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a b s t r a c t

In this paper, we propose a new, fast, and stable hybrid numerical method for multiphase
image segmentation using a phase-field model. The proposed model is based on the
Allen–Cahn equation with a multiple well potential and a data-fitting term. The model
is computationally superior to the previous multiphase image segmentation via Modica-
Mortola phase transition and a fitting term. We split its numerical solution algorithm into
linear and anonlinear equations. The linear equation is discretizedusing an implicit scheme
and the resulting discrete system of equations is solved by a fast numerical method such
as a multigrid method. The nonlinear equation is solved analytically due to the availability
of a closed-form solution. We also propose an initialization algorithm based on the target
objects for the fast image segmentation. Finally, various numerical experiments on real and
synthetic images with noises are presented to demonstrate the efficiency and robustness
of the proposed model and the numerical method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Image segmentation is one of the fundamental tasks in image processing and computer vision. It forms a crucial
preliminary step for subsequent object recognition and interpretation [1]. Its goal is to partition a given image into regions
that contain distinct objects. The most common form of segmentation is based on the assumption that distinct objects in
an image have different and approximately constant colors. A natural approach is therefore to decompose an image domain
into approximately homogeneous regions that are separated by sharp changes in image features.

Recently,many research papers have been published onmethods ofmultiphase image segmentation [2–12]. For example,
Chan and Vese (CV) [3] proposed a multiphase level-set framework for image segmentation using the Mumford and Shah
model for piecewise constant and piecewise smooth optimal approximations. Their model can segment 2K phases of the
imagewithK level-set functions. Thus, themultiphase CVmodel evolvesmore regions than necessarywhenever the number
of regions is not a power of two. Samson et al. [10] partitioned K phases using K level-set functions for multiphase image
classification. Lie et al. [7] proposed a variant of the level-set formulation formultiphase image segmentation by introducing
a piecewise constant level-set function and using each constant value to represent a unique phase. In [6], Jung et al. proposed
a phase-field method to solve the multiphase piecewise constant segmentation problem. The method is based on the phase
transition model of Modica and Mortola with a sinusoidal potential and a fitting term. It is a variational partial differential
equation approach that is closely connected to the Mumford–Shah model.

The objective of this paper is to propose a new, fast, and stable hybrid numerical method for multiphase image
segmentation using a phase-field model which is based on the Allen–Cahn (AC) equation [13] with a multiple well potential
and a data-fitting term. We employ the recently developed hybrid operator splitting method for the AC equation [14]. We
split its numerical solution algorithm into a linear diffusion equationwith a source term and a nonlinear equation. The linear
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equation is discretized using an implicit scheme and the resulting discrete system of equations is solved by a multigrid
method. The nonlinear equation is solved using a closed-form solution. We also propose an initialization algorithm based
on the target objects for the fast and robust multiphase image segmentation.

This paper is organized as follows. In Section 2, the proposed model for multiphase image segmentation is given. In
Section 3, we describe the proposed an almost unconditionally stable hybrid operator splitting method. In Section 4, we
perform some characteristic numerical experiments for multiphase image segmentation to demonstrate the efficiency and
robustness of the proposed model and the numerical method. Finally, conclusions are given in Section 5.

2. Description of the proposed model

A phase-field model is a mathematical model for solving interfacial problems. It has been applied to many applications
such as spinodal decomposition [15], dendritic crystal growth [16–19], vesicle membranes [20], image segmentation [21],
motion by mean curvature [22], and multiphase fluid flows [23–28]. In a phase-field model, the phase-field or order
parameter is introduced to distinguish one phase from the other. This phase-field takes distinct values (for instance 0 and
1 for a binary system) in each of the phases with a smooth transition between both values. Interfaces are identified by the
variation or specific level set of the phase-field.

Since we are interested in multiphase image segmentation using the Allen–Cahn equation with a multiple well potential
and a data-fitting term, we now briefly review the following AC equation with a double well potential on a domain
Ω ⊂ Rd (d = 1, 2, 3):

∂φ(x, t)
∂t

= −M(F ′(φ(x, t))− ϵ21φ(x, t)), x ∈ Ω, 0 < t ≤ T , (1)

where the quantity φ(x, t) is defined to be the difference between the concentrations of the twomixtures’ components, the
parameterM is a positive constant mobility, the function F(φ) is the Helmholtz free-energy density, and the small constant
ϵ is the gradient energy parameter related to the interfacial energy. A double well form, i.e., F(φ) = 0.25φ2(φ − 1)2 is
typically chosen. The boundary condition is

∂φ

∂n
= 0 on ∂Ω, (2)

where ∂
∂n denotes the normal derivative on ∂Ω . The physical meaning of the condition is that the total free energy of the

mixture decreases in time. The Allen–Cahn equation [13] was originally introduced as a phenomenological model for anti-
phase domain coarsening in a binary alloy. It has been applied to a wide range of problems such as phase transitions, image
analysis, the motion by mean curvature flows, and crystal growth. The AC equation arises from the Ginzburg–Landau free
energy,

E(φ) :=

∫
Ω


F(φ)+

ϵ2

2
|∇φ|

2

dx. (3)

The AC equation is the L2-gradient flow of the total free energy E(φ). We differentiate the energy E(φ) to get
d
dt

E(φ) =

∫
Ω

(F ′(φ)φt + ϵ2∇φ · ∇φt)dx

=

∫
Ω

(F ′(φ)− ϵ21φ)φtdx = −M
∫
Ω

(φt)
2dx ≤ 0, (4)

where we have used an integration by parts and the boundary condition (2). Therefore, the total energy is non-increasing
in time; that is, the total energy is a Lyapunov functional for solutions of the AC equation. Now, we review a derivation of
the AC equation as a gradient flow [29,30]. It is natural to seek a law of evolution in the form

∂φ

∂t
= −M grad E(φ). (5)

The symbol ‘‘grad’’ here denotes the gradient on the manifold in L2(Ω) space. Let the domain of definition for the functional
E be D =


φ ∈ H2(Ω)

 ∂φ
∂n = 0 on ∂Ω


. Let φ,ψ ∈ D . Then, we have

(grad E(φ), ψ)L2 =
d
dθ

E(φ + θψ)


θ=0

= lim
θ→0

1
θ
(E(φ + θψ)− E(φ))

=

∫
Ω

(F ′(φ)− ϵ21φ)ψdx = (F ′(φ)− ϵ21φ,ψ)L2 ,

where we have used an integration by parts and the boundary condition (2). We identify gradE(φ) ≡ F ′(φ) − ϵ21φ, then
Eq. (5) becomes the AC equation [29].
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F
F

Fig. 1. A double well potential, F(φ) = 0.25φ2(φ − 1)2 and a periodic potential, F(⟨φ⟩) = 0.25⟨φ⟩
2(⟨φ⟩ − 1)2 .

Fig. 2. sinc(φ) = sin(πφ)/(πφ) and sinc2(φ).

Next, we extend this two-phase Allen–Cahn model into a multiphase Allen–Cahn model with a data-fitting term. A
multiphase-field approximation (K +1 phase fields) for minimizing theMumford–Shah functional is given by the following
energy functional:

E(φ) =

∫
Ω


F(⟨φ⟩)

ε2
+

|∇φ |
2

2
+ GK (φ, f0)


dx. (6)

Here ⟨φ⟩ = φ − [φ], where [φ] is the largest integer not greater than φ. The first term F(⟨φ⟩) in the energy functional is a
periodic potential as shown in Fig. 1. This term derives the phase-field variable φ to the closest integer values, which will
be regions of approximately piecewise-constant intensities. The second term makes the transition between phase levels
smooth and penalizes high oscillations of the phase-field. The third term in the functional is a fitting term written in terms
of φ and is defined as

GK (φ, f0) =
λ

2

K−
k=0

(Ck − f0)2sinc2(φ − k),

where λ is a nonnegative parameter, f0 is the given image, and Ck is the average of f0 in the k-level (k = 0, 1, . . . , K ), i.e.,

Ck =


Ω
f0(x)sinc2(φ(x)− k)dx
Ω
sinc2(φ(x)− k)dx

.

Functions sinc(φ) = sin(πφ)/(πφ) and sinc2(φ) are shown in Fig. 2.
We note that our model is similar to that of Jung et al. [6] except that they used a sinusoidal function while we use a

periodic quartic polynomial as a potential. By using the polynomial potential, we can derive a very efficient and accurate
numerical scheme based on an operator splitting technique. For a governing equation, we apply Eq. (5) and get the following
gradient descent flow equation:

φt = −
F ′(⟨φ⟩)

ε2
+1φ − λ

K−
k=0

(Ck − f0)2

sin(2π(φ − k))
π(φ − k)2

−
2 sin2(π(φ − k))
π2(φ − k)3


. (7)

3. Description of the numerical algorithms

We shall discretize the governing equation (7) in two-dimensional space, i.e., Ω = (a, b) × (c, d). Let Nx and Ny be
positive even integers, h = (b − a)/Nx be the uniform mesh size, andΩh = {(xi, yj) : xi = (i − 0.5)h, yj = (j − 0.5)h, 1 ≤
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i ≤ Nx, 1 ≤ j ≤ Ny} be the set of cell-centers. Let φn
ij be approximations of φ(xi, yj, n1t), where1t = T/Nt is the time step,

T is the final time, and Nt is the total number of time steps. Then we propose the following operator splitting numerical
algorithm of the proposed model.

φn+1
− φn

1t
= −

F ′(⟨φn+1
⟩)

ϵ2
+∆dφ

n+ 1
2 − λ

K−
k=0

(Cn
k − f0)2

×


(φn

− k)2 sin(2π(φn
− k))− 2(φn

− k) sin2(π(φn
− k))

π2(φn − k)4 + δ


, (8)

where we added a small value δ in the denominator to avoid singularities and Cn
k is defined as following

Cn
k =

Nx−
i

Ny−
j

f0,ijsinc2(φij − k)
 Nx−

i

Ny−
j

sinc2(φij − k),

here sinc2(φ) = (sin2(πφ)+ δ)/(π2φ2
+ δ).

We take the following two steps:

φn+ 1
2 − φn

1t
= ∆dφ

n+ 1
2 − λ

K−
k=0

(Cn
k − f0)2


(φn

− k)2 sin(2π(φn
− k))− 2(φn

− k) sin2(π(φn
− k))

π2(φn − k)4 + δ


(9)

and

φn+1
− φn+ 1

2

1t
= −

F ′(⟨φn+1
⟩)

ϵ2
. (10)

We solve Eq. (9) by a multigrid method [31,32]. We can consider Eq. (10) as an implicit scheme for the following Eq. (11)
with the initial condition φn+ 1

2 .

φt = −
F ′(⟨φ⟩)

ϵ2
. (11)

The solution at t = 1t of Eq. (11) is obtained by the method of separation of variables [33] and is given as

⟨φn+1
⟩ = 0.5 +

⟨φn+ 1
2 ⟩ − 0.5

e
−1t
2ϵ2 + (2⟨φn+ 1

2 ⟩ − 1)2(1 − e
−1t
2ϵ2 )

.

Hence, the solution of Eq. (10) is

φn+1
= 0.5 +

⟨φn+ 1
2 ⟩ − 0.5

e
−1t
2ϵ2 + (2⟨φn+ 1

2 ⟩ − 1)2(1 − e
−1t
2ϵ2 )

+ [φn+ 1
2 ]. (12)

Finally, our proposed scheme is written as

φn+ 1
2 − φn

1t
= ∆dφ

n+ 1
2 − λ

K−
k=0

(Cn
k − f0)2


(φn

− k)2 sin(2π(φn
− k))− 2(φn

− k) sin2(π(φn
− k))

π2(φn − k)4 + δ


, (13)

φn+1
= 0.5 +

⟨φn+ 1
2 ⟩ − 0.5

e
−1t
2ϵ2 + (2⟨φn+ 1

2 ⟩ − 1)2(1 − e
−1t
2ϵ2 )

+ [φn+ 1
2 ]. (14)

The homogeneous Neumann boundary condition is applied to the domain. However, it is not restricted to the Neumann
condition, we can use other boundary conditions such as periodic, Dirichlet, and combinations of these. We note that the
first Eq. (13) is the discrete implicit diffusion equation with a source term. The second Eq. (14) is the analytic solution for
the ordinary differential equation.

4. Numerical experiments

In this section, we tested our proposed model and its computational algorithm on generic numerical experiments such
as piecewise constant images with and without noises, landscape image, and MR images.
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Fig. 3. Proposed initialization.
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Fig. 4. Multiphase image with uniform heights. The size of the image is 128 × 128. (a) Original image f0 , (b) the value of original image f0 , (c) initial
phase-field φ0 , and (d) converged phase-field φ after 4 iterations.

4.1. Proposed initialization

Regarding the initial guess for the phase-field φ, authors in [6] have typically adopted random solution values between
−0.5 and K + 0.5 for simple images. In our numerical experiments, we normalize a given image f as f0 =

f−fmin
fmax−fmin

, where
fmax and fmin are the maximum and the minimum values of the given image, respectively. Across the interfacial regions, the
concentration field varies from 0.1 to 0.9 over a distance of approximately 4

√
2ϵ tanh−1(0.9). Therefore, if we want this

value to be approximately m grid points, the ϵ value needs to be taken as follows: ϵm = hm/[4
√
2 tanh−1(0.9)]. In this

paper, we used ϵ2, ϵ3, and ϵ5 depending on test images and mesh sizes. We found that the results with different ϵm values
make little differences. Note that we use the same computational domain Ω = (0, 1) × (0, 1) throughout the paper. We
will give the CPU time, in seconds, of our calculations, performed on a 3 GHz with 3 GB of RAM.

For the initial profile we propose the following:

φ0
ij = k − 1 +

f0,ij − Bk−1

Bk − Bk−1
if f0,ij ∈ [Bk−1, Bk] for k = 1, . . . , K , (15)

where Bk for k = 0, . . . , K are target levels of the image. For example, if we have five target values, B0 = 0, B1 = 0.15, B2 =

0.4, B3 = 0.8, B4 = 1, then we have the initial phase-field according to Eq. (15) and this procedure is illustrated in Fig. 3.
Fig. 4 shows a simple synthetic image that contains four levels of colors. (a) and (b) are the original image and the value

of original image f0, respectively. (c) is the initial phase-field φ0. (d) shows the converged phase-field after 4 iterations. It
took 0.219 s CPU. The parameters used in the experiment are ϵ3,1t = 5E − 6, h = 1/128, λ = 10, and target values
B0 = 0, B1 = 0.3333, B2 = 0.6667, and B3 = 1.

Next, we set nonuniform heights with 0, 0.1, 0.2, and 1 as shown in Fig. 5(a) and (b). Fig. 5(c) and (d) are the initial
profile and converged solution with 4 iterations and 0.219 s CPU. Here we used the same parameters as the previous test
with B0 = 0, B1 = 0.1026, B2 = 0.2003, and B3 = 1.0. We can confirm that the new initialization also works well with
nonuniform heights.

4.2. Complex synthetic image

The next example is taken from [6]. Fig. 6(a) shows a complex synthetic image with multiple objects and several generic
visual structures. The interface parameter ϵ5, time step1t = 5E− 6, h = 1/256, and λ = 10 are used with the initial value
B0 = 0, B1 = 0.2471, B2 = 0.4980, B3 = 0.7529, and B4 = 1. Fig. 6(b)–(f) show the filled contours for each level from k = 0
to k = 4. White regions are segmented areas. It took 2 iterations and 0.625 s CPU time, while the previous model in [6] took
18 iterations and 37.109 s CPU time.

In many real applications the number of levels to detect is not known a priori. Therefore, a robust and reliable algorithm
should find the correct segmentation evenwhen the exact number of phases is not known. To confirm that our algorithm can
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Fig. 5. Multiphase image with nonuniform heights. (a) Original image f0 with image size 128×128, (b) the value of original image f0 , (c) initial phase-field
φ0 , and (d) converged phase-field φ after 4 iterations.

a b c

d e f

Fig. 6. A complex synthetic image with multiple objects and several generic visual structures. Image size is 256 × 256. (a) original image and (b)–(f) the
filled contours for each level from k = 0 to k = 4.

a b c

Fig. 7. A complex synthetic image with multiple objects and several generic visual structures (a) original image, (b) target image area, and (c) result.

handle such a case, we choose only one phase amongmultiple phases. Fig. 7 shows the application of the proposedmodel for
segmenting the region of image which we are interested in. We get B2 = 0.2471 and set B0 = 0, B1 = B0(1 − tol)+ B2tol,
B3 = B2(1 − tol) + B4tol, and B4 = 1. Here we take a specific tolerance, tol = 0.5, and the parameters ϵ5, time step
1t = 5E − 6, h = 1/256, and λ = 10 are used. Fig. 8 shows the initialization with these values. This computation took 2
iterations and 0.625 s CPU time.

4.3. Synthetic image with noise

To show the efficiency of our proposed numerical scheme we choose a typical experiment from [7]. The example
is a noisy synthetic image containing 4 stars on 4 different backgrounds (see Fig. 9(a) and (b)). Interface parameter ϵ3,
1t = 4E − 6, h = 1/128, and λ = 10 are used with B0 = 0.0988, B1 = 0.3281, B2 = 0.5257, B3 = 0.7190, and
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Fig. 8. Proposed initialization.
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Fig. 9. (a) Original image f0 with the size 256 × 256. (b) the value of original image f0 , (c) the final phase-field φ, (d) the value of the phase-field φ, and
(e)–(h) the filled contours with φ = 0.5, φ = 1.5, φ = 2.5, and φ = 3.5, respectively.

B4 = 0.9209. As can be seen, our method produces visually clear results with the five phase-fields after 15 iterations and
1.047 s CPU time.

4.4. Real landscape image

Fig. 10 shows the application of the proposed model to a real landscape image. The interface parameters ϵ3,1t =

4E − 6, h = 1/128, and λ = 10 are used with B0 = 0.1127, B1 = 0.3146, B2 = 0.4128, B3 = 0.5264, B4 = 0.7167,
and B5 = 0.9643. Throughout this example, we show the final five segments detected by our proposed algorithm after 10
iterations and 0.797 s CPU time. (See Fig. 10(c) and (d).)

4.5. Brain MRI

Fig. 11 shows the application of the proposed model to a brain MRI segmentation with three levels. The interface
parameter ϵ2,1t = 5E − 6, h = 1/256, and λ = 10 are used with B0 = 0.0348, B1 = 0.4286, and B2 = 0.8106. We
can see how the model can handle complex topologies. Fig. 11(a) is a brain MRI. Numerical results (b), (c), and (d) are filled
contours at φ = 0, 1, and 2, respectively. It only took 8 iterations and 1.735 s CPU time.

The final experiment shows the application of the proposedmodel for segmenting the selected region of image. Suppose
that we only want to segment the gray part (small square box) in Fig. 12(a). We get the mean value inside the box as
B2 = 0.4286. Then set B0 = 0, B1 = B0(1 − tol) + B2tol, B3 = B2(1 − tol) + B4tol, and B4 = 1 with tol = 0.75. The
gray area of brain is segmented with bright color as shown in Fig. 12(b) after 10 iterations and 2.187 s CPU time.
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Fig. 10. Landscape image segmentation. Image size is 256 × 256. (a) Original image. (b) The value of original image. (c) Steady state filled contours. (d)
The value of steady state.
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c d

Fig. 11. Segmentation of a brainMRI using a three level phase-field. The size of the image is 256×256. (a) is a brainMRI. (b), (c), and (d) are filled contours
at φ = 0, 1, and 2, respectively.

5. Conclusion

Inspired by the multiphase image segmentation via Modica–Mortola phase transition we have proposed multiphase
image segmentation using a phase-field model. We have shown that our proposed algorithm achieves faster segmentation
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a b

Fig. 12. Segmentation of a brain MRI using a three level phase-field. (a) is a brain MRI with a selected region, (b) is the segmentation result for the selected
region.

of images than the previous method. We used a fast solver such as a multigrid method for solving the heat equation and an
analytic solution for the nonlinear equation. We also propose an initialization algorithm based on the target objects for the
fast image segmentation. We validated the proposed numerical method by various numerical results on artificial and real
images.
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