
mathematics

Article

Nonlinear Multigrid Implementation for the
Two-Dimensional Cahn–Hilliard Equation

Chaeyoung Lee 1 , Darae Jeong 2, Junxiang Yang 1 and Junseok Kim 1,*
1 Department of Mathematics, Korea University, Seoul 02841, Korea; chae1228@korea.ac.kr (C.L.);

nexusxiang@outlook.com (J.Y.)
2 Department of Mathematics, Kangwon National University, Chuncheon-si 200-090, Korea;

tinayoyo@kangwon.ac.kr
* Correspondence: cfdkim@korea.ac.kr

Received: 19 December 2019; Accepted: 4 January 2020; Published: 7 January 2020
����������
�������

Abstract: We present a nonlinear multigrid implementation for the two-dimensional Cahn–Hilliard
(CH) equation and conduct detailed numerical tests to explore the performance of the multigrid
method for the CH equation. The CH equation was originally developed by Cahn and Hilliard to
model phase separation phenomena. The CH equation has been used to model many interface-related
problems, such as the spinodal decomposition of a binary alloy mixture, inpainting of binary images,
microphase separation of diblock copolymers, microstructures with elastic inhomogeneity, two-phase
binary fluids, in silico tumor growth simulation and structural topology optimization. The CH
equation is discretized by using Eyre’s unconditionally gradient stable scheme. The system of discrete
equations is solved using an iterative method such as a nonlinear multigrid approach, which is one of
the most efficient iterative methods for solving partial differential equations. Characteristic numerical
experiments are conducted to demonstrate the efficiency and accuracy of the multigrid method for
the CH equation. In the Appendix, we provide C code for implementing the nonlinear multigrid
method for the two-dimensional CH equation.

Keywords: Cahn–Hilliard equation; multigrid method; unconditionally gradient stable scheme

MSC: 65N06; 65N55

1. Introduction

In this paper, we consider a detailed multigrid [1] implementation of the following
two-dimensional Cahn–Hilliard (CH) equation [2] and provide its C source code:

∂φ(x, y, t)
∂t

= M∆µ(x, y, t), (x, y) ∈ Ω, t > 0,

µ(x, y, t) = F′(φ(x, y, t))− ε2∆φ(x, y, t),

where φ is a conserved scalar field; M is the mobility; F(φ) = 0.25(φ2 − 1)2 is the free energy function
(see Figure 1); ε is the gradient interfacial energy coefficient; and Ω ⊂ R2 is a bounded domain.

Mathematics 2020, 8, 97; doi:10.3390/math8010097 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-1120-2455
https://orcid.org/0000-0002-0484-9189
http://dx.doi.org/10.3390/math8010097
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/1/97?type=check_update&version=2

Mathematics 2020, 8, 97 2 of 23

Figure 1. Double-well potential F(φ) = 0.25(φ2 − 1)2.

The homogeneous Neumann boundary conditions are used and are given as follows:

n · ∇φ = 0, (1)

n · ∇µ = 0 on ∂Ω. (2)

Here, n is the unit normal vector on the domain boundary ∂Ω. The first boundary condition (1)
implies that the interface contacts the domain boundary at a 90◦ angle. The second boundary
condition (2) implies that the total mass is conserved.

We can derive the CH equation from the following total free energy functional

E(φ) =
∫

Ω

[
F(φ) +

ε2

2
|∇φ|2

]
dx.

Taking the variational derivative of E with respect to φ, we define the chemical potential:

µ =
δE
δφ

= F′(φ)− ε2∆φ.

Conservation of mass implies the following CH equation

φt = −∇ · F ,

where the flux is given by F = −M∇µ. If we differentiate E(φ) and
∫

Ω φ dx with respect to time t,
then we have

d
dt
E(φ) =

∫
Ω

[
F′(φ)φt + ε2∇φ · ∇φt

]
dx =

∫
Ω

µφt dx = M
∫

Ω
µ∆µ dx

= M
∫

∂Ω
µ∇µ · n ds−M

∫
Ω
∇µ · ∇µ dx = −M

∫
Ω
|∇µ|2 dx ≤ 0 (3)

and

d
dt

∫
Ω

φ dx =
∫

Ω
φt dx = M

∫
Ω

∆µ dx = M
∫

∂Ω
∇µ · n ds = 0, (4)

which imply that the total energy is decreasing and that the total mass is conserved in time, respectively.
The CH equation was originally developed by Cahn and Hilliard to model spinodal decomposition in
a binary alloy. The CH equation has been used to address many major problems such as the spinodal
decomposition of a binary alloy mixture [3,4], inpainting of binary images [5,6], microphase separation
of diblock copolymers [7,8], microstructures with elastic inhomogeneity [9,10], two-phase binary
fluids [11,12], tumor growth models [13–15] and structural topology optimization [14,16]. Further
details regarding the basic principles and practical applications of the CH equation are available in

Mathematics 2020, 8, 97 3 of 23

a recent review [14]. Thus, knowing how to implement a discrete scheme for the CH equation in
detail is very useful because this equation is a building-block equation for many applications. The CH
equation is discretized by using Eyre’s unconditionally gradient stable scheme [17] and is solved by
using a nonlinear multigrid technique [1], which is one of the most efficient iterative methods for
solving partial differential equations. Several studies have used the nonlinear multigrid method for the
CH-type equations [18–23]. However, details regarding the implementation, multigrid performance,
and source codes have not been provided.

Therefore, the main purpose of this paper is to describe a detailed multigrid implementation of
the two-dimensional CH equation, evaluate its performance and provide its C programming language
source code.

The remainder of this paper is organized as follows. In Section 2, we describe the numerical
solution in detail. In Section 3, we describe the characteristic numerical experiments that are conducted
to demonstrate the accuracy and efficiency of the multigrid method for the CH equation. In Section 4,
we provide a conclusion. In the Appendix A, we provide the C code for implementing the nonlinear
multigrid technique for the two-dimensional CH equation.

2. Numerical Solution

We consider a finite difference approximation for the CH equation. An unconditionally gradient
energy stable scheme, which was proposed by Eyre, is applied to the time discretization. A nonlinear
multigrid technique [1] is applied to solve the resulting system at an implicit time level.

2.1. Discretization

We discretize the CH equation in the two-dimensional space Ω = (a, b)× (c, d). Let Nx = 2p

and Ny = 2q be the numbers of mesh points with integers p and q. Let ∆x = (b − a)/Nx

and ∆y = (d − c)/Ny be the mesh size. Let Ωij = {(xi, yj) : xi = a + (i − 0.5)∆x, yj =

c + (j − 0.5)∆y, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be a discrete computational domain. Let φn
ij and

µn
ij be approximations of φ(xi, yj, tn) and µ(xi, yj, tn), respectively. Here, tn = n∆t and ∆t represent the

temporal step. We assume a uniform mesh grid h = ∆x = ∆y and a constant mobility M = 1. Using
the nonlinear stabilized splitting scheme of Eyre’s unconditionally gradient stable scheme, the CH
equation is discretized as

φn+1
ij − φn

ij

∆t
= ∆hµn+1

ij , (5)

µn+1
ij = (φn+1

ij)3 − φn
ij − ε2∆hφn+1

ij , (6)

where the discrete Laplace operator is defined by ∆hψij = (ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψij)/h2.
The homogeneous Neumann boundary conditions (1) and (2) are discretized as

φ0j = φ1j, φNx+1,j = φNx ,j, µ0j = µ1j, µNx+1,j = µNx ,j, j = 1, . . . , Ny, (7)

φi0 = φi1, φi,Ny+1 = φi,Ny , µi0 = µi1, µi,Ny+1 = µi,Ny , i = 1, . . . , Nx. (8)

We define the discrete residual as

rij = ∆hµn+1
ij −

φn+1
ij − φn

ij

∆t
. (9)

For each element aij of size Nx × Ny in matrix A, we define the Frobenius norm with a scaling
and infinite norm as

‖A‖F =

√√√√∑Nx
i=1 ∑

Ny
j=1 |aij|2

Nx Ny
and ‖A‖∞ = max

1≤i≤Nx ,1≤j≤Ny
|aij|, (10)

Mathematics 2020, 8, 97 4 of 23

respectively. The discretizations (5) and (6) are conservative, that is,

Nx

∑
i=1

Ny

∑
j=1

φn+1
ij =

Nx

∑
i=1

Ny

∑
j=1

φn
ij. (11)

To show this conservation property, we take the summation of Equation (5)

Nx

∑
i=1

Ny

∑
j=1

φn+1
ij − φn

ij

∆t
=

Nx

∑
i=1

Ny

∑
j=1

∆hµn+1
ij (12)

=
Ny

∑
j=1

(
µn+1

Nx+1,j − µn+1
Nx j

h2 −
µn+1

1j − µn+1
0j

h2

)

+
Nx

∑
i=1

µn+1
i,Ny+1 − µn+1

iNy

h2 − µn+1
i1 − µn+1

i0
h2

 = 0.

Here, we used the homogenous Neumann boundary conditions (7) and (8). Therefore,
Equation (11) holds. We define the discrete energy functional as

E h(φn) = h2
Nx

∑
i=1

Ny

∑
j=1

F(φn
ij) (13)

+
ε2

2

Ny

∑
j=1

(
(φn

1j − φn
0j)

2

2
+

Nx−1

∑
i=1

(φn
i+1,j − φn

ij)
2 +

(φn
Nx+1,j − φn

Nx j)
2

2

)

+
ε2

2

Nx

∑
i=1

(
(φn

i1 − φn
i0)

2

2
+

Ny−1

∑
j=1

(φn
i,j+1 − φn

ij)
2 +

(φn
i,Ny+1 − φn

iNy
)2

2

)

= h2
Nx

∑
i=1

Ny

∑
j=1

F(φn
ij) +

ε2

2

Ny

∑
j=1

Nx−1

∑
i=1

(φn
i+1,j − φn

ij)
2 +

ε2

2

Nx

∑
i=1

Ny−1

∑
j=1

(φn
i,j+1 − φn

ij)
2,

where we used the homogenous Neumann boundary conditions (7) and (8). We also define the discrete
total mass as

Mh(φn) =
Nx

∑
i=1

Ny

∑
j=1

φn
ijh

2. (14)

Then, the unconditionally gradient stable scheme satisfies the reduction in the discrete total
energy [24]:

E h(φn+1) ≤ E h(φn), (15)

which implies the pointwise boundedness of the numerical solution:

‖φn‖∞ ≤
√

1 + 2
√
E h(φ0)/h2 for all n. (16)

The proof of Equation (16) can be found in Reference [25]. We provide the proof herein for the sake
of completeness. We show that a constant K exists for all n values that satisfy the following inequality:

‖φn‖∞ ≤ K. (17)

Mathematics 2020, 8, 97 5 of 23

Let us assume that there is an integer nK that is dependent on K such that ‖φnK‖∞ > K for any
K. Then, φnK

ij exists such that |φnK
ij | > K. Let K be the largest solution of E h(φ0) = h2F(K), that is,

K =

√
1 + 2

√
E h(φ0)/h2. We then have

E h(φ0) = h2F(K) < h2F(|φnK
ij |) ≤ E h(φnK) ≤ E h(φ0), (18)

where we utilize the fact that the total energy is decreasing and F(φ) is a strictly increasing function on
(K, ∞). Equation (18) leads to a contradiction. Therefore, Equation (17) should be satisfied.

2.2. Multigrid V-Cycle Algorithm

We use the nonlinear full approximation storage (FAS) multigrid method to solve the nonlinear
discrete systems (5) and (6). For simplicity, we define the discrete domains, Ω2, Ω1, and Ω0, which
represent a hierarchy of meshes (Ω2, Ω1, and Ω0) created by successively coarsening the original mesh
Ω2, as shown in Figure 2.

(a) Ω2 (8× 8)h (b) Ω1 (4× 4)h

(c) Ω0 (2× 2)h (d)

Figure 2. (a–c) represent a sequence of coarse grids starting with h = L/Nx. (d) depicts a composition
of grids, Ω2, Ω1 and Ω0.

We summarize here the nonlinear multigrid method for solving the discrete CH system as follows:
First, let us rewrite Equations (5) and (6) as

NSO(φn+1, µn+1) = (ξn, ψn),

Mathematics 2020, 8, 97 6 of 23

where the linear operator NSO is defined as

NSO(φn+1, µn+1) =
(

φn+1/∆t− ∆hµn+1, µn+1 − (φn+1)3 + ε2∆hφn+1
)

,

and the source term is denoted by

(ξn, ψn) = (φn/∆t, − φn) . (19)

Next, we describe the multigrid method, which includes the pre-smoothing, coarse grid correction
and post-smoothing steps. We denote a mesh grid Ωk as the discrete domain for each multigrid level
k. Note that a mesh grid Ωk contains 2k × 2k grid points. Let kmin be the coarsest multigrid level.
We now introduce the SMOOTH and V-cycle functions. Given the number ν1 of pre-smoothing and
ν2 of post-smoothing relaxation sweeps, the V-cycle is used as an iteration step in the multigrid method.

FAS multigrid cycle

Now, we define the FAScycle:

{φm+1
k , µm+1

k } = FAScycle(k, φm
k , µm

k , NSOk, ξn
k , ψn

k , β).

In other words, {φm
k , µm

k } and {φm+1
k , µm+1

k } are the approximations of φn+1(xi, yj) and
µn+1(xi, yj) before and after an FAScycle, respectively. Here, φ0

k = φn
k and µ0

k = µn
k .

(1) Pre-smoothing

{φ̄m
k , µ̄m

k } = SMOOTHν1(φm
k , µm

k , NSOk, ξn
k , ψn

k),

which represents ν1 smoothing steps with the initial approximations φm
k , µm

k , source terms ξn
k , ψn

k
and the SMOOTH relaxation operator to obtain the approximations φ̄m

k , µ̄m
k . One SMOOTH relaxation

operator step consists of solving the systems (22) and (23), given as follows by 2× 2 matrix inversion
for each i and j. Here, we derive the smoothing operator in two dimensions. Rewriting Equation (5),
we obtain:

φn+1
ij

∆t
+

4µn+1
ij

h2 = ξn
ij +

µn+1
i+1,j + µn+1

i−1,j + µn+1
i,j+1 + µn+1

i,j−1

h2 . (20)

Because (φn+1
ij)3 is nonlinear with respect to φn+1

ij , we linearize (φn+1
ij)3 at φm

ij , that is,

(φn+1
ij)3 ≈ (φm

ij)
3 + 3(φm

ij)
2(φn+1

ij − φm
ij).

After substituting of this into (6), we obtain

−
(

4ε2

h2 + 3(φm
ij)

2
)

φn+1
ij + µn+1

ij = ψn
ij − 2(φm

ij)
3 − ε2

h2 (φ
n+1
i+1,j + φn+1

i−1,j + φn+1
i,j+1 + φn+1

i,j−1). (21)

Next, we replace φn+1
α,β and µn+1

α,β in Equations (20) and (21) with φ̄m
α,β and µ̄m

α,β for α ≤ i and β ≤ j,
otherwise with φm

α,β and µm
α,β, that is,

φ̄m
ij

∆t
+

4µ̄m
ij

h2 = ξn
ij +

µm
i+1,j + µ̄m

i−1,j + µm
i,j+1 + µ̄m

i,j−1

h2 , (22)

−
(

4ε2

h2 + 3(φm
ij)

2
)

φ̄m
ij + µ̄m

ij = ψn
ij − 2(φm

ij)
3 − ε2

h2 (φ
m
i+1,j + φ̄m

i−1,j + φm
i,j+1 + φ̄m

i,j−1). (23)

Mathematics 2020, 8, 97 7 of 23

(2) Compute the defect

(d̄m
1 k, d̄m

2 k) = (ξn
k , ψn

k)− NSOk(φ̄
m
k , µ̄m

k).

(3) Restrict the defect and {φ̄m
k , µ̄m

k }

(d̄1
m
k−1, d̄2

m
k−1) = Ik−1

k (d̄1
m
k , d̄2

m
k).

The restriction operator Ik−1
k maps k-level functions to (k− 1)-level functions.

dk−1(xi, yj) = Ik−1
k dk(xi, yj) =

1
4
[dk(xi− 1

2
, yj− 1

2
) + dk(xi− 1

2
, yj+ 1

2
)

+dk(xi+ 1
2
, yj− 1

2
) + dk(xi+ 1

2
, yj+ 1

2
)].

(4) Compute the right-hand side

(ξn
k−1, ψn

k−1) = (d̄m
1 k−1, d̄m

2 k−1) + NSOk−1(φ̄
m
k−1, µ̄m

k−1).

(5) Compute an approximate solution {φ̂m
k−1, µ̂m

k−1} of the coarse grid equation on Ωk−1, that is,

NSOk−1(φ
m
k−1, µm

k−1) = (ξn
k−1, ψn

k−1). (24)

If k = 1, we explicitly invert the 2× 2 matrix to obtain the solution. If k > 1, we solve Equation (24)
by performing a FAS k-grid cycle using {φ̄m

k−1, µ̄m
k−1} as the initial approximation:

{φ̂m
k−1, µ̂m

k−1} = FAScycle(k− 1, φ̄m
k−1, µ̄m

k−1, NSOk−1, ξn
k−1, ψn

k−1, β).

(6) Compute the coarse grid correction (CGC):

v̂m
1k−1 = φ̂m

k−1 − φ̄m
k−1, v̂m

2k−1 = µ̂m
k−1 − µ̄m

k−1.

(7) Interpolate the correction:

v̂m
1k = Ik

k−1v̂m
1k−1, v̂m

2k = Ik
k−1v̂m

2k−1.

Here, the coarse values are simply transferred to the four nearby fine grid points, that is,
vk(xi, yj) = Ik

k−1vk−1(xi, yj) = vk−1(xi+ 1
2
, yj+ 1

2
) for i and j odd-numbered integers.

(8) Compute the corrected approximation on Ωk

φm, after CGC
k = φ̄m

k + v̂1
m
k , µm, after CGC

k = µ̄m
k + v̂2

m
k .

(9) Post-smoothing

{φm+1
k , µm

k } = SMOOTHν2(φm, after CGC
k , µm, after CGC

k , NSOk, ξn
k , ψn

k).

This completes the description of the nonlinear FAScycle. One FAScycle step stops if the
consequent error ‖φn+1,m+1 − φn+1,m‖∞ is less than a given tolerance tol. The two-grid V-cycle
is illustrated in Figure 3.

Mathematics 2020, 8, 97 8 of 23

Figure 3. Multigrid two-grid V-cycle method.

Further Numerical Schemes for the CH Equation

Previous studies have described the numerical solution of the CH equation with a variable
mobility [19], the adaptive mesh refinement technique [26,27], the Neumann boundary condition in
complex domains [20], the Dirichlet boundary conditions in complex domains [28], contact angle
boundary [29], parallel multigrid method [30] and fourth-order compact scheme [31].

3. Numerical Experiments

In numerical experiments, we consider an equilibrium solution φ(x, ∞) = tanh(x/
√

2ε) for
the CH equation on the one-dimensional infinite domain Ω = (−∞, ∞). In other words, φ(x, ∞)

satisfies µ(φ(x, ∞)) = F′(φ(x, ∞))− ε2φxx(x, ∞) = 0 and is an equilibrium solution. Then, across the
interfacial regions, φ varies from −0.9 to 0.9 over a distance of approximately ξ = 2

√
2ε tanh−1(0.9)

(see Figure 4). Therefore, if we want this value to be approximately mh, the ε value can be taken as
ε = εm = mh/[2

√
2 tanh−1(0.9)] [32].

x

0.9

−0.9

tanh x√
2ǫ

ξ

0
√
2ǫ tanh−1(0.9)

Figure 4. Concentration field varying from −0.9 to 0.9 over a distance of approximately ξ =

2
√

2ε tanh−1(0.9).

All computational simulations described in this section are performed on an Intel Core i5-6400
CPU @ 2.70 GHz with 4 GB of RAM.

Mathematics 2020, 8, 97 9 of 23

3.1. Phase Separation

For the first numerical test, we consider spinodal decomposition in binary alloys.
This decomposition is a process by which a mixture of binary materials separates into distinct
regions with different material concentrations [2]. Figure 5a–c show snapshots of the phase-field
φ at t = 100∆t, 200∆t and 1000∆t, respectively. The initial condition is φ(x, y, 0) = 0.1(1− 2rand(x, y))
on Ω = (0, 1)× (0, 1), where rand(x, y) is a random value between 0 and 1. The parameters ε = ε4,
h = 1/64, ∆t = 0.1h2 and a tolerance of tol = 1.0× 10−10 are used.

(a) t = 100∆t (b) t = 200∆t (c) t = 1000∆t

Figure 5. Snapshots of the phase-field φ at (a) t = 100∆t, (b) t = 200∆t and (c) t = 1000∆t. Here,
ε = ε4, h = 1/64 and ∆t = 0.1h2 are used.

3.2. Non-Increase in Discrete Energy and Mass Conservation

Figure 6 shows the time evolution of the normalized discrete total energy E h(φn)/E h(φ0) (solid
line) and the average massMh(φn)/(h2Nx Ny) (diamond) of the numerical solutions with the initial
state (25) on Ω = (0, 1)× (0, 1).

φ(x, y, 0) = 0.1(1− 2rand(x, y)), (25)

where rand(x, y) is a random value between 0 and 1.
We use the simulation parameters, ε = ε4, h = 1/64, ∆t = 0.1h2 and tol = 1.0× 10−10. The energy

is non-increasing and the average concentration is conserved. These numerical results agree well with
the total energy dissipation property (3) and the conservation property (4). The inscribed small figures
are the concentration fields at the indicated times.

0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1
average concentration

total energy

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 6. Normalized discrete total energy E h(φn)/E h(φ0) (solid line) and average concentration
Mh(φn)/(h2Nx Ny) (diamond line) of the numerical solutions with the initial state (25).

Mathematics 2020, 8, 97 10 of 23

3.3. Convergence Test

We consider the convergence of the Frobenius norm with a scaling of the residual error with
respect to the grid size. The initial condition on the domain Ω = (0, 1)× (0, 1) is given as

φ(x, y, 0) = 0.1 cos(πx) cos(πy). (26)

We fix ε = 0.06, ∆t = 0.01 and tol = 1.0 × 10−15. Here, we use the V(2, 2) scheme with a
Gauss–Seidel relaxation, where (2, 2) indicates 2 pre- and 2 post-correction relaxation sweeps. We
define the residual after m V-cycles as

rm
ij = ∆hµn+1,m

ij −
φn+1,m

ij − φn
ij

∆t
. (27)

Table 1 shows the residual norm ‖rm‖F after each V-cycle. Because no closed-form analytical
solution exists for this problem, we define the Frobenius norm with a scaling of the residual error
‖rm‖F =

∥∥∆hµn+1,m − (φn+1,m − φn)/∆t
∥∥

F. The grid sizes are set as 32× 32, 64× 64 and 128× 128.
The error norms and ratios of residual between successive V-cycle are shown in Table 1. As we have
expected, the residual error decreases successively along with the V-cycle. The sharp increase in the
residual norm ratio during the last few cycles reflects the fact that the numerical approximation is
already accurate to near machine precision.

Table 1. Error and convergence results for various grid spaces.

Mesh Size 32× 32 64× 64 128× 128

V-Cycle ‖r‖F Ratio ‖r‖F Ratio ‖r‖F Ratio

1 5.28× 10−2 6.83× 10−2 9.10× 10−2

2 2.41× 10−3 0.05 3.42× 10−3 0.05 4.30× 10−3 0.05
3 1.15× 10−4 0.05 1.56× 10−4 0.05 2.09× 10−4 0.05
4 6.54× 10−6 0.06 7.25× 10−6 0.05 8.69× 10−6 0.04
5 4.23× 10−7 0.06 4.23× 10−7 0.06 4.66× 10−7 0.05
6 2.80× 10−8 0.07 2.65× 10−8 0.06 2.90× 10−8 0.06
7 1.83× 10−9 0.07 1.58× 10−9 0.06 1.63× 10−9 0.06
8 1.23× 10−10 0.07 1.01× 10−10 0.06 1.01× 10−10 0.06
9 8.33× 10−12 0.07 6.75× 10−12 0.07 6.83× 10−12 0.07
10 5.46× 10−13 0.07 4.24× 10−13 0.06 4.42× 10−13 0.06
11 3.70× 10−14 0.07 4.90× 10−14 0.12 1.69× 10−13 0.38
12 1.10× 10−14 0.30 4.10× 10−14 0.84 1.66× 10−13 0.98

3.4. Effect of Tolerance

The effect of multigrid tolerance is related to the average mass convergence. We set the initial
condition φ(x, y, 0) = 0.1 cos(πx) cos(πy) on Ω = (0, 1)× (0, 1) with tolerance, tol = 1.0× 10−1, 1.0×
10−2, 1.0× 10−3, and 1.0× 10−10 to investigate the relationship between the mass convergence and
tol. We use the simulation parameters ε = ε4, SMOOTH relaxation = 2, h = 1/32, ∆t = 1/32
and mesh size 32× 32. To compare the theoretical value (solid line) with the computational value
tol = 1.0× 10−1 (dotted line), tol = 1.0× 10−2 (dash-dot line), tol = 1.0× 10−3 (dashed line) and tol
= 1.0 × 10−10 (square), we set the interval of average mass from −0.0019 to 0.0023. In Figure 7,
the average massMh(φn)/(h2Nx Ny) gradually converges to a theoretical value with the decrease in
tolerance. In addition, comparing the results of tol = 1.0× 10−1, 1.0× 10−2, 1.0× 10−3 and 1.0× 10−10,
we observe that the average mass become nearly convergent for tol = 1.0× 10−10.

Mathematics 2020, 8, 97 11 of 23

0 100 200 300 400 500 600

-2

-1

0

1

2

10
-3

Figure 7. Average massMh(φn)/(h2Nx Ny) of the numerical solutions in various values of tolerance.
Here, the theoretical value (solid line), tol = 1.0× 10−1 (dotted line), tol = 1.0× 10−2 (dash-dot line), tol
= 1.0× 10−3 (dashed line) and tol = 1.0× 10−10 (square).

3.5. Effects of the Smooth Relaxation Numbers ν1 and ν2

We investigate the effects of the SMOOTH relaxation numbers ν1 (pre-relaxation) and ν2

(post-relaxation) on the CPU time. In this test, we perform a numerical simulation with the initial
condition φ(x, y, 0) = 0.1 cos(πx) cos(πy) on Ω = (0, 1) × (0, 1), h = 1/128, ε4, ∆t = 0.1h2

and tol = 1.0× 10−10. Table 2 lists the average CPU times and average numbers of V-cycles for various
pre- and post-relaxation numbers after 100 time steps. The relaxation numbers are rounded off to the
nearest integer. Figure 8 shows the average CPU times for different pre- and post-relaxation numbers.
We observe that the average CPU time is the lowest when the numbers of pre- and post-relaxation
iterations are ν1 = 2 and ν2 = 4, respectively.

Table 2. Average CPU times and average numbers of V-cycles (given in parentheses) for various pre-
and post-relaxation numbers after 100 time steps.

ν2

ν1 1 2 3 4 5

1 0.075(9) 0.075(7) 0.081(6) 0.077(5) 0.089(5)
2 0.075(7) 0.079(6) 0.090(5) 0.089(5) 0.081(4)
3 0.079(6) 0.082(5) 0.089(5) 0.081(4) 0.090(4)
4 0.078(5) 0.075(4) 0.081(4) 0.090(4) 0.075(3)
5 0.072(4) 0.081(4) 0.090(4) 0.075(3) 0.082(3)

Figure 8. Average CPU time for different pre- and post-relaxation numbers after 100 time steps.

Next, we investigate the effect of SMOOTH relaxation numbers on the finest multigrid level.
We perform a numerical simulation with ε = 0.0038 and ∆t = 1.0× 10−7. The SMOOTH relaxation

Mathematics 2020, 8, 97 12 of 23

numbers ν1
0 and ν2

0 (on the finest multigrid level) are taken to be 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. In addition,
other multigrid levels ν1

k = ν2
k are 1, 2, and 3 in the 128× 128 and 512× 512 mesh sizes. The other

parameters are the same as those used previously. Table 3 shows the variations in average CPU time
for different relaxation numbers with a 128× 128 mesh size. Figure 9 illustrates the results in Table 3.

Table 3. Average CPU times for various relaxation numbers on finest multigrid level (ν1
0 , ν2

0) after 10
time steps. In other grids, ν1

k = ν2
k , (1 ≤ k) relaxation number is fixed at 1, 2 and 3.

128× 128 ν1
k = ν2

k
ν1

0 = ν2
0 1 2 3

1 0.043 0.049 0.054
2 0.040 0.045 0.048
3 0.027 0.029 0.031
4 0.032 0.034 0.037
5 0.038 0.041 0.042
6 0.044 0.047 0.048
7 0.050 0.053 0.054
8 0.055 0.058 0.060
9 0.062 0.065 0.065

10 0.068 0.070 0.072

2 4 6 8 10

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 9. Average CPU times for various relaxation numbers on finest multigrid level (ν1
0 , ν2

0) and fixed
relaxation number 1, 2 and 3 on other grids with a 128× 128 mesh size.

Table 4 lists the variations in average CPU time for different relaxation numbers with a 512× 512
mesh size. Figure 10 illustrates the results in Table 4.

Table 4. Average CPU times for various relaxation numbers on finest multigrid level (ν1
0 , ν2

0) after 10
time steps. In other grids, the ν1

k = ν2
k , (1 ≤ k) relaxation number is fixed at 1, 2 and 3.

512× 512 ν1
k = ν2

k
ν1

0 = ν2
0 1 2 3

1 2.182 2.506 2.750
2 2.030 2.208 2.397
3 1.726 1.850 1.982
4 2.096 2.227 2.351
5 1.872 1.943 2.047
6 2.151 2.236 2.330
7 2.426 2.514 2.617
8 1.817 1.877 1.944
9 2.002 2.066 2.118

10 2.197 2.252 2.295

Mathematics 2020, 8, 97 13 of 23

2 4 6 8 10

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure 10. Average CPU times for various relaxation numbers on finest multigrid level (ν1
0 , ν2

0) and
fixed relaxation numbers 1, 2 and 3 on other grids with a 512× 512 mesh size.

3.6. Effect Of V-Cycle

Next, we investigate the effect of V-cycle by changing the multigrid levels. In this test, we use
the parameters ∆t = 0.01, ε = 0.06, SMOOTH relaxation = 2, tol = 1.0× 10−10 and h = 1/128 on
Ω = (0, 1)× (0, 1) with a initial condition φ(x, y, 0) = 0.1 cos(πx) cos(πy). The highest number of
V-cycles is taken to be 10000. We use level2, level3, level4, level5, level6 and level7 in a single time step
as examples to illustrate the effect of the V-cycle. We calculate the CPU time for each level after 100∆t,
as listed in Table 5.

Table 5. Numbers of multigrid levels and CPU times required until tolerance ≤ 1.0× 10−10. Here,
different levels are used.

Level 2 3 4 5 6 7

CPU time(s) 1271.437 342.906 103.032 66.422 66.172 65.218

The number of the multigrid level and CPU time shown in Figure 11 indicate that a greater
number of the multigrid level leads to a obvious decrease in CPU time. It is important to select an
appropriate multigrid level for a specific mesh size.

2 3 4 5 6 7

0

200

400

600

800

1000

1200

1400

Figure 11. Required CPU times in various multigrid levels after 100 time steps.

3.7. Comparison between Gauss–Seidel and Multigrid Algorithms

We compare the average CPU times required to perform the Gauss–Seidel algorithm and multigrid
algorithm. In this test, the initial condition is taken to be φ(x, y, 0) = cos(πx) cos(πy). The following

Mathematics 2020, 8, 97 14 of 23

parameters are used—∆t = 0.01, T = 10∆t, the SMOOTH relaxation = 2 and ε = 0.06. The highest
number of V-cycle is taken to be 10000. The mesh sizes are 32× 32, 64× 64 and 128× 128. The tolerances
are 1.0× 10−3, 1.0× 10−4 and 1.0× 10−5. Table 6 shows the average CPU times for these two methods
after 10 time steps. We observe that the multigrid method require less CPU time than the Gauss–Seidel
method does.

Table 6. Average CPU times for Gauss–Seidel and multigrid algorithms with different tolerances after
10 time steps.

Mesh Size tol Gauss–Seidel Multigrid

1.0× 10−3 0.468 0.046
32× 32 1.0× 10−4 0.610 0.063

1.0× 10−5 0.735 0.062

1.0× 10−3 7.046 0.203
64× 64 1.0× 10−4 8.984 0.234

1.0× 10−5 11.360 0.266

1.0× 10−3 109.093 0.844
128× 128 1.0× 10−4 140.219 0.906

1.0× 10−5 174.922 1.078

3.8. Effects of tol and ∆t on the V-Cycle

In this test, we study the effects of tol and ∆t on the V-cycle with the initial condition being
φ(x, y, 0) = 0.1 cos(πx) cos(πy), h = 1/128, ε = 0.06. The highest number of the V-cycle is taken to be
10,000. Table 7 shows the number of V-cycle for various tol and ∆t after a single time step. We can find
that lower values of tol lead to an increase in the V-cycle. For different values of tol, it is essential to
choose an appropriate ∆t to reduce the number of V-cycle.

Table 7. Numbers of V-cycles for various tol and ∆t after a single time step.

tol
∆t 10−7h2 10−6h2 10−5h2 10−4h2 10−3h2 10−2h2 10−1h2

1.0× 10−5 2 2 3 4 6 8 8
1.0× 10−6 10,000 2 3 4 7 9 9
1.0× 10−7 10,000 10,000 3 5 8 10 10
1.0× 10−8 10,000 10,000 10,000 5 9 11 12
1.0× 10−9 10,000 10,000 10,000 10,000 10 13 13
1.0× 10−10 10,000 10,000 10,000 10,000 10,000 14 15

tol
∆t h2 10h2 102h2 103h2 104h2 105h2 106h2

1.0× 10−5 8 7 8 8 9 14 41
1.0× 10−6 9 9 9 9 10 19 91
1.0× 10−7 11 10 10 11 11 24 140
1.0× 10−8 12 12 12 12 13 28 189
1.0× 10−9 14 13 13 13 14 33 238
1.0× 10−10 15 14 15 15 16 38 288

3.9. Comparison of the Jacobi, Red–Black and Gauss–Seidel

We compare the performance of three relaxation methods: Jacobi, Red–Black and Gauss–Seidel.
The initial condition is φ(x, y, 0) = 0.1 cos(πx) cos(πy) on Ω = (0, 1)× (0, 1). The parameters are
h = 1/128, ε = 0.06, ∆t = 10−7, T = 100∆t and tol = 1.0× 10−10. The SMOOTH relaxation numbers
on the finest multigrid level (i.e., ν1 = ν2) are taken to be from 1 to 5 and those on the other multigrid
levels are selected as 2 with the 128× 128 mesh size. The relaxation numbers are rounded off to the
nearest integer. Table 8 shows the average number of V-cycles for different relaxation numbers with

Mathematics 2020, 8, 97 15 of 23

the three methods. The relationship between the average numbers of V-cycles and ν1 = ν2 with the
Jacobi, Red–Black and Gauss–Seidel method is plotted in Figure 12. The Gauss–Seidel method is
observed to be the fastest. In the parallel multigrid method, the relaxation options are either Jacobi or
Red–Black [33]. The Jacobi method requires approximately twice as many V-cycles as the Red–Black
method does.

Table 8. Average numbers of V-cycles for various relaxation numbers. The SMOOTH relaxation
numbers on the finest multigrid level (i.e., ν1 = ν2) are taken to be from 1 to 5.

Case Jacobi Red–Black Gauss-Seidal

1 32 13 9
2 16 8 6
3 11 6 5
4 8 5 4
5 7 5 3

2 4 6 8 10

0

5

10

15

20

25

30

35

Figure 12. Plot of the average numbers of V-cycles versus ν1 = ν2 with the Jacobi (◦), Red–Black (∗)
and Gauss–Seidel (4) method.

3.10. Effect of ε

Next, we investigate the effect of ε = εm, which is related to the interface width. In this test, we
perform a numerical simulation with the initial condition

φ(x, y, 0) =

{
1 if 0.15 ≤ x ≤ 0.85 and 0.15 ≤ y ≤ 0.85,

−1 otherwise,

on Ω = (0, 1) × (0, 1). We use h = 1/128, ∆t = h, SMOOTH relaxation = 2, tol = 1.0 × 10−10

and T = 1000∆t. Figure 13 presents the evolution of the CH equation with the three values ε4, ε8

and ε16. As we have expected, the lower value of ε leads to a narrower interface width.

Mathematics 2020, 8, 97 16 of 23

-0
.9

0 0
.9

20 40 60 80 100 120

20

40

60

80

100

120

(a) initial

-0
.9 0

0
.9

20 40 60 80 100 120

20

40

60

80

100

120

(b) m = 4

-0
.9

0 0
.9

20 40 60 80 100 120

20

40

60

80

100

120

(c) m = 8

-0
.9

0 0
.9

20 40 60 80 100 120

20

40

60

80

100

120

(d) m = 16

Figure 13. Evolution of the Cahn–Hilliard (CH) equation with different ε = εm: (a) initial condition,
(b–d) m = 4, m = 8 and m = 16 at T = 1000∆t, respectively.

3.11. Effect of mesh size, Nx × Ny

In this test, we compare the CPU times with different mesh sizes Nx × Ny. The initial condition
is φ(x, y, 0) = 0.1 cos(πx) cos(πy) on Ω = (0, Nx/32)× (0, Ny/32). The parameters are h = 1/32,
∆t = h, T = 100∆t, ε = 0.06, SMOOTH relaxation = 2 and tol = 1.0× 10−10. Table 9 shows the CPU
times and their ratios (that is, the ratio of the CPU time with the mesh size 2Nx × 2Ny to the CPU time
with Nx × Ny). We observe that the values converge to 4.

Table 9. CPU times for different mesh sizes.

Mesh Size 32× 32 64× 64 128× 128 256× 256

CPU time(s) 0.610 2.812 12.156 50.594
Ratio 4.610 4.323 4.162

4. Conclusions

In this paper, we presented a nonlinear multigrid implementation for the CH equation in a
two-dimensional space. Eyre’s unconditionally gradient stable scheme was used to discretize the
governing equation. The resulting discretizing equations were solved using the nonlinear multigrid
method. We described the implementation of our numerical scheme in detail. We numerically showed
the decrease in discrete total energy and the convergence of discrete total mass. We took a convergence
test by studying the reductions in residual error on various mesh sizes in a single time step. The results
of various numerical experiments were presented to demonstrate the effects of tolerance, SMOOTH
relaxation, V-cycle and ε. The provided multigrid source code will be useful to beginners who needs
the numerical implementation of the nonlinear multigrid method for the CH equation.

Author Contributions: All authors, C.L., D.J., J.Y., and J.K., contributed equally to this work and critically
reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The first author (C. Lee) was supported by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2019R1A6A3A13094308). D. Jeong
was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIP) (NRF-2017R1E1A1A03070953). J. Yang is supported by China Scholarship Council (201908260060).
The corresponding author (J.S. Kim) expresses thanks for the support from the BK21 PLUS program.

Acknowledgments: The authors thank the editor and the reviewers for their constructive and helpful comments
on the revision of this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Mathematics 2020, 8, 97 17 of 23

Appendix A

The C code and MATLAB postprocessing code are given as follows, and the parameters are
enumerated in Table A1.

Table A1. Parameters used for the 2D Cahn–Hilliard equation.

Parameters Description

nx, ny maximum number of grid points in the x-, y-direction
n_level number of multigrid level
c_relax number of times being relax
dt ∆t
xleft, yleft minimum value on the x-, y-axis
xright, yright maximum value on the x-, y-axis
ns number of print out data
max_it maximum number of iteration
max_it_mg maximum number of multigrid iteration
tol_mg tolerance for multigrid
h space step size
h2 h2

gam ε
Cahn ε2

The following C code is available on the following website:

http://elie.korea.ac.kr/~cfdkim/codes/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <malloc.h>
#include <time.h>
#define gnx 32
#define gny 32
#define PI 4.0*atan(1.0)
#define iloop for(i=1;i<=gnx;i++)
#define jloop for(j=1;j<=gny;j++)
#define ijloop iloop jloop
#define iloopt for(i=1;i<=nxt;i++)
#define jloopt for(j=1;j<=nyt;j++)
#define ijloopt iloopt jloopt
int nx,ny,n_level,c_relax;
double **ct,**sc,**smu,**sor,h,h2,dt,xleft,xright,yleft,yright,gam,Cahn,**mu,**mi;
double **dmatrix(long nrl,long nrh,long ncl,long nch){
double **m;
long i,nrow=nrh-nrl+2,ncol=nch-ncl+2;
m=(double **) malloc((nrow)*sizeof(double*)); m+=1;m-=nrl;
m[nrl]=(double *) malloc((nrow*ncol)*sizeof(double)); m[nrl]+=1; m[nrl]-=ncl;
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
return m;
}
void free_dmatrix(double **m,long nrl,long nrh,long ncl,long nch){
free(m[nrl]+ncl-1); free(m+nrl-1);
}
void zero_matrix(double **a,int xl,int xr,int yl,int yr){
int i,j;

http://elie.korea.ac.kr/~cfdkim/codes/

Mathematics 2020, 8, 97 18 of 23

for (i=xl; i<=xr; i++){ for (j=yl; j<=yr; j++){ a[i][j]=0.0; }}
}

void mat_add2(double **a,double **b,double **c,double **a2,
double **b2,double **c2,int xl,int xr,int yl,int yr){
int i,j;
for (i=xl; i<=xr; i++)
for (j=yl; j<=yr; j++){ a[i][j]=b[i][j]+c[i][j]; a2[i][j]=b2[i][j]+c2[i][j]; }
}
void mat_sub2(double **a,double **b,double **c,double **a2,
double **b2,double **c2,int nrl,int nrh,int ncl,int nch){
int i,j;
for (i=nrl;i<=nrh;i++)
for (j=ncl; j<=nch; j++){ a[i][j]=b[i][j]-c[i][j];a2[i][j]=b2[i][j]-c2[i][j]; }
}
void mat_copy(double **a,double **b,int xl,int xr,int yl,int yr){
int i,j;
for (i=xl; i<=xr; i++){ for (j=yl; j<=yr; j++){ a[i][j]=b[i][j]; }}
}
void mat_copy2(double **a,double **b,double **a2,double **b2,int xl,int xr,int yl,int yr){
int i,j;
for (i=xl; i<=xr; i++)
for (j=yl; j<=yr; j++){a[i][j]=b[i][j]; a2[i][j]=b2[i][j];}
}
void print_mat(FILE *fptr,double **a,int nrl,int nrh,int ncl,int nch){
int i,j;
for(i=nrl; i<=nrh; i++){ for(j=ncl; j<=nch; j++)
fprintf(fptr," %16.15f",a[i][j]); fprintf(fptr,"\n"); }
}
void print_data(double **phi) {
FILE *fphi;
fphi=fopen("phi.m","a"); print_mat(fphi,phi,1,nx,1,ny); fclose(fphi);
}
void laplace(double **a,double **lap_a,int nxt,int nyt){
int i,j;
double ht2,dadx_L,dadx_R,dady_B,dady_T;
ht2=pow((xright-xleft)/(double) nxt,2);
ijloopt {
if (i>1) dadx_L=a[i][j]-a[i-1][j];
else dadx_L=0.0;
if (i<nxt) dadx_R=a[i+1][j]-a[i][j];
else dadx_R=0.0;
if (j>1) dady_B=a[i][j]-a[i][j-1];
else dady_B=0.0;
if (j<nyt) dady_T=a[i][j+1]-a[i][j];
else dady_T=0.0;
lap_a[i][j]=(dadx_R-dadx_L+dady_T-dady_B)/ht2;}
}
void source(double **c_old,double **src_c,double **src_mu){
int i,j;
laplace(c_old,ct,nx,ny);

Mathematics 2020, 8, 97 19 of 23

ijloop{src_c[i][j]=c_old[i][j]/dt-ct[i][j]; src_mu[i][j]=0.0;}
}
double df(double c){return pow(c,3);}

double d2f(double c){return 3.0*c*c;}
void relax(double **c_new,double **mu_new,double **su,double **sw,int ilevel,
int nxt, int nyt){
int i,j,iter;
double ht2,x_fac,y_fac,a[4],f[2],det;
ht2=pow((xright-xleft)/(double) nxt,2);
for (iter=1; iter<=c_relax; iter++){
ijloopt {
if (i>1 && i<nxt) x_fac=2.0;
else x_fac=1.0;
if (j>1 && j<nyt) y_fac=2.0;
else y_fac=1.0;
a[0]=1.0/dt; a[1]=(x_fac+y_fac)/ht2;
a[2]=-(x_fac+y_fac)*Cahn/ht2-d2f(c_new[i][j]); a[3]=1.0;
f[0]=su[i][j]; f[1]=sw[i][j]+df(c_new[i][j])-d2f(c_new[i][j])*c_new[i][j];
if (i>1) { f[0]+=mu_new[i-1][j]/ht2; f[1]-=Cahn*c_new[i-1][j]/ht2; }
if (i<nxt) { f[0]+=mu_new[i+1][j]/ht2; f[1]-=Cahn*c_new[i+1][j]/ht2; }
if (j>1) { f[0]+=mu_new[i][j-1]/ht2; f[1]-=Cahn*c_new[i][j-1]/ht2; }
if (j<nyt) { f[0]+=mu_new[i][j+1]/ht2; f[1]-=Cahn*c_new[i][j+1]/ht2; }
det=a[0]*a[3]-a[1]*a[2];
c_new[i][j]=(a[3]*f[0]-a[1]*f[1])/det;
mu_new[i][j]=(-a[2]*f[0]+a[0]*f[1])/det; }}
}
void restrictCH(double **uf,double **uc,double **vf,double **vc,int nxc,int nyc) {
int i,j;
for (i=1; i<=nxc; i++)
for (j=1; j<=nyc; j++){
uc[i][j]=0.25*(uf[2*i][2*j]+uf[2*i-1][2*j]+uf[2*i][2*j-1]+uf[2*i-1][2*j-1]);
vc[i][j]=0.25*(vf[2*i][2*j]+vf[2*i-1][2*j]+vf[2*i][2*j-1]+vf[2*i-1][2*j-1]);}
}
void nonL(double **ru,double **rw,double **c_new,double **mu_new,int nxt,int nyt) {
int i,j;
double **lap_mu,**lap_c;
lap_mu=dmatrix(1,nxt,1,nyt); lap_c=dmatrix(1,nxt,1,nyt);
laplace(c_new,lap_c,nxt,nyt); laplace(mu_new,lap_mu,nxt,nyt);
ijloopt{ ru[i][j]=c_new[i][j]/dt-lap_mu[i][j];
rw[i][j]=mu_new[i][j]-df(c_new[i][j])+Cahn*lap_c[i][j]; }
free_dmatrix(lap_mu,1,nxt,1,nyt); free_dmatrix(lap_c,1,nxt,1,nyt);
}
void defect(double **duc,double **dwc,double **uf_new,double **wf_new,double **suf,
double **swf,int nxf,int nyf,double **uc_new,double **wc_new,int nxc,int nyc) {
double **ruf,**rwf,**rruf,**rrwf,**ruc,**rwc;
ruc=dmatrix(1,nxc,1,nyc);rwc=dmatrix(1,nxc,1,nyc);ruf=dmatrix(1,nxf,1,nyf);
rwf=dmatrix(1,nxf,1,nyf);rruf=dmatrix(1,nxc,1,nyc);rrwf=dmatrix(1,nxc,1,nyc);
nonL(ruc,rwc,uc_new,wc_new,nxc,nyc);nonL(ruf,rwf,uf_new,wf_new,nxf,nyf);
mat_sub2(ruf,suf,ruf,rwf,swf,rwf,1,nxf,1,nyf);
restrictCH(ruf,rruf,rwf,rrwf,nxc,nyc);

Mathematics 2020, 8, 97 20 of 23

mat_add2(duc,ruc,rruf,dwc,rwc,rrwf,1,nxc,1,nyc);
free_dmatrix(ruc,1,nxc,1,nyc); free_dmatrix(rwc,1,nxc,1,nyc);
free_dmatrix(ruf,1,nxf,1,nyf); free_dmatrix(rwf,1,nxf,1,nyf);
free_dmatrix(rruf,1,nxc,1,nyc); free_dmatrix(rrwf,1,nxc,1,nyc);
}

void prolong_ch(double **uc,double **uf,double **vc,double **vf, int nxc,int nyc){
int i,j;
for (i=1; i<=nxc; i++)
for (j=1; j<=nyc; j++){
uf[2*i][2*j]=uf[2*i-1][2*j]=uf[2*i][2*j-1]=uf[2*i-1][2*j-1]=uc[i][j];
vf[2*i][2*j]=vf[2*i-1][2*j]=vf[2*i][2*j-1]=vf[2*i-1][2*j-1]=vc[i][j];}
}
void vcycle(double **uf_new,double **wf_new,double **su,double **sw,int nxf,int nyf,
int ilevel) {
relax(uf_new,wf_new,su,sw,ilevel,nxf,nyf);
if (ilevel<n_level) {
int nxc,nyc;
double **duc,**dwc,**uc_new,**wc_new,**uc_def,**wc_def,**uf_def,**wf_def;
nxc=nxf/2; nyc=nyf/2;
duc=dmatrix(1,nxc,1,nyc); dwc=dmatrix(1,nxc,1,nyc);
uc_new=dmatrix(1,nxc,1,nyc); wc_new=dmatrix(1,nxc,1,nyc);
uf_def=dmatrix(1,nxf,1,nyf); wf_def=dmatrix(1,nxf,1,nyf);
uc_def=dmatrix(1,nxc,1,nyc); wc_def=dmatrix(1,nxc,1,nyc);
restrictCH(uf_new,uc_new,wf_new,wc_new,nxc,nyc);
defect(duc,dwc,uf_new,wf_new,su,sw,nxf,nyf,uc_new,wc_new,nxc,nyc);
mat_copy2(uc_def,uc_new,wc_def,wc_new,1,nxc,1,nyc);
vcycle(uc_def,wc_def,duc,dwc,nxc,nyc,ilevel+1);
mat_sub2(uc_def,uc_def,uc_new,wc_def,wc_def,wc_new,1,nxc,1,nyc);
prolong_ch(uc_def,uf_def,wc_def,wf_def,nxc,nyc);
mat_add2(uf_new,uf_new,uf_def,wf_new,wf_new,wf_def,1,nxf,1,nyf);
relax(uf_new,wf_new,su,sw,ilevel,nxf,nyf);
free_dmatrix(duc,1,nxc,1,nyc); free_dmatrix(dwc,1,nxc,1,nyc);
free_dmatrix(uc_new,1,nxc,1,nyc); free_dmatrix(wc_new,1,nxc,1,nyc);
free_dmatrix(uf_def,1,nxf,1,nyf); free_dmatrix(wf_def,1,nxf,1,nyf);
free_dmatrix(uc_def,1,nxc,1,nyc); free_dmatrix(wc_def,1,nxc,1,nyc); }
}
double error2(double **c_old,double **c_new,double **mu,int nxt,int nyt){
int i,j;
double **rr,res2,x=0.0;
rr=dmatrix(1,nxt,1,nyt);
ijloopt { rr[i][j]=mu[i][j]-c_old[i][j]; }
laplace(rr,sor,nx,ny);
ijloopt { rr[i][j]=sor[i][j]-(c_new[i][j]-c_old[i][j])/dt; }
ijloopt { x=(rr[i][j])*(rr[i][j])+x; }
res2=sqrt(x/(nx*ny));
free_dmatrix(rr,1,nxt,1,nyt);
return res2;
}
void initialization(double **phi){
int i,j;

Mathematics 2020, 8, 97 21 of 23

double x,y;
ijloop {x=(i-0.5)*h; y=(j-0.5)*h; phi[i][j]=cos(PI*x)*cos(PI*y);}
}
void cahn(double **c_old,double **c_new){
FILE *fphi2;
int i,j,max_it_CH=10000,it_mg2=1;

double tol=1.0e-10, resid2=1.0;
source(c_old,sc,smu);
while (it_mg2<=max_it_CH && resid2>tol) {
it_mg2++; vcycle(c_new,mu,sc,smu,nx,ny,1);
resid2=error2(c_old,c_new,mu,nx,ny);
printf("error2 %16.15f %d \n",resid2,it_mg2-1);
fphi2=fopen("phi2.m","a");
fprintf(fphi2,"%16.15f %d \n",resid2,it_mg2-1); fclose(fphi2);}
}
int main(){
int it=1,max_it,ns,count=1,it_mg=1;
double **oc,**nc,resid2=1.0;
FILE *fphi,*fphi2;
c_relax=2; nx=gnx; ny=gny; n_level=(int)(log(nx)/log(2.0)+0.1);
xleft=0.0; xright=1.0; yleft=0.0; yright=1.0; max_it=100; ns=10; dt=0.01;
h=xright/(double)nx; h2=pow(h,2); gam=0.06; Cahn=pow(gam,2);
printf("nx=%d,ny=%d\n",nx,ny); printf("dt=%f\n",dt);
printf("max_it=%d\n",max_it); printf("ns=%d\n",ns); printf("n_level=%d\n\n",n_level);
oc=dmatrix(0,nx+1,0,ny+1); nc=dmatrix(0,nx+1,0,ny+1); mu=dmatrix(1,nx,1,ny);
sor=dmatrix(1,nx,1,ny); ct=dmatrix(1,nx,1,ny); sc=dmatrix(1,nx,1,ny);
mi=dmatrix(1,nx,1,ny); smu=dmatrix(1,nx,1,ny); zero_matrix(mu,1,nx,1,ny);
initialization(oc); mat_copy(nc,oc,1,nx,1,ny);
fphi=fopen("phi.m","w"); fclose(fphi); print_data(oc);
for (it=1; it<=max_it; it++) {
cahn(oc,nc); mat_copy(oc,nc,1,nx,1,ny);
if (it % ns==0) {count++; print_data(oc); printf("print out counts %d \n",count);}
printf(" %d \n",it);}
return 0;
}

The following MATLAB code produces the results shown in Figure 5. The code can also be
downloaded from

http://elie.korea.ac.kr/~cfdkim/codes/

clear; clc; close all;
ss=sprintf(’./phi.m’); phi=load(ss); nx=32; ny=32; n=size(phi,1)/nx;
x=linspace(0,1,nx); y=linspace(0,1,ny); [xx,yy]=meshgrid(x,y);
for i=1:n
pp=phi((i-1)*nx+1:i*nx,:);
figure(i); mesh(xx,yy,pp’); axis([0 1 0 1 -1 1]); view(-38,42);
end

http://elie.korea.ac.kr/~cfdkim/codes/

Mathematics 2020, 8, 97 22 of 23

References

1. Trottenberg, U.; Schüller, A.; Oosterlee, C.W. Multigrid Methods; Academic Press: Cambridge, MA, USA, 2000.
2. Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys.

1958, 28, 258–267. [CrossRef]
3. Copetti, M.I.M.; Elliott, C.M. Kinetics of phase decomposition processes: Numerical solutions to

Cahn–Hilliard equation. Mater. Sci. Technol. 1990, 6, 273–284. [CrossRef]
4. Honjo, M.; Saito, Y. Numerical simulation of phase separation in Fe-Cr binary and Fe-Cr-Mo ternary alloys

with use of the Cahn–Hilliard equation. ISIJ Int. 2000, 40, 914–919. [CrossRef]
5. Bertozzi, A.L.; Esedoglu, S.; Gillette, A. Inpainting of binary images using the Cahn–Hilliard equation.

IEEE Trans. Image Process. 2007, 16, 285–291. [CrossRef]
6. Bosch, J.; Kay, D.; Stoll, M.; Wathen, A.J. Fast solvers for Cahn–Hilliard inpainting. SIAM J. Imaging Sci.

2014, 7, 67–97. [CrossRef]
7. Choksi, R.; Peletier, M.A.; Williams, J.F. On the phase diagram for microphase separation of diblock

copolymers: An approach via a nonlocal Cahn–Hilliard functional. SIAM J. Appl. Math. 2009, 69, 1712–1738.
[CrossRef]

8. Tang, P.; Qiu, F.; Zhang, H.; Yang, Y. Phase separation patterns for diblock copolymers on spherical surfaces:
A finite volume method. Phys. Rev. E 2005, 72, 016710. [CrossRef] [PubMed]

9. Hu, S.Y.; Chen, L.Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity.
Acta Mater. 2001, 49, 1879–1890. [CrossRef]

10. Yu, P.; Hu, S.Y.; Chen, L.Q.; Du, Q. An iterative-perturbation scheme for treating inhomogeneous elasticity in
phase-field models. J. Comput. Phys. 2005, 208, 34–50. [CrossRef]

11. Gurtin, M.E.; Polignone, D.; Vinals, J. Two-phase binary fluids and immiscible fluids described by an order
parameter. Math. Models Methods Appl. Sci. 1996, 6, 815–831. [CrossRef]

12. Lee, T. Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation
method for binary fluids. Comput. Math. Appl. 2009, 58, 987–994. [CrossRef]

13. Jeong, D.; Kim, J. Phase-field model and its splitting numerical scheme for tissue growth. Appl. Numer. Math.
2017, 117, 22–35. [CrossRef]

14. Kim, J.; Lee, S.; Choi, Y.; Lee, S.M.; Jeong, D. Basic Principles and Practical Applications of the Cahn–Hilliard
Equation. Math. Probl. Eng. 2016, 2016, 9532608. [CrossRef]

15. Colli, P.; Gilardi, G.; Sprekels, J. A distributed control problem for a fractional tumor growth model.
Mathematics 2019, 7, 792. [CrossRef]

16. Myśliński, A.; Wroblewski, M. Structural optimization of contact problems using Cahn–Hilliard model.
Comput. Struct. 2017, 180, 52–59. [CrossRef]

17. Eyre, D.J. Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Proc. 1998, 529, 39.
[CrossRef]

18. Yang, S.; Lee, H.; Kim, J. A phase-field approach for minimizing the area of triply periodic surfaces with
volume constraint. Comput. Phys. Commun. 2010, 181, 1037–1046. [CrossRef]

19. Kim, J. A numerical method for the Cahn–Hilliard equation with a variable mobility. Commun. Nonlinear Sci.
Numer. Simul. 2007, 12, 1560–1571. [CrossRef]

20. Shin, J.; Jeong, D.; Kim, J. A conservative numerical method for the Cahn–Hilliard equation in complex
domains. J. Comput. Phys. 2011, 230, 7441–7455. [CrossRef]

21. Jeong, D.; Kim, J. A practical numerical scheme for the ternary Cahn–Hilliard system with a logarithmic free
energy. Phys. A 2016, 442, 510–522. [CrossRef]

22. Lee, H.; Kim, J. A second-order accurate non-linear difference scheme for the N-component Cahn–Hilliard
system. Phys. A 2008, 387, 4787–4799. [CrossRef]

23. Lee, H.G.; Shin, J.; Lee, J.Y. A High-Order Convex Splitting Method for a Non-Additive Cahn–Hilliard
Energy Functional. Mathematics 2019, 7, 1242. [CrossRef]

24. Shin, J.; Choi, Y.; Kim, J. An unconditionally stable numerical method for the viscous Cahn–Hilliard equation.
Discret. Contin. Dyn. Syst. Ser. B 2014, 19, 1737–1747. [CrossRef]

25. Kim, J. Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 2012, 12, 613–661.
[CrossRef]

http://dx.doi.org/10.1063/1.1744102
http://dx.doi.org/10.1179/mst.1990.6.3.273
http://dx.doi.org/10.2355/isijinternational.40.914
http://dx.doi.org/10.1109/TIP.2006.887728
http://dx.doi.org/10.1137/130921842
http://dx.doi.org/10.1137/080728809
http://dx.doi.org/10.1103/PhysRevE.72.016710
http://www.ncbi.nlm.nih.gov/pubmed/16090137
http://dx.doi.org/10.1016/S1359-6454(01)00118-5
http://dx.doi.org/10.1016/j.jcp.2005.02.015
http://dx.doi.org/10.1142/S0218202596000341
http://dx.doi.org/10.1016/j.camwa.2009.02.017
http://dx.doi.org/10.1016/j.apnum.2017.01.020
http://dx.doi.org/10.1155/2016/9532608
http://dx.doi.org/10.3390/math7090792
http://dx.doi.org/10.1016/j.compstruc.2016.03.013
http://dx.doi.org/10.1557/PROC-529-39
http://dx.doi.org/10.1016/j.cpc.2010.02.010
http://dx.doi.org/10.1016/j.cnsns.2006.02.010
http://dx.doi.org/10.1016/j.jcp.2011.06.009
http://dx.doi.org/10.1016/j.physa.2015.09.038
http://dx.doi.org/10.1016/j.physa.2008.03.023
http://dx.doi.org/10.3390/math7121242
http://dx.doi.org/10.3934/dcdsb.2014.19.1737
http://dx.doi.org/10.4208/cicp.301110.040811a

Mathematics 2020, 8, 97 23 of 23

26. Kim, J.; Bae, H.O. An unconditionally gradient stable adaptive mesh refinement for the Cahn–Hilliard
equation. J. Korean Phys. Soc. 2008, 53, 672–679. [CrossRef]

27. Wise, S.; Kim, J.; Lowengrub, J. Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an
adaptive nonlinear multigrid method. J. Comput. Phys. 2007, 226, 414–446. [CrossRef]

28. Li, Y.; Jeong, D.; Shin, J.; Kim, J. A conservative numerical method for the Cahn–Hilliard equation with
Dirichlet boundary conditions in complex domains. Comput. Math. Appl. 2013, 65, 102–115. [CrossRef]

29. Lee, H.G.; Kim, J. Accurate contact angle boundary conditions for the Cahn–Hilliard equations.
Comput. Fluids 2011, 44, 178–186. [CrossRef]

30. Shin, J.; Kim, S.; Lee, D.; Kim, J. A parallel multigrid method of the Cahn–Hilliard equation.
Comput. Mater. Sci. 2013, 71, 89–96. [CrossRef]

31. Lee, C.; Jeong, D.; Shin, J.; Li, Y.; Kim, J. A fourth-order spatial accurate and practically stable compact
scheme for the Cahn–Hilliard equation. Phys. A 2014, 409, 17–28. [CrossRef]

32. Choi, J.W.; Lee, H.G.; Jeong, D.; Kim, J. An unconditionally gradient stable numerical method for solving the
Allen–Cahn equation. Phys. A 2009, 388, 1791–1803. [CrossRef]

33. Baker, A.H.; Falgout, R.D.; Kolev, T.V.; Yang, U.M. Scaling hypre’s multigrid solvers to 100,000 cores.
In High-Performance Scientific Computing; Springer: London, UK, 2012; pp. 261–279.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3938/jkps.53.672
http://dx.doi.org/10.1016/j.jcp.2007.04.020
http://dx.doi.org/10.1016/j.camwa.2012.08.018
http://dx.doi.org/10.1016/j.compfluid.2010.12.031
http://dx.doi.org/10.1016/j.commatsci.2013.01.008
http://dx.doi.org/10.1016/j.physa.2014.04.038
http://dx.doi.org/10.1016/j.physa.2009.01.026
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Numerical Solution
	Discretization
	Multigrid V-Cycle Algorithm

	Numerical Experiments
	Phase Separation
	Non-Increase in Discrete Energy and Mass Conservation
	Convergence Test
	Effect of Tolerance
	Effects of the Smooth Relaxation Numbers 1 and 2
	Effect Of V-Cycle
	Comparison between Gauss–Seidel and Multigrid Algorithms
	Effects of tol and t on the V-Cycle
	Comparison of the Jacobi, Red–Black and Gauss–Seidel
	Effect of
	Effect of mesh size, Nx Ny

	Conclusions
	
	References

