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a b s t r a c t 

We propose an efficient and robust algorithm to reconstruct the volumes of multi-labeled objects from 

sets of cross sections without overlapping regions, artificial gaps, or mismatched interfaces. The algorithm 

can handle cross sections wherein different regions have different labels. The present study represents a 

multicomponent extension of our previous work (Li et al. (2015), [1]), wherein we modified the original 

Cahn–Hilliard (CH) equation by adding a fidelity term to keep the solution close to the single-labeled slice 

data. The classical CH equation possesses desirable properties, such as smoothing and conservation. The 

key idea of the present work is to employ a multicomponent CH system to reconstruct multicomponent 

volumes without self-intersections. We utilize the linearly stabilized convex splitting scheme introduced 

by Eyre with the Fourier-spectral method so that we can use a large time step and solve the discrete 

equation quickly. The proposed algorithm is simple and produces smooth volumes that closely preserve 

the original volume data and do not self-intersect. Numerical results demonstrate the effectiveness and 

robustness of the proposed method. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Developing efficient and robust three-dimensional (3D) algo-

rithms for volume reconstruction from series of slice data is highly

important, because 3D volume reconstruction from sequences of

medical images has many practical applications, such as plastic

surgery, medical diagnostic systems, treatment planning, anatomy

teaching, and virtual surgery systems [1,2] (see Fig. 1 (a) and (b)). 

Much research work has been dedicated to reconstructing sur-

faces or volumes from sets of planar cross sections [3–10] . Guo

et al. [3] developed a morphology-based interpolation method for

3D medical image reconstruction. The authors of [4] proposed a

3D volume reconstruct algorithm from serial cross sections us-

ing spline theory, an elastic interpolation algorithm, and the sur-

face consistency theorem. Jones and Chen [5] presented a surface

reconstruction method from a stack of contour slices using

only basic geometric properties. Memari and Boissonnat [6]
∗ Corresponding author. 
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tilized Delaunay triangulation for a volume constrained by cross-

ection curves. The authors of [7] presented a shape-based interpo-

ation scheme for multidimensional images. Liu et al. [8] proposed

 surface reconstruction method from non-parallel networks. Deng

t al. [9] developed a surface reconstruction method for freehand

D ultrasound based on a variational implicit function. Sharma

nd Agarwal [10] developed a method for 3D surface reconstruc-

ion from unorganized planar cross sections using a level-set

unction. 

Recently, we developed a fast and accurate method for volume

econstruction from a set of slice data [11] . The developed method

as based on the Cahn–Hilliard (CH) equation [12] , which achieves

 good smoothing effect and can be applied to image inpainting

roblems [13] . By adding a fidelity term, the modified CH equation

an obtain a smooth volume while keeping the solution close to

he slice data. In the phase-field framework, Bretin et al. [14] pro-

osed a variational approach based on a minimizer of a geometric

egularity criterion with inclusion-exclusion constraints associated

ith the cross sections. All of the above-mentioned reconstruction

ethods can process one region or separated regions, but cannot

rocess contacting regions. That is, if we reconstruct each region

https://doi.org/10.1016/j.patcog.2019.04.006
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Fig. 1. Volume reconstruction procedure from slice data: (a) given slice data and (b) 3D volume reconstruction. 

Fig. 2. Comparison of the results obtained by applying the binary volume reconstruction method twice and the proposed multicomponent volume reconstruction method. 

(a) synthetic slice data, (b) initial shape, (c) volume reconstructed using the binary volume reconstruction method twice, and (d) volume reconstructed using the proposed 

multicomponent volume reconstruction method. (e) and (f) show the half-level contours of (c) and (d) at the middle slice, respectively. (g) and (k) show the closed views of 

(e) and (f), respectively. 

Fig. 3. Comparison between the binary and multicomponent volume reconstructions. (a) and (c) show the given slice data. (b) and (d) show the 3D volume reconstructions 

from (a) and (c), respectively. 
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eparately, then the reconstructed objects may overlap with each

ther (see Fig. 2 ). 

Therefore, we require an efficient and robust algorithm to re-

onstruct the 3D volumes of multi-labeled objects from a set of

ross sections without overlapping regions. Another application

f multicomponent volume reconstruction is to obtain a divided

odel, where the structures are located relatively close to each

ther. Fig. 3 shows separated regions merged together in the bi-
ary volume reconstruction framework. On the other hand, the

ulticomponent volume reconstruction method can keep the re-

ion divided. Recently, several approaches [15–18] have been de-

eloped to work with multiple models. Bermano et al. [15] used

ultiple implicit functions to extract multi-labeled material inter-

aces from sampled planar cross sections of arbitrary orientation.

u and his collaborators [16–18] developed an efficient topology-

ontrolled reconstruction algorithm to reconstruct a multi-labeled
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volume from cross sections. Their algorithms are able to both pro-

duce a smooth multi-material interface and simultaneously satisfy

the topological requirements. Our proposing method will generate

similar results with a simple algorithm. We only solve the govern-

ing partial differential equation to reconstruct multi-labeled vol-

umes from cross sections. 

For multicomponent volume reconstruction, the proposed

method should construct 3D models without overlapping regions,

artificial gaps, or mismatched interfaces. In this study, we propose

an efficient and robust algorithm to reconstruct 3D volumes of

multi-labeled objects from a set of cross sections. The proposed

algorithm can handle cross sections in which different regions are

classified as having different labels. The present study represents

an extension of our previous work [11] . The main contribution of

the present work is to reconstruct multicomponent volumes with-

out self-intersections or gaps. 

The remainder of this paper is organized as follows. In

Section 2 , we briefly review our previous method for binary 3D

reconstruction. Section 3 describes the proposed method for mul-

ticomponent 3D reconstruction. In Section 4 , we describe a prac-

tically stabilized convex splitting scheme for volume reconstruc-

tion, and present an efficient and robust numerical method based

on a Fourier-spectral method. In Section 5 , we present various nu-

merical experiments to demonstrate the efficiency and robustness

of the proposed algorithm. Finally, our conclusions are provided in

Section 6 . 

2. Binary 3D reconstruction 

We briefly review a numerical method [11] for single compo-

nent volume reconstruction using a set of slice data, which will be

extended to a multicomponent volume reconstruction algorithm.

In the single component volume reconstruction algorithm, we first

perform image segmentation for the given slice data using a mod-

ified Allen–Cahn (AC) equation [19–21] . Note that there exists a

level-set-based image segmentation method [22,23] . Next, we re-

construct the volume using a modified CH equation. Let S l for l =
1 , . . . , N l be the given two-dimensional slice data at z = Z l , where

N l is the number of slice data sets. For example, medical slice data

can be obtained from MR images [24] . Let ψ( x, y, Z l ) be the two-

dimensional segmented data obtained using the image segmenta-

tion method, the modified AC equation, on S l . For simplicity, we

assume that the 3D domain is given as � = { x = (x, y, z) | x ∈
(0 , L x ) , y ∈ (0 , L y ) , z ∈ (0 , L z ) } . For ( x , y , z ) ∈ �, let 

ψ(x, y, z) = 

{
ψ(x, y, Z l ) , if z = Z l , 
0 , otherwise . 

be the fidelity term. To obtain a volume fraction function φ and

retrieve the surface as a level set of the function φ, we use the

following modified CH equation with a fidelity term: 

∂φ(x , t) 

∂t 
= �μ(x , t) + λ(x )(ψ(x ) − φ(x , t)) , x ∈ �, 0 < t ≤ T , (1)

μ(x , t) = F ′ (φ(x , t)) − ε2 �φ(x , t) , (2)

φ(x , 0) = φ0 (x ) , (3)

where F (φ) = 0 . 25 φ2 (φ − 1) 2 , ε is a positive constant, and 

λ( x, y, z ) = 

{
λ0 , if z = Z l , 
0 , otherwise . 

Here, φ( x , t ) is a phase-field function, which takes values of ap-

proximately 1 and 0 in the reconstructed volume’s interior and
xterior regions, respectively. Furthermore, φ(x , t) = 0 . 5 represents

he interface of the two phases. The zero Neumann boundary

onditions are applied as the boundary conditions on φ and μ:

 · ∇φ = n · ∇μ = 0 on ∂�, where n is the unit normal vector on

he domain boundary. With an initial condition φ0 ( x ), we apply a

inear interpolation between two consecutive slices as 

0 (x, y, z) = θψ(x, y, Z l+1 ) + (1 − θ ) ψ(x, y, Z l ) , z ∈ [ Z l , Z l+1 ] , (4)

ere, θ = (z − Z l ) / (Z l+1 − Z l ) for l = 1 , . . . , N l − 1 . The surface of

he volume is represented by the half-level set of φ. See Fig. 1 (b)

or the reconstructed surface. If λ0 = 0 , then Eqs. (1) and (2) be-

ome the classical CH equation [12] , which was proposed as

 mathematical equation representing the phase separation, and

as been widely employed to model many scientific phenomena,

uch as image inpainting, spinodal decomposition, tumor growth,

ulti-phase fluid flows, topology optimization, and microstructure

ormations. See [25,26] and references therein for fundamental

rinciples, useful applications, and physical, mathematical, and nu-

erical derivations of the CH equation. Eqs. (1) and (2) in the two-

imensional space have been applied to the image inpainting prob-

em [13] , and here we apply this approach to the 3D volume recon-

truction problem. 

. Multicomponent 3D reconstruction 

We propose a robust and efficient numerical method for mul-

icomponent volume reconstruction using a set of slice data. We

onsider an N -component mixture in a domain �⊂ R 

3 . Let φi =
i (x , t) for i = 1 , . . . , N be the concentration of each component in

he system. Here, x and t are the space and time variables, re-

pectively. The total sum of the components must be equal to 1,

.e., 
∑ N 

i =1 φi = 1 . Let φ = (φ1 , φ2 , . . . , φN ) be a vector-valued phase

eld. The total free energy is given as 

( φ) = 

∫ 
�

( 

F ( φ) + 

ε2 

2 

N ∑ 

i =1 

|∇φi | 2 
) 

dx , (5)

here F (φ) = 

∑ N 
i =1 φ

2 
i 
(φi − 1) 2 / 4 is the free-energy. The temporal

volution of φ is governed by the following multicomponent CH

ystem [25,27,28] : 

∂φi 

∂t 
= �

(
f (φi ) + β̄i ( φ) − ε2 �φi 

)
, i = 1 , . . . , N, (6)

here 

f (φi ) = 

∂F ( φ) 

∂φi 

= φi (φi − 0 . 5)(φi − 1) and β̄i ( φ) 

= − 1 

N 

N ∑ 

j=1 

f (φ j ) . (7)

his variable Lagrangian multiplier enforces that the constraint
 N 
i =1 φi = 1 is satisfied for both space and time. An alternative

hoice for the Lagrangian multiplier is β̄i ( φ) = −φi 

∑ N 
j=1 f (φ j ) ,

hich has the desirable property of preserving small features

29,30] . The Lagrangian multiplier satisfies the following proper-

ies: 

∂ 

∂t 

N ∑ 

i =1 

φi = 

N ∑ 

i =1 

∂φi 

∂t 
= �

( 

N ∑ 

i =1 

f (φi ) + 

N ∑ 

i =1 

β̄i ( φ) − ε2 �
N ∑ 

i =1 

φi 

) 

= �

( 

N ∑ 

i =1 

f (φi ) + 

N ∑ 

i =1 

β̄i ( φ) 

) 

= 0 . (8)

Fig. 4 illustrates the evolution of the multicomponent CH equa-

ion for two overlapping circles in two-dimensional space. From
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Fig. 4. The evolution of the multicomponent CH equation for two overlapping circles in two-dimensional space. From left to right, the snapshots are from t = 0 , 10 0 0 , 20 0 0 , 

and 30 0 0. The green and red lines represent the interface of the two phases. The blue region represents β > 0.05. For interpretation of the references to color in this figure, 

the reader is referred to the web version of this article. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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eft to right, the snapshots represent t = 0 , 10 0 0 , 20 0 0 , and 30 0 0.

he green and red lines represent the interface of the two phases.

he blue region represents β > 0.05. We can see that the variable

agrangian multiplier β prevents the occurrence of self intersec-

ions. Furthermore, when the overlapping region is separated, β
ecomes smaller than 0.05. Finally, we propose the following mod-

fied multicomponent CH equation for multicomponent volume re-

onstruction: 

∂φi 

∂t 
= �

[
f (φi ) + β̄i ( φ) − ε2 �φi 

]
+ λi (ψ i − φi ) for i = 1 , . . . , N, (9)

here 

i (x ) = 

{
λ0 

i 
, if x is in the given slice data for i th component

0 , otherwise . 

ere, λ0 
i 

is a positive constant for the i th component. The zero

eumann boundary conditions are applied: ∇φi · n = 0 on ∂�,

here n is the unit normal vector to ∂�. In the cross sections, the

ifferent regions are classified as having different labels ψ i , where

hese labels represent the concentration of each component in the

ystem and satisfies 

N 
 

i =1 

ψ i = 1 . (10) 

he fidelity term λi (ψ i − φi ) in Eq. (9) can be obtained by

 gradient flow under an L 2 -inner product for the energy,
 

�

∑ N 
i =1 0 . 5 λi (ψ i − φi ) 

2 dx [31] . Taking a summation on both sides

f Eq. (9) , we obtain 

 = 

∂ 

∂t 

N ∑ 

i =1 

φi = 

N ∑ 

i =1 

(
�

[
f (φi ) + β̄i (φ) − ε2 �φi 

]
+ λi (ψ i − φi ) 

)

= 

{ 

λ0 
(∑ N 

i =1 ψ i −
∑ N 

i =1 φi 

)
, if x is in the given slice 

data for ith component , 
0 , otherwise . 

ere, we have applied Eqs. (8) and (10) , λ0 
i 

= λ0 , and the property
 N 
i =1 φi = 1 . 

. Numerical method 

We employ the linearly stabilized splitting scheme introduced

y Eyre [32] with the Fourier-spectral method [33] , which al-

ows for large time steps. We assume that there are N l slices

ith N x × N y pixels on the 3D space � = (0 , L x ) × (0 , L y ) × (0 , L z ) ,

here N x and N y are even integers. Let N z = N l + (N l − 1) I, where

 is the number of slices inserted between consecutive slice data

ets. Note that if N + (N − 1) I is odd, then we set N z = (N −
l l l 
)(I + 1) , which implies that we use I slices between any two

iven successive slice data sets except for I − 1 slices for the first

wo sets. Let x m 

= (2 m − 1) L x / (2 N x ) , y n = (2 n − 1) L y / ( 2 N y ) , z k =
(2 k − 1) L z / (2 N z ) , for 1 ≤ m ≤ N x , 1 ≤ n ≤ N y , and 1 ≤ k ≤ N z , where

 z is an even integer. Furthermore, let φs 
i,mnk 

be an approximation

f φi ( x m 

, y n , z k , s �t ), where �t is the time step. The discrete cosine

ransform 

ˆ φs 
i,pqr 

for p = 1 , . . . , N x , q = 1 , . . . , N y , and r = 1 , . . . , N z 

s defined as 

ˆ φs 
i,pqr = αp βq γr 

N x ∑ 

m =1 

N y ∑ 

n =1 

N z ∑ 

k =1 

φs 
i,mnk cos (x m 

πξp ) cos (y n πηq ) cos (z k πνr ) , 

here 

αp = 

{√ 

1 /N x , p = 1 √ 

2 /N x , 2 ≤ p ≤ N x 

, βq = 

{√ 

1 /N y , q = 1 √ 

2 /N y , 2 ≤ q ≤ N y 

, 

γr = 

{√ 

1 /N z , r = 1 √ 

2 /N z , 2 ≤ r ≤ N z . 

he variables ξ p , ηq , and νr are defined as ξp = (p − 1) /L x , ηq =
(q − 1) /L y , and νr = (r − 1) /L z , respectively. The inverse discrete

osine transform is 

s 
i,mnk = 

N x ∑ 

p=1 

N y ∑ 

q =1 

N z ∑ 

r=1 

αp βq γr ̂
 φs 
i,pqr cos (ξp πx m 

) cos (ηq πy n ) cos (γr πz k ) . (11) 

e apply the linearly stabilized splitting scheme [32] to Eq. (9) : 

φs +1 
i,mnk 

− φs 
i,mnk 

�t 
= �

(
f (φs 

i,mnk ) − 2 φs 
i,mnk + 2 φs +1 

i,mnk 

+ β̄s 
i,mnk − ε2 �φs +1 

i,mnk 

)
+ λi,mnk (ψ i,mnk − φs 

i,mnk ) . (12) 

hus, Eq. (12) can be transformed into the discrete cosine space as

ollows: 

ˆ φs +1 
i,pqr 

− ˆ φs 
i,pqr 

�t 
= −

[
(ξp π) 2 + (ηq π) 2 + (γr π) 2 

]
×
(

ˆ f s i,pqr − 2 ̂

 φs 
i,pqr + 2 ̂

 φs +1 
i,pqr 

+ 

ˆ β̄s 
i,pqr 

+ ε2 [(ξp π) 2 + (ηq π) 2 + (γr π) 2 ] ̂  φs +1 
i,pqr 

)
+ 

ˆ g s i,pqr . 

ere, we have employed the discrete cosine transform for the

aplacian operator, which is defined as 

ˆ φs 
i,pqr = −[(ξp π) 2 + (ηq π) 2 + (γr π) 2 ] ̂  φs 

i,pqr . 

urthermore, ˆ f s 
i,pqr 

, 
ˆ β̄s 

i,pqr 
, and ˆ g s 

i,pqr 
denote the discrete cosine
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transforms of f (φs 
i,mnk 

) , β̄s 
i,mnk 

, and λi,mnk (ψ i,mnk − φs 
i,mnk 

) , respec-

tively. Therefore, we obtain the following discrete cosine transform 

ˆ φs +1 
i,pqr 

= 

ˆ φs 
i,pqr 

+ �t ̂  g s 
i,pqr 

− [(ξp π) 2 + (ηq π) 2 + (γr π) 2 ]�t( ̂  f s pqr +
1 + 2[(ξp π) 2 + (ηq π) 2 + (γr π) 2 ]�t + ε2 [(ξp π) 2 + (ηq π

The corresponding function φs +1 
i,mnk 

can be computed using Eq. (11) .

The main contributions of the proposed method include the fol-

lowing. (i) The proposed method can construct 3D volumes with-

out artificial gaps and noises because it uses the multicomponent

CH system; (ii) the proposed method can obtain 3D volumes with-

out overlapping regions and mismatched interfaces, because the

different regions are classified as having different labels, and our

method satisfies 
∑ N 

i =1 φi = 1 ; (iii) the proposed numerical method

in Eq. (12) can achieve fast convergence; and (iv) the proposed al-

gorithm is simple to implement. 

5. Numerical results 

In this section, we present numerical examples that demon-

strate the efficiency and quality of our proposed multicomponent

volume reconstruction algorithm. In particular, we show that our

method easily handles topological changes, and performs quickly

with non-uniform and noisy data. We regard a numerical result

as a steady state solution if the relative error for every component,

i.e., ‖ φs +1 
i 

− φs 
i 
‖ 2 / ‖ φs 

i 
‖ 2 for i = 1 , . . . , N, is less than a tolerance tol .

Here, ‖ · ‖ 2 denotes the discrete l 2 -norm. Unless otherwise speci-

fied, we set ε = εm 

= m/ [4 
√ 

2 tanh 

−1 (0 . 9)]) [26] , L x = N x , L y = N y ,

and L z = N z . The last term in Eq. (9) is a fidelity term that enforces

that the updated value ( φ) is equal to the given value ( ψ). Further-

more, λi balances the diffusion and fidelity terms. By ignoring the

effect of diffusion in Eq. (9) , we obtain 

∂φi 

∂t 
= λi (ψ i − φi ) . (13)

Because Eq. (13) is a separable ordinary differential equation, i.e.,

λi d t + 

1 
φi −ψ i 

d φi = 0 , we obtain the following solution with the ini-

tial condition φs 
i 
: 

φs +1 
i 

= ψ i + e −λi �t (φs 
i − ψ i ) . (14)

As shown in Fig. 5 , if λ0 is larger than 5/ �t , then φs +1 ≈ ψ for any

time, which implies that even smaller noises will remain present.

We can also derive that if λ0 < 0.1/ �t , then φs +1 differs more from

ψ , which implies that the numerical solution obtained by our

proposed method cannot preserve the original topological shape.

Therefore, we suggest setting 0.1/ �t < λ0 < 5/ �t . 
Fig. 5. Logplot of e −λ0 �t via λ0 �t . 

i  

s  

T

L

o

b

r − 2 ̂

 φs 
pqr ) 

(γr π) 2 ] 2 �t 
. 

Fig. 6 (a)–(c) show the slice data with 5% salt and pepper noise,

he initial shape with the interpolation, and the exact solution,

espectively. By setting λ0 = 10 and ε = ε6 , we can remove the

oise from the original volume and reconstruct a good volume

see Fig. 6 (d)). If λ0 is too large, then the fitting term is domi-

ant, and the restored volume tends to become the original one

ith noise (see Fig. 6 (e)). As shown in Fig. 6 (f), if λ0 is too small,

hen the motion by diffusion is dominant, and the reconstructed

olume is overly smooth. For a fixed λ0 = 10 , we take the same

nitial condition except for different ε = ε2 and ε = ε20 . From the

esults shown in Fig. 6 (g) and (h), we can observe that when ε is

oo small, the interfacial transition is too sharp. On the other hand,

f ε is too large, then the details of the volume are lost. Therefore,

e set the time step �t = 0 . 1 , λ0 = 10 , and tol = 0 . 001 . For sim-

licity, we define the volume of each component as { φi ≥ 1/2}. The

roposed algorithm is implemented in MATLAB and tested on a

.4 GHz PC with 16GB main memory. The CPU time is measured in

econds. Table 1 presents the information on the numbers of data

oints, iteration numbers, and CPU times. We can observe that the

roposed method achieves fast convergence. 

Fig. 7 shows the average CPU times (in seconds) against

 x N y N z log ( N x N y N z ). Here, the average CPU time is defined as the

otal CPU time over all time iterations and the number of com-

onents. To demonstrate the convergence rate, we present the fit-

ing plots together. The result suggests that our proposed method

chieves O ( N x N y N z log ( N x N y N z )) efficiency owing to the fast Fourier

ransform solver. 

The following numerical example is performed to demonstrate

he quality of our proposed method. Here, three synthetic func-

ions are implicitly defined, for which we can actually compute the

rrors using a theoretical analysis: 

(x ) = tanh [(25 −
√ 

(x − 40) 2 + (y − 90) 2 ) / ( 
√ 

2 ε)] , 

(x ) = tanh [(12 −
√ 

(x − 40) 2 + (y − 40) 2 + 0 . 1 z) / ( 
√ 

2 ε)] , 

(x ) = tanh [(32 −
√ 

(x − 90) 2 + (y − 64) 2 + (z − 64) 2 ) / ( 
√ 

2 ε)]

he domain � = (0 , 128) × (0 , 128) × (0 , 130) is utilized. We take

6 slices obtained using the given synthetic function ψ( x ). We in-

ert four slices between any two consecutive slice data sets. The

imulation is run up to 11 iterations and takes 36.41 s, which im-

lies that our method achieves the reconstruction very quickly.

rom left to right, the first two figures in Fig. 8 show the zero-

sosurfaces of the numerical solution from different views. The

econd two figures present a comparison between the reference
able 1 

ist of data information, iterations, numbers of components, and CPU times (sec- 

nd). ‘CPU’ is the time required to process the volume reconstruction, I is the num- 

er of inserted slices between consecutive slice data sets, and ‘NC’ is the number of 

components. 

Case ( N x × N y , N l ) I Used Grid size Iteration NC CPU 

Fig. 8 (128 × 128, 26) 4 128 × 128 × 126 11 3 36.41 

Fig. 10 (256 × 256, 26) 4 256 × 256 × 126 8 5 108.72 

Fig. 11 (b) (164 × 178, 105) 1 164 × 178 × 208 15 2 103.18 

Fig. 11 (c) (164 × 178, 53) 3 164 × 178 × 208 14 2 98.52 

Fig. 11 (d) (164 × 178, 35) 5 164 × 178 × 204 17 2 129.85 

Fig. 12 (b) (236 × 342, 28) 1 236 × 342 × 54 5 2 28.12 

Fig. 12 (c) (236 × 342, 28) 5 236 × 342 × 162 20 2 117.45 

Fig. 13 (168 × 210, 43) 4 168 × 210 × 210 6 2 92.13 

Fig. 14 (128 × 128, 33) 3 128 × 128 × 128 12 2 30.898 

Fig. 15 (196 × 416, 54) 3 196 × 416 × 212 18 3 234.80 

Fig. 16 (370 × 270, 70) 2 370 × 270 × 208 10 5 353.85 
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Fig. 6. Parameter sensitivity analysis for λ0 and ε. (a) slice data with 5% salt and pepper noises. (b) initial shape with the interpolation. (c) exact solution. (d-h) reconstructed 

volumes with different parameters. The adopted parameters are shown below each figure. 

Fig. 7. The average CPU time (seconds) vs N x N y N z log ( N x N y N z ). 
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circle) and the numerical (solid) solutions in different planes. We

an see that the numerical results agree with the theoretical val-

es. 

Second, we consider the multicomponent volume reconstruc-

ion from two slice data sets (as shown in Fig. 9 (a)), which is a

imilar test presented in [17] . In [17] , Huang et al. compared their

esults with related multi-labeled methods [15,16] , with which it

s difficult to create a single connected green structure that tun-

els through the yellow structure. Huang’s method [17] created a
eometrically valid material interface with the desired genus for

oth labels. Our method also simultaneously satisfies the topolog-

cal requirements as shown in Fig. 9 (b)–(d). The comparison with

uang’s method [17] is in some way unfair because the algorithm

n [17] allows the human-computer interaction, such as by scrib-

ling. On the other hand, our approach can obtain the similar

esults with simply solving the governing partial differential equa-

ions. Furthermore, the advantage of this approach is easy to im-

lementation and is guaranteed to produce well volume, because

nly a partial differential equation should be solved. As a result,

ur method can be incorporated into other processing, for exam-

le volume segmentation and object recognition. A Fourier-spectral

ethod is performed for the discrete equation, therefore higher

omputational efficiency can be obtained as shown in Table 1 and

ig. 7 . Our method is also compatibility with other numerical

ethods such as finite difference method, finite element method,

nite volume method, etc. 

Next, we consider five 3D linked tori, which are labeled with

ifferent colors. Twenty-six slice data sets are used, and we insert

ve slices between any two consecutive slice data sets. The results

re shown in Fig. 10 . From left to right, the first and second two

gures show the initial shapes obtained by linear interpolation and

he final result for our proposed method, respectively. As can be

btained in Fig. 10 , we obtain a smoothly linked volume. 

Next, we consider the effect of the number of slice data sets.

rom the exact solution defined on the uniform domain and shown

n Fig. 11 (a), we can choose different numbers of slice data sets as

he initial shape. We can fill the missing slices and reconstruct the

olume using the proposed method. Fig. 11 (b)–(d) show the nu-

erical solutions with 105, 53, and 35 slice data sets, respectively.
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Fig. 8. Accuracy test for our method. From left to right, the first two figures show the zero-isosurface of the numerical solution from different views. The second two figures 

present a comparison between the reference (circle) and numerical (solid) solutions in different planes. 

Fig. 9. Comparison of a related multi-labeled method. (a) input two given slices. (b-d) volume reconstructed with our method in the whole domain and divided domain. 

Note that a similar test was performed in [17] . 

Fig. 10. Volume reconstruction for five 3D linked tori. From left to right, the first and second figures show the initial shapes obtained by linear interpolation and the final 

result for our proposed method, respectively. 

Fig. 11. Comparison results with different numbers of slice data sets. (a) the exact solution on the uniform domain. (b), (c), and (d) show the reconstructed volumes with 

105, 53, and 35 slice data sets, respectively. 
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For a small number of slice data sets, the solution is not of a high

quality. However, its qualitative correctness demonstrates the ro-

bustness and efficiency of our proposed method. Furthermore, we

can observe that as the number of slice data sets increases, the

structure of the armadillo becomes more sharply pronounced, and

is much closer to the exact solution. 
Fig. 12 presents our reconstruction results for the dragon model.

eginning with the same slice data as shown in Fig. 12 (a), we can

econstruct the volume on different mesh grids. The mesh grids in

ig. 12 (b) and (c) are of size 236 × 342 × 54 and 236 × 342 × 162,

espectively. The results suggest that even with a coarse grid we

an obtain a reasonably good reconstructed volume. 
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Fig. 12. Reconstruction results for the dragon model. (a) slice data. (b) recon- 

structed volume on a 236 × 342 × 54 mesh grid. (c) reconstructed volume on a 

236 × 342 × 162 mesh grid. 
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In Fig. 13 , we illustrate the volume reconstruction for slice

ata with 10% random noise. Fig. 13 (a) and (b) display the ex-

ct solution and slice data with 10% random noise, respectively.

ig. 13 (c) and (d) show the initial shape with interpolation and the
ig. 13. Volume reconstruction for the slice data with 10% random noise. (a) exact solut

econstructed volume. 

ig. 14. Volume reconstruction results of triply-periodic minimal surfaces. From left to 

omain, respectively. The green and yellow regions represent the Schwarz diamond and S

olor in this figure legend, the reader is referred to the web version of this article.) 
econstructed volume, respectively. We observe that the noise in

he bunny is effectively removed, and the resulting volumes are

mooth. 

Fig. 14 shows the reconstructed volumes of triply-periodic

inimal surfaces, which have constant constant mean curvature

verywhere on the surface. Because the geometry of a triply

eriodic minimal surface strongly influences the physical proper-

ies of the material, the triply-periodic minimal surface has been

idely employed for natural or man-made structures [34] . We gen-

rated initial configurations with the desired topology and 0.5 vol-

me fraction using a modified Allen–Cahn equation [35] . Let ˆ φ1 

nd 

ˆ φ2 denote the volume of the Schwarz diamond and Schoen’s

-RD minimal surface, respectively. Then, we define the concentra-

ions of the two components φ1 and φ2 as follows: 

1 = 

{
1 − ˆ φ2 , if ˆ φ1 > 0 . 05 and 

ˆ φ1 + 

ˆ φ2 > 1 , 

ˆ φ1 , otherwise . 
(15) 

2 = 

ˆ φ2 . (16) 

e choose 33 slices as the given slice data. There are three slices

etween any two consecutive slices except for the first two sets,

etween which we use two slices. The results in Fig. 14 suggest

hat our proposed method can perform well for triply-periodic

inimal surfaces. The green and yellow regions represent the

chwarz diamond and Schoen’s F-RD minimal surface, respectively.

The volume reconstruction results for a dragon model, which

as complex topology structures, are presented in Fig. 15 . We ob-

erve that our proposed method can easily handle the complex ge-

metric shapes, and the reconstructed volume is smooth. 

Finally, we demonstrate the performance of our algorithm on

he thoracic organ data set. As shown in Fig. 16 (a), the input slice

ata are not well defined as some labels are created in image seg-

entation processing. As shown in Fig. 16 (b), the result demon-

trates the ability of our algorithm to smoothly reconstruct a com-

lex anatomical shape with real data sets. 
ion. (b) slice data with 10% random noises. (c) initial shape with interpolation. (d) 

right, we present the multicomponent volumes in the whole domain and divided 

choen’s F-RD minimal surface, respectively. (For interpretation of the references to 
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Fig. 15. Volume reconstruction results of the dragon model. (a) initial shape with interpolation. (b) reconstructed volume. 

Fig. 16. The thoracic organ data set. (a) initial shape with interpolated volume. (b) reconstruction. 
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6. Conclusion 

We have proposed an efficient and robust algorithm to re-

construct the volumes of multi-labeled objects from sets of cross

sections. The proposed algorithm can handle cross sections in

which different regions are classified as having different labels. The

present study represents an extension of our previous work [11] ,

in which we modified the original CH equation by adding a fidelity

term to keep the solution close to the single-labeled slice data. The

CH equation is defined on R 

3 , and achieves a smoothing effect so

that we obtain a smooth interpolating volume. The key idea of the

present work is to reconstruct multicomponent volumes without

self-intersections or gaps. The proposed numerical method, based

on operator splitting techniques, can employ a large time-step size.

Our algorithm is simple to implement. Many experimental results

have demonstrated the effectiveness of the proposed method. In

its current form, the algorithm creates a smooth surface and re-

duces outliers or noise, but it is difficult to achieve a high accu-

racy on a sharp surface. It should be noted that the solution to

the CH equation is in [0 − δ, 1 + δ] , where δ is a small value re-

lated to the thickness ε [27,28] . As ε → 0, δ will become zero. In

practical simulations, ε should not be too small. In future work,

we will present a modified multiphase CH equation that is strictly

contained in the interval [0, 1]. Furthermore, to speed up the com-

putation and improve the accuracy of the numerical solution, we

will investigate a GPU implementation, develop an adaptive mesh

refinement solver for the current algorithm, and apply the four-

color labeling method [36] . Another interesting direction for future

research would be to reconstruct multicomponent volumes from

unorganized planar cross sections. 
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