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Abstract In this article,wepresent the conservativeAllen–Cahn equationwith a nonstandard variablemobility.
Unlike the classical variable mobility, the proposed nonstandard variable mobility has a small value at the
interface and a large value away from the interface. As benchmark tests, we perform temporal evolutions of
two droplets without velocity field, 2D droplet deformation under a simple shear flow, 2D droplet deformation
under a swirling flow, and 3D droplet deformation under a shear flow. The numerical results of the proposed
method demonstrate a remarkable accuracy in preserving interfaces. Moreover, the proposed method not only
captures interface location but also maintains uniform interface transition layer thickness.

1 Introduction

Multi-phase flow problems have wide applications in scientific research and industry. However, there are
many difficulties in the simulation of multi-phase flow problems because of the complex interface dynamics.
To numerically treat the morphological change of an interface, many numerical methods were developed:
for example, the volume of fluid (VOF) method [1], the level set method (LSM) [2], the lattice Boltzmann
method (LBM) [3], the immersed boundary method (IBM) [4], and the phase field method (PFM) [5]. The
phase field (or diffuse interface) method has the merit of interface capturing. The topological change of the
interface can be directly captured by solving the phase field equation without any artificial work. The two
most famous models in the phase field method are the Cahn–Hilliard (CH) equation and the Allen–Cahn (AC)
equation. In particular, the CH equation has been widely used to simulate multi-phase flow problems because
of its property of mass conservation. Lee et al. [6] used the Cahn–Hilliard–Navier–Stokes (CHNS) model
to numerically investigate the long-time dynamics of two-dimensional Rayleigh–Taylor instability. Alpak et
al. [7] used the CHNS model to simulate the dynamics of two-phase flow in pore-scale media. Mu et al. [8]
adopted the axisymmetric CHNS model to numerically study the effect of inflow velocity on the formation
of a uniform droplet in a micro-device. In [9], the authors proposed a flux-corrected phase field method to
improve the performance of phase field methods for simulating surface diffusion and they performed detailed
numerical experiments. Because the classic AC equation cannot satisfy the mass conservation, its application
in multi-phase fluid flow is severely limited. Recently, the authors in [10] have used the following modified
AC equation with the Lagrange multiplier [11] for phase field modeling of two-phase flows and proposed a
positivity-preserving conservative variational scheme:
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∂φ

∂t
= − F ′(φ)

ε2
+ �φ + β(t)

√
F(φ), (1)

which is the well-known conservative AC (CAC) equation. Jeong and Kim [12] proposed a newCACNSmodel
for two-phase flow. Aihara et al. [13] extended the CACNS model to simulate multi-component fluid flow.
Although the binary conservative AC model satisfies mass conservation, it is limited to the simulation of a
single droplet. Because the binary conservative AC model approximates the motion by mass conserving mean
curvature flow, nonphysical growth and shrinking of droplets will occur when we use this model to simulate
multiple droplets. To overcome the drawback of the binary conservative AC model, we propose a nonstandard
mobility which minimizes the dynamics along the interface to preserve the interfacial profiles of multiple
droplets.

In this paper, we present the CAC equation with nonstandard variable mobility:

∂φ

∂t
= M(φ)

[
− F ′(φ)

ε2
+ �φ − |∇φ|∇ ·

( ∇φ

|∇φ|
)]

+ β(t)
√
F(φ), (2)

where φ(x, t) is an order parameter which has the value 1 or−1 in the bulk phase and changes values from−1
to 1 in the diffusive region, M(φ) is a nonstandard mobility, F(φ) = 0.25(φ2 − 1)2 is a double well potential
function, ε is a positive constant related to the thickness of diffusive interface, β(t) is a non-constant Lagrange

multiplier which enforces themass conservation, and the anti-curvature term |∇φ|∇ ·
( ∇φ

|∇φ|
)
is used to improve

the capacity of the interface capturing. A standard variable mobility M(φ) = 1− φ2 was used in [14], and the
dynamics is controlled by interfacial diffusion with this mobility. In this study, we use a nonstandard variable
mobility M(φ) = φ2, which is close to 1 in the bulk phase and decreases to 0 at the interface (see Fig. 1a).
This new mobility is similar to the smoothed sign function S(ψ0) = ψ0/

√
(ψ0)2 + h2 (see Fig. 1b) in the

reinitialization equation for the level set method:

∂ψ

∂τ
= S(ψ0) (1 − |∇ψ |) , (3)

where h is the space step size, τ is the fictitious time, andψ0 is the level set function before reinitialization. The
smoothed sign function effectively keeps the interface location because S(ψ0) is close to zero at the interface.
Please refer to [15] for more details about the reinitialization step in the level set method.

Furthermore, to improve the performance of the interface capturing, we include an anti-curvature term
|∇φ|∇ · (∇φ/|∇φ|) in the following equation [16]:

∂φ

∂t
= − F ′(φ)

ε2
+ �φ − |∇φ|∇ ·

( ∇φ

|∇φ|
)

. (4)

The goal of this paper is to propose the CAC equation with a nonstandard variable mobility and an
anti-curvature term so that we can not only maintain the interfaces but also keep interface location with
well-defined interfacial transition layer. For comparison, we consider the following models: the models with

(a) (b)

Fig. 1 a Standard M(φ) = 1 − φ2 and nonstandard M(φ) = φ2 variable mobilities, b smoothed sign function, S(ψ0)
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simple advection, with nonstandard mobility and without anti-curvature term, with constant mobility and
anti-curvature term, and with standard mobility and anti-curvature term. Under the condition without velocity
field, the evolution of two droplets is investigated to show that the proposed model can not only overcome the
drawback of the CAC model but also maintain a good shape of interface. Under the condition with velocity
field, the two-dimensional droplet deformation in simple shear flow and swirling flow and three-dimensional
droplet deformation in shear flow are investigated to show that the proposed model can capture the interface,
maintain the uniform interfacial transition layer, and preserve the mass.

The remaining parts of this paper are organized as follows: in Sect. 3, we give the numerical solution
algorithm. To demonstrate the superior performance of the proposed model, we compare the numerical results
in Sect. 4. In Sect. 5, conclusions are drawn.

2 Various mathematical models

In this section, we introduce various models which will be used in the following sections. First, we consider
the following simple advection equation:

∂φ

∂t
+ (u, v) · ∇φ = 0, (5)

where (u, v) is the velocity field. The discretization of Eq. (5) is described in Sect. 3. Second, we consider the
following equation:

∂φ

∂t
+ (u, v) · ∇φ = − F ′(φ)

ε2
+ �φ − |∇φ|∇ ·

( ∇φ

|∇φ|
)

+ β(t)
√
F(φ), (6)

which implies M(φ) = 1. Third, we consider the following equation:

∂φ

∂t
+ (u, v) · ∇φ = φ2

(
− F ′(φ)

ε2
+ �φ

)
+ β(t)

√
F(φ), (7)

which implies M(φ) = φ2 and there is no anti-curvature term |∇φ|∇ · (∇φ/|∇φ|). Fourth, we consider the
equation with a standard mobility:

∂φ

∂t
+ (u, v) · ∇φ = (1 − φ2)

[
− F ′(φ)

ε2
+ �φ − |∇φ|∇ ·

( ∇φ

|∇φ|
)]

+ β(t)
√
F(φ), (8)

which implies M(φ) = 1 − φ2. Finally, we consider the proposed equation:

∂φ

∂t
+ (u, v) · ∇φ = φ2

[
− F ′(φ)

ε2
+ �φ − |∇φ|∇ ·

( ∇φ

|∇φ|
)]

+ β(t)
√
F(φ), (9)

which means M(φ) = φ2.

3 Numerical solutions

In this section, we only introduce the numerical solution in two-dimensional space; the three-dimensional
form is straightforward. Let Ω = (a, b) × (c, d) be a computational domain, which is partitioned into a
uniform mesh with a constant mesh spacing h = (b − a)/Nx = (d − c)/Ny , where Nx and Ny are the
numbers of cells in x- and y-directions, respectively. For i = 1, . . . , Nx and j = 1, . . . , Ny , let (xi , y j ) =
(a + (i − 0.5)h, c + ( j − 0.5)h) be the cell centers. Let φn

i j be an approximation of φ(xi , y j , n�t), where
�t = T/Nt is the temporal step size, T is the final time, and Nt is the total number of time steps. To solve
Eq. (2), we use an operator splitting method, in which the original problem is split into a sequence of simpler
problems [17]:

∂φ

∂t
= M(φ)

[
− F ′(φ)

ε2
+ �φ − |∇φ|∇ ·

( ∇φ

|∇φ|
)]

, (10)
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∂φ

∂t
= β(t)

√
F(φ). (11)

First, we solve Eq. (10) by an explicit scheme:

φ∗
i j − φn

i j

�t
= M(φn

i j )

[

− F ′(φn
i j )

ε2
+ �hφ

n
i j − |∇hφ

n
i j |∇h ·

( ∇hφ

|∇hφ|
)n

i j

]

. (12)

The term |∇hφ
n
i j |∇h · (∇hφ/|∇hφ|)ni j in Eq. (12) is calculated using the four vertex-centered gradients and is

given by

|∇hφi j | = |∇hφi+ 1
2 , j+ 1

2
+ ∇hφi+ 1

2 , j− 1
2

+ ∇hφi− 1
2 , j+ 1

2
+ ∇hφi− 1

2 , j− 1
2
|/4

and

∇h ·
( ∇hφ

|∇hφ|
)

i j
= 1

2h

⎛

⎝
φx
i+ 1

2 , j+ 1
2

+ φ
y
i+ 1

2 , j+ 1
2∣∣∣∇hφi+ 1

2 , j+ 1
2

∣∣∣
+

φx
i+ 1

2 , j− 1
2

− φ
y
i+ 1

2 , j− 1
2∣∣∣∇hφi+ 1

2 , j− 1
2

∣∣∣

−
φx
i− 1

2 , j+ 1
2

− φ
y
i− 1

2 , j+ 1
2∣∣∣∇hφi− 1

2 , j+ 1
2

∣∣∣
−

φx
i− 1

2 , j− 1
2

+ φ
y
i− 1

2 , j− 1
2∣∣∣∇hφi− 1

2 , j− 1
2

∣∣∣

⎞

⎠ ,

where

∇hφi+ 1
2 , j+ 1

2
=

(
φx
i+ 1

2 , j+ 1
2
, φ

y
i+ 1

2 , j+ 1
2

)

=
(

φi+1, j + φi+1, j+1 − φi j − φi, j+1

2h
,
φi, j+1 + φi+1, j+1 − φi j − φi+1, j

2h

)
.

The other terms are similarly defined. Second, Eq. (11) is discretized as

φn+1
i j − φ∗

i j

�t
= β∗√F(φ∗

i j ). (13)

Using Eq. (13) and the mass conservation, we have

Nx∑

i=1

Ny∑

j=1

φ0
i j =

Nx∑

i=1

Ny∑

j=1

φn+1
i j =

Nx∑

i=1

Ny∑

j=1

(
φ∗
i j + �tβ∗√F(φ∗

i j )
)

. (14)

Thus,

β∗ = 1

�t

Nx∑

i=1

Ny∑

j=1

(φ0
i j − φ∗

i j )
/ Nx∑

i=1

Ny∑

j=1

√
F(φ∗

i j ). (15)

Finally, we get φn+1 from Eq. (13), i.e., φn+1
i j = φ∗

i j + �tβ∗√F(φ∗
i j ). Specifically, the discretization of

the advection model in Sect. 2 is:

φn+1
i j − φn

i j

�t
+ [(u, v) · ∇φ]ni j = 0, (16)

where (uφx+vφy)
n
i j = uni j φ̄

n
xi j +vni j φ̄

n
yi j , and the values φ̄n

xi j and φ̄n
yi j are computed using the upwind procedure,

i.e.,

φ̄n
xi j =

{
(φn

i j − φn
i−1, j )/h if uni j > 0,

(φn
i+1, j − φn

i j )/h otherwise

and

φ̄n
yi j =

{
(φn

i j − φn
i, j−1)/h if vni j > 0,

(φn
i, j+1 − φn

i j )/h otherwise.
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4 Numerical experiment

In this section, we first perform the test of temporal evolutions of two droplets without velocity field; then,
the droplet deformations in two-dimensional shear flow, swirling flow, and three-dimensional shear flow are
conducted to verify the interface-preserving effect of the proposed method.

4.1 Temporal evolutions of two droplets without velocity field

In this test, the velocity field is absent. We consider the initial equilibrium state of two droplets with radii: 0.4
and 0.3. The initial condition is taken to be

φ(x, y, 0) = tanh

(
0.4 − √

(x + 0.4)2 + y2√
2ε

)

+ tanh

(
0.3 − √

(x − 0.6)2 + y2√
2ε

)

+ 1 (17)

on Ω = (−1, 1) × (−1, 1). The parameters are h = 1/64, �t = 0.2h2, and ε = 0.0225. The computations
are performed until t = 5000�t for the following six cases: Case 1, M(φ) = 1 without anti-curvature term;
Case 2, M(φ) = 1 with anti-curvature term; Case 3, M(φ) = 1 − φ2 without anti-curvature term; Case 4,
M(φ) = 1 − φ2 with anti-curvature term; Case 5, M(φ) = φ2 without anti-curvature term; and Case 6,
M(φ) = φ2 with anti-curvature term. Table 1 lists the details of the six cases above. Figures 2a–f show the
evolutions of two droplets from Case 1 to Case 6, respectively. Figures 2g, h show the locally enlarged views of
(e) and (f), respectively. In Figs. 2a, c, the anti-curvature term is absent and the equation changes into the CAC
equation with a specific mobility; therefore, they approximate the motion by mass conserving curvature flow,
i.e., the smaller droplet shrinks and the larger droplet grows with time. Because the effect of standard mobility
M(φ) = 1 − φ2 reduces the dynamics in bulk phase, we can observe that the evolution of two droplets in
Figs. 2c is slower than that in Figs. 2a. Although the results in Figs. 2a, c obey the basic dynamics of the CAC
equation, it does not satisfy the physical dynamics when we simulate some natural and engineering problems,
such as bubble–liquid flow and droplets emulsion [18]. In Figs. 2b, d, the anti-curvature term is added to
the equation to prevent the nonphysical evolution (i.e., smaller droplet shrinks and larger droplet grows); we
can find that the interfaces of two droplets evolve away from the initial circular shapes. In Figs. 2e, f, the
nonstandard mobility M(φ) = φ2 is used. This approach lowers the dynamics along the interface; hence, we
can find that the results in Figs. 2e, f are better than the other cases. Note that the result with the anti-curvature
term is shown in Figs. 2f. The locally enlarged views in Figs. 2g, h show that our proposed model has the best
interface-preserving effect.

In order to quantitatively show the temporal evolutions of the areas of two droplets, the polygonal area
enclosed by the interface is defined as [4]:

A = 1

2

∣∣∣∣∣

N∑

m

(XmYm+1 − YmXm+1)

∣∣∣∣∣
, (18)

where N is the total number of points on the interface; X and Y are the x- and y-coordinates, respectively. The
temporal evolutions of the areas of two droplets for all cases are shown in Fig. 3. Because the anti-curvature
term is absent and the standard mobility is used, the area of the smaller droplet decreases and the area of the
larger droplet increases with time. When the anti-curvature term or the nonstandard mobility is used, the areas
of the two droplets are almost preserved.

Table 1 Six cases for the evolutions of two droplets without velocity field

Case 1 M(φ) = 1, without anti-curvature term
Case 2 M(φ) = 1, with anti-curvature term
Case 3 M(φ) = 1 − φ2, without anti-curvature term
Case 4 M(φ) = 1 − φ2, with anti-curvature term
Case 5 M(φ) = φ2, without anti-curvature term
Case 6 M(φ) = φ2, with anti-curvature term
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(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

Fig. 2 Temporal evolutions of two droplets without velocity field. Here, g and h are the locally enlarged views of the red box
regions in e and f, respectively (color figure online)
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Fig. 3 Temporal evolutions of the areas of two droplets for all cases

Fig. 4 Temporal evolutions of deformation parameter D with respect to different mesh sizes. The arrow indicates the direction
of convergence

4.2 Convergence test

Now,we verify the proposed numericalmethod by performing a convergence test with respect to a series of finer
mesh sizes: 32×32, 64×64, 128×128, and 256×256.We consider a droplet deformation under a background
shear flow in the domain Ω = (−1, 1) × (−1, 1) by using the model in Eq. (2). The deformation parameter
is D = (L − B)/(L + B), where L and B are the maximum and minimum droplet lengths, respectively.
At the initial state, the droplet with a radius 0.5 is placed at the center of the domain. The velocity field is
(u(x, y, t), v(x, y, t)) = (y, 0). We use �t = 0.2h2 and ε = 0.075. Figure 4 shows the temporal evolutions
of deformation parameter D with respect to different mesh sizes. We can observe that the result is convergent
with increasing in mesh size.

4.3 Two-dimensional droplet deformation in a simple shear flow

To demonstrate the performance of the proposed CAC equation with a nonstandard mobility for interface
capturing in velocity field,we consider a droplet deformation under a background shear flow in two-dimensional
space, i.e., (u(x, y, t), v(x, y, t)) = (y, 0). The initial condition is a circular droplet on the computational
domain Ω = (−2, 2) × (−1, 1):

φ(x, y, 0) = tanh

(
0.5 − √

x2 + y2√
2ε

)

. (19)

For the top and bottom wall boundary conditions, we take the homogeneous Neumann boundary condition:
φy(x, 1, t) = φy(x,−1, t) = 0. We impose the periodic boundary condition for the x-direction. Across the
interfacial transition layer φ varies from −0.9 to 0.9 over a length of about 2

√
2ε tanh−1(0.9). Therefore, if
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 5 a Initial condition, b simple advection, c M(φ) = 1, d M(φ) = φ2, no curvature term, e M(φ) = 1 − φ2, f M(φ) = φ2.
Exact solution is represented by the red solid line (color figure online)

we want this value to be about hm, then ε = εm = hm/[2√2 tanh−1(0.9)] [12]. Figure 5a shows the contours
at levels φ = −0.9, 0, 0.9 of the initial profile. The parameter values used in this test are: ε = ε5, h = 1/32,
and �t = 0.2h2.

We now compare the numerical results from various models in Sect. 2. Note that the exact solution at t = 1
can be written as: x = x0+ut = x0+ y, y = y0, where x0 and y0 are the initial x- and y-coordinates of points
on the interface. For the model of simple advection in Eq. (5), Fig. 5b shows the contours at t = 1 with the
zero level contour of the exact solution. We can observe a good agreement with the exact solution. However,
the contours at φ = −0.9 and 0.9 are not good. The width of the contours is not uniform. The result of using
the model Eq. (6) is not good as shown in Fig. 5c. The interface region has been too much relaxed. The model
Eq. (7) results in shrinkage of interface due to the motion by mean curvature with mass conservation, please
see Fig. 5d. The result using the model in Eq. (8) is shown in Fig. 5e, and we can observe that the result is
not good. The interface region is still relaxed. Finally, for the proposed model Eq. (9), the result is good as
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Fig. 6 Temporal evolutions of the area of droplet for different models

shown in Fig. 5f. The interface location is correctly moved, and the thickness of the interfacial transition layer
is uniform.

The temporal evolutions of the area of droplet for different models are shown in Fig. 6. For the model of
simple advection, the area decreases with time. For the model with nonstandard mobility M(φ) = φ2 and
without anti-curvature term, the area increases. For the other three models, the area is almost preserved with
time. Comparing the results in Figs. 5 and 6, we can find that the proposed model has the merits of capturing
the interface and preserving the area.

4.4 Two-dimensional droplet deformation in a swirling flow

Next, we consider the droplet deformation under a background swirling flow in the two-dimensional space
Ω = (0, 1) × (0, 1). The velocity field is defined as

u(x, y) = −2.5 sin2(πx) sin(2πy), v(x, y) = 2.5 sin2(πy) sin(2πx). (20)

We use the initial condition φ(x, y, 0) = tanh((0.2 − √
(x − 0.5)2 + (y − 0.7)2)/(

√
2ε)) and parameters

h = 1/128, �t = 0.2h2, ε = ε8. The numerical tests are performed for Eqs. (5)–(9). The results at
t = 0.1709 are shown in Fig. 7a–f. The exact solution is obtained by solving dx/dt = u and dy/dt = v using
an improved Euler method with time step �t = 0.2h2. Comparing the numerical results obtained by Eqs. (5)–
(8), we can observe that the result using Eq. (5) shows a good agreement with the exact solution; however,
the transition layer thickness is not uniform. For the model Eqs. (6) and (8), although uniform transition layer
thickness is achieved, the upper tip of droplet shrinks because of strong interfacial mobility. For the model
Eq. (7), the result is not good because of the motion by mean curvature with mass conservation. However, the
proposed model Eq. (9) not only maintains the uniform transition layer thickness, but also accurately captures
the location of interface.

The temporal evolutions of the area of droplet for different models are shown in Fig. 8. For the model of
simple advection, the area decreases with time. For the model with nonstandard mobility M(φ) = φ2 and
without anti-curvature term, the area increases. For the other three models, the area is almost preserved with
time. Comparing the results in Figs. 7 and 8, we can find that the proposed model has the merits of capturing
the interface and preserving the area.

4.5 Three-dimensional droplet deformation in a simple shear flow

Next, we further consider three-dimensional droplet deformation under a background shear flow. Here, we use
h = 1/32, �t = 0.05h2, and ε = ε6. The velocity field is defined on Ω = (0, 4) × (0, 2) × (0, 2):

u(x, y, z) = z − 1, v(x, y, z) = w(x, y, z) = 0, (21)
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 7 a Initial condition, b simple advection, c M(φ) = 1, d M(φ) = φ2, no curvature term, e M(φ) = 1 − φ2, f M(φ) = φ2.
Exact solution is represented by the red solid line (color figure online)
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Fig. 8 Temporal evolutions of the area of droplet for different models

and the initial condition is chosen as

φ(x, y, z, 0) = tanh

(
0.5 − √

(x − 2)2 + (y − 1)2 + (z − 1)2√
2ε

)

. (22)

The numerical simulations for Eqs. (5)–(9) are performed until t = 1. The results are shown in Fig. 9, where
the dark green, green, and yellow isosurfaces represent φ = 0.9, 0, and −0.9 level sets, respectively. The slice
profiles at y = 1 show the corresponding exact solution (the red solid line) and numerical solution (black solid
line). As we can see, the proposed model (i.e., M(φ) = φ2) shows the best agreement with the exact solution.

The temporal evolutions of the volume of droplet for different models are shown in Fig. 10. For the model
of simple advection, the volume decreases with time. For themodel with nonstandardmobilityM(φ) = φ2 and
without anti-curvature term, the volume increases. For the other three models, the volume is almost preserved
with time. Comparing the results in Figs. 9 and 10, we can find that the proposed model has the merits of
capturing the interface and preserving the volume.

4.6 The deformation of four droplets in three-dimensional shear flow

In order to further verify the interface preserving and capturing of our model Eq. (9) in the velocity field,
we investigate the deformation of four droplets in three-dimensional shear flow. The initial conditions on
Ω = (0, 8) × (0, 2) × (0, 2) are set to be

φ(x, y, z, 0) = tanh

(
0.5 − √

(x − 1.3)2 + (y − 1)2 + (z − 1)2√
2ε

)

+ tanh

(
0.22 − √

(x − 3.1)2 + (y − 1)2 + (z − 1.3)2√
2ε

)

+ tanh

(
0.4 − √

(x − 4.7)2 + (y − 1)2 + (z − 0.8)2√
2ε

)

+ tanh

(
0.3 − √

(x − 6.7)2 + (y − 1)2 + (z − 1.2)2√
2ε

)

+ 3, (23)

u(x, y, z) = y − 1, v(x, y, z) = w(x, y, z) = 0. (24)

The computation is performed until t = 0.4 with the same parameters in Sect. 4.5. As shown in Fig. 11a, the
droplets with different initial radii: R = 0.5, 0.22, 0.4, 0.3 are marked by a, b, c, d , respectively. Figure 11b
shows the result at t = 0.4. Figure 11c shows the cross-sectional profile of (b) at y = 1. We can find that the
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(a) (b) (c)

(d) (e) (f)

Fig. 9 a Initial condition, b simple advection, c M(φ) = 1, d M(φ) = φ2, no curvature term, e M(φ) = 1 − φ2, f M(φ) = φ2.
Exact solution is represented by the red solid line. For interpretation of the references to color in this figure, the reader is referred
to the Web version of this article

interface transition layer thickness is uniform and the interfacial positions show good agreement with exact
solution. The temporal evolutions of volume V n for each droplet are shown in Fig. 12; the result shows that
the volumes enclosed by interface of each droplet are almost conserved.

4.7 Comparison with the conservative level set method

In order to verify the capacity of interface capturing of the proposed model, we consider the vortex droplet in
a periodic swirling flow as in [2]. The initial conditions are set to be:

φ(x, y, 0) = tanh

(
0.15 − √

x2 + (y − 0.25)2√
2ε

)

, (25)

u(x, y, 0) = − sin2(π(x + 0.5)) sin(2π(y + 0.5)), (26)

v(x, y, 0) = sin2(π(y + 0.5)) sin(2π(x + 0.5)) (27)
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Fig. 10 Temporal evolutions of the volume of droplet for different models

(b)

(a)

(c)

Fig. 11 Deformation of four droplets in three-dimensional shear flow. a Initial condition, b result at t = 0.4, c cross-profile.
Exact solution is represented by the red solid line. For interpretation of the references to color in this figure, the reader is referred
to the Web version of this article

on Ω = (−0.5, 0.5) × (−0.5, 0.5). The velocity field will be reversed at t = 2. The parameters are h =
1/128, �t = 0.2h2, and ε = ε10. The nonstandard mobility is scaled by M(φ) = εφ2/10. Figure 13a shows
the evolution of vortex droplet from the conservative level set method [2] where the mesh size 128 × 128 is
used. The results from the proposed model are shown in Fig. 13b. We can observe that the proposed model
has similar results with those from the conservative level set method [2].

4.8 Comparison with the previous result

Finally, we extend the proposed model to simulate the incompressible two-phase flow. After non-
dimensionlization [6], the following system including the Navier–Stokes equation and the proposed model can
be written as
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Fig. 12 Temporal evolutions of volume V n for each droplet

(a)

(b)

Fig. 13 Temporal evolutions of vortex droplet. a The results from the conservative level set method. Adapted from [2] with the
permission of Elsevier Science, b the results from the proposed model

∇ · u = 0, (28)
∂u
∂t

= −∇ p + 1

Re
�u + SF(φ) − u · ∇u, (29)

∂φ

∂t
= φ2

Pe

[
− F ′(φ)

ε2
+ �φ − |∇φ|∇ ·

( ∇φ

|∇φ|
)]

+ β(t)
√
F(φ), (30)

where u is the velocity, p is the pressure, Re is the Reynolds number, Pe is the Peclet number. The surface
tension term is defined as [19]

SF(φ) = −3
√
2ε

4We
∇ ·

( ∇φ

|∇φ|
)

|∇φ|∇φ, (31)

whereWe is theWeber number. For the numerical solution of the Navier–Stokes equation, please see [6]. Now,
we consider a benchmark problem of the droplet deformation in a shear flow from Sheth and Pozrikidis [20].
The initial conditions are
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Fig. 14 Temporal evolutions of the droplet deformation for Re = 1, Ca = 0.2, 0.4, and 0.9

φ(x, y, 0) = tanh

(
0.5 − √

x2 + y2√
2ε

)

, (32)

u(x, y, 0) = y, v(x, y, 0) = 0 (33)

on the domain Ω = (−2, 2)× (−1, 1). The parameters are: h = 1/32, �t = 0.2h2, Re = 1, and ε = ε4. For
three different Capillary numbers Ca = We/Re = 0.2, 0.4, 0.9, the Peclet numbers Pe = 6.8, 30, and 100 are
used, respectively. In Fig. 14, the solid lines are the temporal evolutions of the deformation parameter from
Sheth and Pozrikidis [20]. The open circles are our results. As we can see, they are in good agreement.

5 Conclusions

In this paper, we considered the CAC equation with a nonstandard variable mobility. Unlike the classical
variable mobility, the proposed nonstandard variable mobility has small value at the interface and large value
away from the interface. As benchmark tests, we performed temporal evolutions of two droplets without
velocity field, 2D droplet deformation under a simple shear flow, 2D droplet deformation under a swirling flow,
and 3D droplet deformation under a shear flow. The numerical results of the proposed method demonstrated
remarkable accuracy in preserving the interfaces. Moreover, the proposed method not only accurately captures
interface location but also maintains uniform interface transition layer thickness. As future research directions,
the proposed model can be used in modeling and simulation of two-phase fluid flows [21–25].
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