of the difference between that grid and the average of the next finer cells

covering it:

eh/ h2 ij
:= φhij − (φh

2 2i,2j + φh
2 2i−1,2j + φh

2 2i,2j−1 + φh
2 2i−1,2j−1)/4.

Also, the rate of convergence is defined by log2(‖eh/ h2 ‖/‖e h
2 /

h
4
‖) and this is the ratio of

successive errors. Table 1 shows the errors and rates of convergence. These results suggest

that it is the second-order scheme [55].

4 Numerical experiments for the mean curvature flow without the boundary conditions

In this section, we present numerical experiments including basic mechanism for interface

evolutions by the AC equation, then the numerical scheme of the equation is employed for

the curvature driven flow for a convex and enclosed curve and three-dimensional surface.

The interfacial width εm > 0, where m > 0, is used for a measure of the thickness

across the diffuse-interface. If we consider that the order parameter φ varies from −0.9

to 0.9 over the interfacial region with m grid points, the ε value is defined by ε = εm =

hm/(2
√

2 tanh−1(0.9)) [56]. Here h is the uniform mesh size.

4.1 Basic mechanism for interface evolutions

Figures 3(a) and (b) show the numerical evolutions when the initial curve of the zero

level-set has positive constant mean curvature (circle) and zero mean curvature (straight

line), respectively. The first columns in Figures 3(a) and (b) show the initial profiles φ0 for

the circle and the straight line. Using the initial data, we get the intermediate solution, φ∗,

by solving equation (3.1a) and it is shown in the second column. Next, we solve equation

(3.1b) to get φ1 which is shown in the third column. In the circle case, Figure 3(a), the

diffusion step smoothes interfacial region, resulting in shrinking the zero level curve of

the phase-field, (see the second column in Figure 3(a)). Next, the sharpening step makes
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Figure 3. (a) and (b) are the one time step evolutions of φ whose initial zero level-sets represent

a circle and a straight line, respectively. (c) and (d) are cross sectional profiles of (a) and (b) at

y = 0.5, respectively.

the phase-field approach ±1 depending on its sign while keeping the zero level-set fixed

(the third column in Figure 3(a)). Continuing this process, the zero level curve shrinks to

a point. In the straight line case, Figure 3(b), neither the diffusion step nor the sharpening

step affects the zero level curve. Figures 3(c) and (d) are the cross-sectional plots of φ0,

φ∗, and φ1 at y = 0.5 in Figures 3(a) and (b), respectively.

4.2 Curve-shortening flow for a convex and closed curve

A curve is called a convex curve if it is a curve with positive curvature. We show that the

curve-shortening flow evolves a convex and closed curve into a round circle and the area

enclosed by a curve decreases with a fixed rate, and consequently a curve shrinks to a

point and disappears in finite time. We first introduce the idea of defining a convex curve

in terms of its support function.

Definition 4.1 Let γ be a convex and planar cur ve and O ∈ �2 the origin. The function

S(p) is assigned to each point p ∈ γ for the distance between O and the straight line tangent

to γ at p. In differential geometry, the function S is called the support function [45].
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(x(ψ), y(ψ))

S(ψ)

θ

ψ
r

O x

y

Figure 4. Definitions for the support function.

Since the support function S is the tangent line to γ at p, a convex curve may be given as

a function of the angle ψ between S and the x-axis. We note that p = (x(ψ), y(ψ)), and the

point p is given in polar coordinates as reiθ . A convex curve may be given as a function of

the angle ψ = θ− π/2 of the normal with x-axis, where θ is the tangent angle. If there is a

tangent line passing a point (x(ψ), y(ψ)) where the normal is given by −(cosψ, sinψ), the

support function S is the signed distance from the origin to the line. Thus, the function

measures the distance from the tangent line at (x(ψ), y(ψ)) to the origin O. Let us also

follow the notations in Figure 4. For a convex curve, it is convenient to use the support

function. With the help of the support function, we can show the following lemma. It also

appears in [76].

Lemma 1 (Zhu [76]) The curvature satisfies that

κ =
1

Sψψ + S
.

Proof Let us denote the support function of the curve by S . We write (r, θ) for polar

coordinates, and γ(ψ) := (x(ψ), y(ψ)) for corresponding Cartesian coordinates at a point

on a curve. Here ψ is the angle between x-axis and the perpendicular line to the tangent

line at the point as shown in Figure 4. Then, the support function S(ψ) is given by:

S(ψ) = r cos(ψ − θ) = r(cos θ cosψ + sin θ sinψ) = x(ψ) cosψ + y(ψ) sinψ

= γ(ψ) · (cosψ, sinψ) = −γ(ψ) · n.

Its derivative satisfies Sψ(ψ) = −x(ψ) sinψ + y(ψ) cosψ. By direct computation, the curve

can be represented by the support function

x(ψ) = S(ψ) cosψ − Sψ(ψ) sinψ,

y(ψ) = S(ψ) sinψ + Sψ(ψ) cosψ.
(4.1)

In fact, the curvature can be written as [40]

κ =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2
=

1

Sψψ + S
. (4.2)

To see this, we use the parameter p ∈ I , where I = [0 + ψ1, 2π + ψ2], where 0 � ψ1 � π

and −π � ψ2 � 0. Here, we assume that γ(p, t) : I × [0, ω) → �2 is a family of convex
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curves satisfying the curve-shortening flow γt = κn. Let us use the normal angle θ of the

support function to parameterize convex curves, and we change variable forms (p, t) to

(θ, τ). Consequently, the time derivative of the support function can be written as

∂S

∂τ
=

(
∂γ

∂p

∂p

∂τ
+ κn,−n

)
= −κ =

−1

Sψψ + S
.

Note that ∂/∂t is the partial derivative with fixed p while ∂/∂τ is the partial derivative

with fixed θ, i.e., ∂/∂t� ∂/∂τ [40]. �

Theorem 4.2 (Gage and Hamilton [40]) The area A(t) enclosed by the curve decreases at

constant rate

dA(t)

dt
= −2π,

provided that it follows the curve-shortening flow equation.

Proof It is well known that the area decreases at constant rate [40, 76]. Let us suppose

that the area A(t) is enclosed by the curve at time t. Then, area formula is given by

Green’s theorem

A(t) =
1

2

∫ 2π

0

(xẏ − yẋ) dψ =
1

2

∫ 2π

0

(x cosψ + y sinψ)(−ẋ sinψ + ẏ cosψ)dψ

=
1

2

∫ 2π

0

S(Sψψ + S)dψ =
1

2

∫ 2π

0

S

κ
dψ. (4.3)

By taking derivative of equations (4.2) and (4.3) with respect to time, and integrating by

parts, we have

dA(t)

dt
= 1

2

∫ 2π

0
∂
∂t

(
S
κ

)
dψ = 1

2

∫ 2π

0

(
St
κ

− Sκt
κ2

)
dψ

= − 1
2

∫ 2π

0

[
1 + (Sψψ + S)κ

]
dψ = −2π.

Thus, we find the area function for time t: A(t) = A(0) − 2πt. We remark that any

embedded closed curve has the same property:

d

dt
A(t) = −

∫
γt

κds = −
∫ 2π

0

dθ = −2π. (4.4)

�

Equation (4.3) demonstrates that A(t) enclosed by a convex-closed curve decreases at a

constant rate −2π, and the maximal time ω is given by ω = A(0)/(2π). To see that, we

set two different initial curves having the same area as A(0) = 0.16π. The initial curves

are represented by

φ(x, y, 0) = tanh
1 −

√
(x/a)2 + (y/b)2√

2ε6
, (4.5)
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Figure 5. (a) Evolution of a circle, (b) evolution of an ellipse and (c) comparison of two

evolutions.

0 0.025 0.05 0.075
0

0.13

0.26

0.39

0.52

Time

Area

analysis
a=b=0.4
a=0.25, b=0.64

Figure 6. The areas of circle and ellipse decrease as time passes.

for the case of circle: a = b = 0.4 and the case of ellipse: a = 0.25, b = 0.64. A

256×256 grid is used on the domain Ω = (−0.8, 0.8)× (−0.8, 0.8). We choose h = 1.6/256,

Δt = 2.5 × 10−5 and the computations run until the final time T = 0.075. Figures 5(a)–(c)

show the evolution of circle and ellipse. From left to right, curve profiles are plotted in

temporal order, t = 0, t = 0.0156, t = 0.0468, and t = 0.078, respectively. In the lower

plot (c), the zero level curve is shown to represent the shrinking curve. Figure 6 shows the

numerical results and theoretical predictions of the decreasing rate of the area.

4.3 Enclosed surface

Theorem 4.3 (Huisken [49]) et γ1 and γ2 the two convex curves evolve according to the

curvature flow in the plane, and γ1 contains the closed curve γ2, then the curve is enclosed

by γ1 for all t ∈ [0, ω).

Proof It is called the containment principle [76]. One can prove this by applying the

comparison principle for parabolic partial differential equations [54]. We let S1(ψ, t)

and S2(ψ, t) be the support functions of γ1 and γ2, respectively. Then, the containment
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a=b=0.3
a=0.3,b=0.2

Figure 7. From left to right, two curves are contour of zero level-set at the following time

t = 0, t = 0.009, t = 0.018, and t = 0.027.

argument, so called, is satisfied by applying the maximum principle of parabolic equations.

One deduces that S2(θ, t) � S1(θ, t) for all t ∈ [0, ω) [29, 58, 76]. �

For example, suppose that the inner circle is enclosed by the outer circle at initial time

t = 0. Then, the inner circle is bounded by the outer circle for all t ∈ (0, ω). In addition to

that, the containment principle holds for the three-dimensional case if one convex-closed

surface Γ1 is enclosed by the other convex-closed surface Γ2. In fact, these follow from

the work by Huisken [49].

To observe that, we perform the test on two-dimensional domain Ω = (0, 1)× (0, 1) with

mesh size h = 1/256, and take the initial condition as

φ(x, y, 0) = tanh
1 −

√
((x− 0.5)/a)2 + ((y − 0.5)/b)2√

2ε6
. (4.6)

Here, the parameters a = b = 0.3 and a = 0.3, b = 0.2 are used for one circle enclosing

the other ellipse. The computations run until final time T = 0.027 with the temporal step

size Δt = 10−5. Figure 7 shows the oval curve is always enclosed by a circle. Thus, the

containment principle is satisfied.

Theorem 4.4 (avoidance principle [29, 76]) Any two smooth solutions of the mean curvature

flow which are disjoint, then they stay disjoint.

By applying the standard comparison principle, we can obtain the same result in higher

dimensions, (see [29] and references therein). For a three-dimensional test we describe the

following sphere which encloses the ellipsoid, (see Figure 8). The computational domain

is Ω = (0, 2) × (0, 2) × (0, 2) with a 128 × 128 × 128 mesh grid and the initial configuration

is given by

φ(x, y, z, 0) = tanh
1 −

√
((x− 1)/a)2 + ((y − 1)/b)2 + ((z − 1)/c)2√

2ε6
.

Here a = b = c = 0.8 and a = 0.8, b = c = 0.6 are used for the sphere and ellipsoid,

respectively. Figures 8(a) and (b) show the zero level-set of the sphere and ellipsoid at

the initial time. Simulations evolved in time are put together to form as shown in Figures

8(c)–(e). This example shows that the mean curvature flow in higher dimensions evolves

convex surfaces into a point, and keeps them disjoint.
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Figure 8. (a) and (b): the zero level isosurfaces of sphere and ellipsoid at initial time. (c)–(e): two

evolutions are plotted together in temporal order.

(a) t = 0 (b) t = 0.016 (c) t = 0.04 (d) t = 0.064

Figure 9. Temporal evolution of a non-convex initial curve. (a) t = 0, (b) t = 0.016, (c) t = 0.04,

(d) t = 0.064.

4.4 Non-convex curve-shortening flow

Theorem 4.5 (Grayson’s convexity theorem) A non-convex embedded curve converges to a

round circle.

It is guaranteed by Grayson [42] that any closed and smooth planar curve converges to

a round circle under the curve-shortening flow. Furthermore, there exists a time t0 such

that the curve is convex for all t ∈ [t0, ω). To verify Grayson’s theorem, we perform a

numerical experiment with a non-convex initial curve as shown in Figure 9(a). Numerical

solutions are obtained on Ω = (0, 1) × (0, 1) using a 256 × 256 mesh grid. ε = ε6 and

Δt = 10−5 are used.

It is also important to note that Grayson’s convexity theorem only holds for the curve-

shortening flow in planar case. In general, it is not satisfied for the mean curvature flow

in more than two-dimensional space. A simple example is a dumbbell-shaped surface in

the three-dimensional space [56].

4.5 Three dimensional cylinder

Theorem 4.6 (Huisken [49]) If a strictly convex surface is evolved by the mean curvature

flow, then it stays convex until it shrinks to a point.
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(a)

(b) t = 0 (c) t = 0.04

(d) t = 0.064 (e) t = 0.08

Figure 10. Motion of a capped off cylinder.

Now we consider the thin cylinder for initial data, which is capped off at two ends, (see

Figure 10(b)). The initial configuration is defined as follows:

φ(x, y, z, 0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tanh
0.4−

√
x2+(y−0.5)2+(z−0.5)2√

2ε6
if |x| < 1.5

tanh
0.4−

√
(x−0.5)2+(y−0.5)2+(z−0.5)2√

2ε6
if x � 1.5

tanh
0.4−

√
(x+1.5)2+(y−0.5)2+(z−0.5)2√

2ε6
if x � −1.5

In the simulation, a 128 × 64 × 64 mesh is used on Ω = (−2, 2) × (0, 1) × (0, 1) and we

employ Δt = 2.0×10−5, T = 0.09 and ε6. Unlike an example of the dumbbell shape in the

three-dimensional space [43], the surface neither pinches off nor splits into two surfaces

as shown in Figures 10(b)–(e).

5 Numerical experiments for the curve-shortening flow with prescribed contact angles

Let γ be a smooth curve with prescribed contact angles ψ1 and ψ2 . If κ is the curvature

and n is the outward unit normal, then we call that γ evolves by the curve-shortening flow

with prescribed angles ψ1 and ψ2 if

∂γ

∂t
(s, t) = κ(s, t)n(s, t) (s, t) ∈ [0, 1] × [0, ω) for some 0 < t < ω,
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ψ1 ψ2

γ

ba

(a)

γ

ψ2

ψ1
a

b

(b)

Figure 11. (a) boundary of the upper half-plane, and (b) boundary of the first quadrant.

ψ1 ψ2

Figure 12. The initial curve with the prescribed contact angles ψ1 and ψ2.

where ψ1 ∈ (0, π) and ψ2 ∈ (−π, 0). Let us first consider the parameterized curve γt :=

X(s, t) = (x(s, t), y(s, t)), then we have

T =
Xs

|Xs|
=

(xs, ys)√
x2
s + y2

s

, n =
(ys,−xs)√
x2
s + y2

x

,

V = (xt, yt) · n, and κ =
Xss

|Xs|2
· n.

If we consider a solution of the curve-shortening flow where the curve γ is represented by

the graph form y = u(x), x ∈ [a, b] where a and b are end points, we have the geometrical

quantities at (x, u(x, t)):

T =
(1, ux)√
1 + u2

x

, n =
(ux,−1)√

1 + u2
x

,

V =
−ut√
1 + u2

x

, and κ =
−uxx

(1 + u2
x)

3
2

=
(arctan ux)x√

1 + u2
x

.

Let a curve γt on interval [a, b] be a smooth solution of the curvature flow, and intersect

with prescribed angles ψ1 and ψ2, on the boundary. Thus, we have the following equations

ut = (arctan(ux))x, x ∈ (a(t), b(t)), t ∈ (0, ω),

u(a, t) = 0, u(b, t) = 0,

ux(a, t) = tanψ1, ux(b, t) = tanψ2.

We begin the numerical experiments with an arc of a circle and radius r = 1. It meets

a boundary with the prescribed contact angles ψ1 = π/4 and ψ2 = −π/4, (see Figure 12).

Here, we consider the effect of ε = εm, where m = 4, 6, 8, and 16 in equation (3.3). The
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Figure 13. The area of an arc decreases with different values of εm.

initial data is given by

φ(x, y, 0) = tanh
1 −

√
x2 + (y − 2/

√
2)2

√
2εm

.

on the domain Ω = (−1, 1) × (0, 1). The numerical solutions are computed on the uniform

grid h = 1/256, temporal step size Δt = 5 × 10−6 and various εm. For each εm where

m = 4, 6, 8 and 16, the calculation is run to time until it vanishes at T4 = 0.1930,

T6 = 0.1825, T8 = 0.1795 and T16 = 0.1735 as shown in Figure 13. The area of a segment

of a circle is equal to π/4 − 1/2 and it vanishes at ω = 0.1817 under the curve-shortening

flow. Note that the solution of the AC equation theoretically follows motion by mean

curvature as ε goes to zero. However, there is a numerical restriction on spatial step size.

Therefore, it is also important to set the value of εm comparing with spatial step sizes. In

the simulations, there is a good match in the ε6 and ε8.

5.1 Losing a graph property

For a smooth curve, we should prescribe contact angles 0 < ψ1 < π, −π < ψ2 < 0 and

|ψ1| + |ψ2| = π with a graphical solution to avoid the blow-up of the graph [22]. We show

an example where a curve evolved by the curvature flow loses the graph property with

the contact angle boundary conditions. Assume that we have the parameterized curve γ(t)

with the same conditions (5.3), but it violates the condition of preserving a graph property.

Then, the curve may pinch off along the boundary, and become singular. Figure 14 shows

the evolution of an arc with prescribed contact angles ψ1 = 154.4◦ and ψ1 = −154.4◦.

The boundary angle conditions are given by

φn+1
i,0 =

{
φn+1
i−2,1 if φn+1

i−1,1 < φn+1
i+1,1,

φn+1
i+2,1 otherwise.
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Figure 14. Evolution of the curve with prescribed angles ψ1 = 154.4◦ and ψ2 = −154.4◦.

We put the upper semi-circle, where the centre of the unit circle is at (1.5, 0), as the initial

condition on domain Ω = (0, 3) × (0, 1.5). The initial configuration is given by

φ0
ij = tanh(1 −

√
(x− 1.5)2 + y2)/

√
2ε6.

The simulation parameters are given by ε6, h = 3/256, Δt = 6.34 × 10−6, and mesh size

256 × 128. Figure 14 shows the evolutions of the curve. In this case, pinching off along

the axis is observed.

5.2 Preserving convexity

Theorem 5.1 A convex curve with contact angles 0 < ψ1 < π/2 and −π/2 < ψ2 < 0

preserves convexity.

Proof As before, we use the support function (4.2) on ψ. By taking derivative in time, the

support function can be written as

∂S

∂t
=
dγ

dt
· (cosψ, sinψ) = κn · (cosψ, sinψ) = −κ =

−1

Sψψ + S
.

The derivative of the curvature κ with respect to time is

dκ

dt
=

(
1

Sψψ + S

)
t

= − 1

(Sψψ + S)2
(Sψψt + St) = −κ2[(−κ)ψψ − κ]

= κ2(κψψ + κ).

By a direct application of the maximum principle, we obtain

min
ψ∈I

κ(ψ, t) � min
ψ∈I

κ(ψ, 0) > 0, t ∈ [0, ω). (5.1)

Now let us assume the curvature κ is bounded below in I := (a(0), b(0)) by λ > 0 for a

convex curve. Set λ > supκ2 on I × [0, ω] and suppose κ < 0 at some point on I . If we

define w = e−λtκ, then minimum of w is negative. Let (ψ̄, t̄) be the minimum point of w

on I . The time derivative of w is as follows

wt = −λe−λtκ+ e−λtκt = −λe−λtκ+ e−λt(κψψ + κ)κ2. (5.2)
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Since we have the minimum at (ψ̄, t̄), the following inequalities hold:

wt(ψ̄, t̄) � 0, w(ψ̄, t̄) < 0 and wψψ � 0.

This means that the equality (5.2) can be written as

wt = −λe−λteλtw + e−λt(eλtwψψ + eλtw)κ2 = −λw + wψψ + wκ2

= w(κ2 − λ) + wψψ > 0.

But this contradicts the assumption. �

5.3 Convergence to a point

Theorem 5.2 If there is a curve intersecting with prescribed contact angles, then shrinking

to an arc of the round circle by the curve-shortening flow needs the following condition:

cosψ1 + cosψ2 = 0.

Proof The area decreases to zero, then it must be a point or a line segment. If the

curvature flow develops a line segment, it is clear that minimum of the curvature is zero.

But we have positive lower bound on κ from (5.1), the curve shrinks to a point when

prescribed angles ψ1 and ψ2 belong to (0, π/2) and (−π/2, 0), respectively.

We consider that the curve segment may not develop a round circle, and then give a

necessary condition which is required as a contact-angle boundary condition for a curve

γt converging to the round circle at t. Let p, q ∈ γt be two points in curve γt at t. We first

define intrinsic distance lt and extrinsic distance dt as follows dt, lt : γt × γt × [0, ω] → �

lt(p, q, t) =

∫ q

p

dst, dt(p, q, t) = |γt(p, t) − γt(q, t)|.

Suppose that the curve γt converges to the segment of circle with perimeter Lt at t. We

define the function by

Φt(p, q) =
πdt
Lt

/
sin

πlt
Lt
.

In addition, we define the embeddedness ratio

E(t) := min
p,q
Φt(p, q).

Since we assume that the curve γt converges to the part of round circle, we have the ratio

E(t) ≡ 1 at t [50].

Next, we set p(s) with p = a and q = b and α := πlt/Lt, by the assumption we have

0 =
d

ds
Φt(p(s), q)

∣∣∣∣
s=0

=
π

Lt

〈p− q, τ(p)〉
dt sin

πlt(p,q)
Lt

− πdt

Lt sin
2 πlt(p,q)

Lt

π cos πlt(p,q)
Lt

Lt
,
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where we denote the oriented unit tangent vector to γt at p by τ(p). By this, we get

cos β(p) =
〈p− q, τ(p)〉

dt
=

πdt

Lt sin
πlt(p,q)
Lt

cos
πlt(p, q)

Lt
= E(t) cos α.

Here β(p) is the angle between the vectors p − q and τ(p). Similarly, we can get the

following equation for the point q

cos β(q) = −E(t) cos α.

Since we assume that E ≡ 1,

cos β(p) + cos β(q) = 0,

where β(a) = ψ1 and β(b) = ψ2. �

5.4 Decreasing area

Consider a solution of the curvature flow where the parameterized curve γ : [0, 1] × � →
�2 is of the graph φ(x, t) : � × � → �+ with fixed endpoint conditions

γ(0, t) = (a(t), 0), γ(1, t) = (b(t), 0),

φ(a(t), t)x = tanψ1, φ(b(t), t)x = tanψ2, 0 < ψ1 <
π

2
and − π

2
< ψ2 < 0,

(5.3)

where �+ is the set of non-negative real numbers, and we note that two points

(a(t), 0), (b(t), 0) ∈ �2, a(t) < b(t) are end points along x-axis. For one dimension,

the equation of the curvature flow is written in the form:

∂u

∂t
=

uxx

(1 + u2
x)

= (arctan ux)x. (5.4)

Theorem 5.3 Assume that prescribed angles 0 < ψ1 < π/2 and −π/2 < ψ2 < 0. Then, the

area enclosed by a curve and boundary decreases with constant speed:

∂A(t)

∂t
= ψ2 − ψ1.

Proof Since we have the graph u(x, t), the area is as follows

A(t) =

∫ a(t)

b(t)

u(x, t)dx.
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When we differentiate it with respect to time t, the Leibniz integral rule gives that

∂A(t)

∂t
=

∫ b(t)

a(t)

∂u(x, t)

∂t
dx+ u(b(t), t)

∂b(t)

∂t
− u(a(t), t)

∂a(t)

∂t

=

∫ b(t)

a(t)

u(x, t)xx
1 + u(x, t)2x

= arctan(u(b(t), t)x) − arctan(u(a(t), t)x)

= ψ2 − ψ1.

The second equality comes from (5.4). Therefore, this implies that, regardless of the shape

of the curve, the area decreases, only depending on contact angles ψ1 and ψ2. If we have

a non-convex curve, we decompose the curve as a union of graphs of subarc functions

α(t) ∈ γ(t). Thus, we have the following result

∂A(t)

∂t
= ψ2 − ψ1. (5.5)

We note that a similar result is found in [70]. �

Corollary 1 If the same area is given, the decrease of the area with contact angles cannot

exceed the decrease of the area without contact angle.

Proof It simply follows by equations (4.4) and (5.5). �

Now, we do numerical tests for the curve-shortening flow in the same contact angles and

different angles, respectively. In the first case, we consider the evolution of curves with the

same contact angles and area, which is enclosed by the curve and boundary, (see Figure

15(a)). Let γ be the non-convex curve consisting of an arc of the circle and line segments

that has the same area as enclosed convex curve’s area. If we assume that the arc is the

portion of the circle with radius r1 = 1, and line segments passing through the centre

(2,
√

2) of the circle with contact angles ψ1 = π/4 and ψ2 = −π/4, then the distance

functions are given by

d1(x, y, 0) = r1 −
√

(x− 2)2 + (y −
√

2)2,

d2(x, y, 0) = x− y − 4 +
√

2,

d3(x, y, 0) = −x− y + 4 +
√

2,

and the union of two line segments is

d4(x, y, 0) =

{
d1(x, y, 0) if d1(x, y, 0) < d2(x, y, 0),

d2(x, y, 0) otherwise.

Then, we have the initial condition,

φ(x, y, 0) = tanh(d3(x, y, 0)/
√

2ε6) + tanh(d4(x, y, 0)/
√

2ε6) + 1,
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Figure 15. (a) non-convex curve the same area and (b) convex curve the same area.

if φ(x, y, 0) > 1, we set φ(x, y, 0) = 1. The initial condition for a convex curve, we set a

sector of the circle with radius r2 to equal the previous one. Thus, we have the following

equation

2 +
3π

4
r21 = r22

(
π

4
− 1

2

)
.

Since r1 = 1, the radius r2 is to be
√

(2 + 0.75π)/(0.25π − 0.5), and the centre is at (0,−√
0.5r22).

The initial condition is given by

φ(x, y, 0) = tanh

((
r −

√
(x− 4)2 + (y +

√
0.5r2)2

)/√
2ε6

)
.

In the second case, we evolve the curves having the same area but different contact

angles. Let ψ1 = 5π/6 and ψ2 = −5π/6 be contact angles conditions for the arc of the

radius r1. We also give contact angle boundary conditions ψ1 = π/4 and ψ2 = −π/4 for

the arc of the circle r2. The evolution of curves is shown in Figure 16. Note that the

area of two segments enclosed by the curve and boundary is satisfied with the following

condition:

r21

(
2π

3
+

√
3

4

)
= r22

(
π

4
− 1

2

)
.

For simulation, we set r1 = 1 and r2 =

√
(2π/3 +

√
3/4)/(π/4 − 1/2). The centres of circles are

given by (4, 0.5) and (4,−√
0.5r22), respectively. Thus, the initial condition for the arc of r1

is given by

φ(x, y, 0) = tanh
[(
r1 −

√
(x− 4)2 + (y − 0.5)2

) /√
2ε6

]
,

and the initial condition for the arc of r2 is to be

φ(x, y, 0) = tanh

[(
r2 −

√
(x− 4)2 + (y +

√
0.5r22)

2

)/√
2ε6

]
.

Therefore, area decreases at constant rate, and the rate only depends on contact angles

as shown in Figures 15 and 16.
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Figure 16. Plot (a) indicates that the evolution of curves. The two curves have the same area but

different contact angles ψ1 = π/4, ψ2 = −π/4 and ψ1 = 5π/6, ψ2 = −5π/6, respectively. (b) Time

evolution of the area. Solid and dotted lines are theoretical values of the arc of a circle with radius

r1 and r2. Circle and triangle symbols are numerical values of the area of the arcs.

r2

r1

(a)

r2/r1
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Figure 17. (a) self-similar solution and (b) the evolution of r2/r1 ratio up to the final time.

5.5 Self-similar solution

Theorem 5.4 (Self-similarity [13, 53, 59, 70]) Let u satisfy equation (5.4) in the first quad-

rant, (see Figure 17). Then, there is a unique self-similar solution as t → ∞.

Proof In this case, the curve-shortening flow with prescribed angles on the boundary of

the first quadrant is considered. If we introduce similarity change of variables U(ξ, τ) and

α(τ):

u(x, t) =
√

2t+ 1U(ξ, τ), a(t) =
√

2t+ 1α(τ),

where ξ = x/
√

2t+ 1 and τ = 0.5 log(2t+1), then we can reformulate the curve-shortening

flow equation for a self-similar solution as follows:

(arctan(Uξ))ξ + ξUξ −U = 0, x ∈ (p, 0),

Uξ(p) = tanψ1,

Uξ(0) = tanψ2,

U(p) = 0.

Then, the solution converges to the self-similar solution as t → ∞. �
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Here, we examine the self-similar solution with prescribed contact angles. For the initial

condition, an arc of the unit circle in the first quadrant is considered. We place its centre

at (0.5, 0.5). The distances r1 and r2 are defined as the maximum and minimum lengths

from the arc to the origin, respectively. For simulation, we take ε6, Δt = 1.58 × 10−6 and

h = 1/256 in unit square domain Ω = (0, 1.5) × (0, 1.5). The simulation is run up until

it shrinks to a point. Figure 17(a) shows the self-similar solutions, and (b) illustrates the

ratio r2/r1 as t → ∞.

6 Conclusions

We have presented the mechanism of the geometric evolutions using the AC equation

with and without contact angles. It is known that the AC equation leads to limiting

dynamics in which the interface evolves by the mean curvature flow. In this paper, we

considered the behaviour of interface by the mean curvature flow, and then we performed

numerical tests to match the geometrical aspects with the limiting solution from the AC

problem. Shrinking to a point, avoidance principle, preserving convexity and self-similar

solutions were demonstrated for the AC equation with and without contact angles. The

results demonstrated that the AC equation is promising in the numerical simulation as

well as a theoretical part with contact angles.
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