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a b s t r a c t 

In this study, we present a novel Cahn–Hilliard–Navier–Stokes (CHNS) system with a nonstandard vari- 

able mobility for two-phase incompressible fluid flow. Unlike the classical constant mobility, the devel- 

oped variable mobility has decreasing values nearby the interface and increasing values away from the 

interface, which minimizes the dynamics of the Cahn–Hilliard (CH) model nearby the interface. An un- 

conditionally stable convex splitting method is used to solve the CH equation and the projection method 

is used to solve the NS equation. As benchmark tests, the Rayleigh–Taylor instability, drop deformation, 

and rising bubble are performed to show the accuracy and practicability of the proposed model. The 

computational results indicate that the proposed model accurately captures the interfacial position and 

keeps the interface region from being too much distorted. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The phase-field method is an accurate and important ap- 

roach in two-phase fluid flow simulations because the topol- 

gy changes of interface can be easily captured by solving the 

hase-field equation without complex artificial works. The follow- 

ng Cahn–Hilliard–Navier–Stokes (CHNS) system is an extensively 

sed phase-field model for two-phase incompressible fluid flows: 

t + ∇ · ( φu ) = 

1 

P e 
∇ · ( M∇μ) , (1) 

= F ′ (φ) − ε2 �φ, (2) 

(φ) ( u t + u · ∇u ) = −∇ p + 

1 

Re 
∇ ·

(
η(φ) 

(∇ u + ∇u 

T 
))

+ 

ρ(φ) 

F r 
g + SF , (3) 

 · u = 0 , (4) 

here φ = φ(x , t) and μ = μ(x , t) are the phase-field variable and

hemical potential, respectively. Here, x and t are space and time 

ariables. M is a general mobility, F (φ) = 0 . 25(1 − φ2 ) 2 is the
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ouble-well potential function, ε is a positive parameter related 

o the interfacial thickness, Pe is the Peclet number, u and p are 

he velocity and pressure fields, Re is the Reynolds number, Fr is 

he Froude number, and g = (0 , −1) is the gravitational direction 

n two-dimensional space. One of the extensively used formula of 

ontinuous surface tension force is as follows [1] : 

F = 

3 

√ 

2 ε

4 W e 
∇ ·

( ∇φ

|∇φ| 
)

|∇ φ|∇ φ, (5) 

here We is the Weber number. Variable density and viscosity 

re 

(φ) = 

ρ1 

2 

(1 + φ) + 

ρ2 

2 

(1 − φ) and 

η(φ) = 

η1 

2 

(1 + φ) + 

η2 

2 

(1 − φ) , (6) 

here ρ1 and ρ2 represent the densities of fluid 1 and fluid 2, re- 

pectively; η1 and η2 represent the viscosities of fluid 1 and fluid 

, respectively. The classical CHNS model (1) –(4) has been widely 

sed in various two-phase incompressible fluid flow simulations, 

uch as the Rayleigh–Taylor instability [2,3] , Kelvin–Helmholtz in- 

tability [4] , Rayleigh–Plateau instability [5] , buoyancy-driven mix- 

ng [6] , rising bubble [7,8] , falling droplet [9] , droplet deformation 

n shear flow [10–12] , liquid jet formation [13,14] , flow with surfac- 

ant [15,16] , ferrofluid dynamics [17] , and droplet impacting [18,19] , 

tc. Because of the extensive applications of the CHNS model in 

cience and engineering fields and the difficulties of finding ana- 

ytical solutions, many researchers developed some accurate and 

fficient numerical schemes for the CHNS model in recent years. 

https://doi.org/10.1016/j.compfluid.2020.104755
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Fig. 1. Nonstandard mobility: M = φ2 . 

D

c

w

(

b

w

i

t

s

fl

d

t

b

s

a

[

a

f

p

s

t

Z  

t

d

m

i

p

c

fl

d

P

t

s

m

e

f

w

c  

(

t

t

n

P

Fig. 2. Staggered marker-and-cell (MAC) spatial mesh. 
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ing et al. [20] proposed a second-order time accurate numeri- 

al scheme for the classical CHNS system, where the CH equation 

as treated by using a two-step backward differentiation formula 

BDF2) scheme, the viscosity term in NS equation was discretized 

y using the Crank–Nicolson (CN) scheme and the convection term 

as discretized by using the Adams–Bashforth (AB) scheme. Var- 

ous numerical tests, such as the Rayleigh–Taylor instability and 

he rising bubble, were performed to show that their method is 

econd-order accuracy in time and can be applied to two-phase 

ow problems with large density ratios. Shen and Yang [21] first 

eveloped a totally decoupled, unconditionally stable scheme for 

he CHNS model. Note that their scheme is efficient to implement 

ecause only elliptic equations are needed to solve in each time 

tep. Chen and Shen [22] developed an efficient adaptive mesh 

nd adaptive time method for solving the CHNS model. Zhu et al. 

23] adopted the idea of recently developed scalar auxiliary vari- 

ble (SAV) approach to propose an accurate energy stable scheme 

or the CHNS system. Wang et al. [24] studied a new stabilized 

hase-field method for two-phase flow problems with large den- 

ity ratios and high Reynolds number. Moreover, the moving con- 

act line problems for the CHNS model had been widely studied in 

hu et al. [15] , Liu and Ding [18] , Yu and Yang [25] , especially for

he solid-liquid interactions. 

The CH model was originally proposed to model the spinodal 

ecomposition in a binary mixture. Therefore, the interfacial length 

inimization is an intrinsic dynamics. In practice, we want to min- 

mize this basic dynamics when the CH model is used for two- 

hase fluid flow simulations. To the best knowledge of authors, the 

onstant mobility (i.e., M = 1 ) has been used in most two-phase 

ow simulations using the CHNS model. To minimize the intrinsic 

ynamics of the CH model, a natural approach is to choose a large 

eclet number. However, a large Peclet number will make the in- 

erface region not be relaxed enough because the CH model is very 

ensitive to the Peclet number. In actual computation, an approxi- 

ately uniform interface region is necessary to study the accurate 

volution of interface, especially as the continuous surface tension 

orce is considered. 

The objective of this research is to propose a novel CHNS model 

ith a nonstandard mobility, i.e., M = φ2 in Eq. (1) , which is 

lose to 1 in the bulk phase and decreases to 0 at the interface

see Fig. 1 ). The nonstandard mobility was used in the conserva- 

ive Allen–Cahn equation [26] , which has different dynamics from 

he CH equation. The proposed mobility minimizes the dynamics 

earby the interface so that we do not need to choose a small 

eclet number to make interface region to be uniform. 
2 
The rest of this article is organized as follows. In Section 2 , 

e describe the numerical solution of the proposed model. In 

ection 3 , various numerical experiments are performed. The con- 

lusions are drawn in Section 4 . 

. Numerical solution 

We describe the numerical solution for Eqs. (1) –(4) with a 

onstandard variable mobility: M = φ2 . For simplicity, we present 

he two-dimensional case, the extension to three-dimensional 

pace is straightforward. Let � = (a, b) × (c, d) be the computa- 

ional domain, which is discretized by using the uniform space 

tep h = (b − a ) /N x = (d − c) /N y , where N x and N y are the posi-

ive cell numbers along x - and y -directions, respectively. For i = 

 , 2 , . . . , N x and j = 1 , 2 , . . . , N y , the cell centers are defined to

e (x i , y j ) = (a + (i − 0 . 5) h, c + ( j − 0 . 5) h ) . Let φn 
i j 
, μn 

i j 
, and p n 

i j 
be

he approximations of φ( x i , y j , n �t ), μ( x i , y j , n �t ), and p ( x i , y j ,

 �t ), respectively. Here, �t = T /N t is the time step, T and N t are

he total computational time and the number of temporal itera- 

ions, respectively. Let u n 
i + 1 

2 
, j 

and v n 
i, j+ 1 

2 

be the approximations of 

 (x 
i + 1 

2 
, y j , n �t) and v (x i , y j+ 1 

2 
, n �t) at the cell edges. In this study,

he staggered marker-and-cell (MAC) spatial mesh [27] is used, 

hich means the phase-field variable: φ, chemical potential: μ, 

nd pressure field: p are stored at the cell centers, the velocities: 

 and v are stored at the cell edges (see Fig. 2 ). 

First, we numerically solve the NS Eqs. (3) and (4) by using 

he following projection method [28] : Using the given values u 

n = 

u n , v n ) and φn , we calculate the intermediate velocity field 

˜ u with 

he absence of pressure gradient: 

˜ 
 = u 

n + �t 

[
1 

ρ(φn ) Re 
∇ d ·

(
η(φn ) 

(∇ d u + ∇ d u 

T 
)n 

)
+ 

SF n 

ρ(φn ) 

− ( u · ∇ d u ) 
n + 

g 

F r 

] 
, (7) 

here the subscript d represents the discrete operator. The advec- 

ion term is discretized by using the upwind scheme [28] . The spa- 

ial discretization of surface tension force SF can be found in Kim 

1] . Then, we solve the following Eqs. (8) and (9) for the updated 

ressure filed: p n +1 : 

u 

n +1 − ˜ u 

�t 
= − 1 

ρ(φn ) 
∇ d p 

n +1 , (8) 

 · u 

n +1 = 0 . (9) 
d 
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Fig. 3. Interface region ( φ = −0 . 9 , 0 , 0 . 9 ) for the constant mobility: M = 1 (first row) and the variable mobility: M = φ2 (second row) at t = 2 . 125 . Here, (a), (b), and (c) 

represent the results for Pe = 0 . 5 /ε, 1 /ε, and 2/ ε, respectively. 

Fig. 4. Interface region ( φ = −0 . 9 , 0 , 0 . 9 ) at t = 2 . 2725 for the model with M = 1 and Pe = 1 /ε (a), the model with M = 1 and Pe = 2 /ε (b), and the model with M = φ2 and 

Pe = 1 /ε (c). 

B

E

∇

H

o

u

y takeing the discrete divergence operation to Eq. (8) and using 

q. (9) , we can obtain the pressure Poisson equation: 

 d ·
(

1 

ρ(φn ) 
∇ d p 

n +1 
)

= 

1 

�t 
∇ d · ˜ u . (10) 
3 
ere, the multigrid method [29] is used to solve the linear system 

f Eq. (10) . Thus, the updated velocity field can be obtained by: 

 

n +1 = 

˜ u − �t 

ρ(φn ) 
∇ d p 

n +1 . (11) 



J. Yang and J. Kim Computers and Fluids 213 (2020) 104755 

Fig. 5. Interfacial positions ( φ = 0 ) at t = 2 . 2725 . 
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Fig. 7. Temporal evolutions of the normalized positions of rising bubble and falling 

spike. 
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ext, we use the unconditionally stable convex splitting method 

30] to solve Eqs. (1) and (2) , the discretizations are written to be

φn +1 
i j 

− φn 
i j 

�t 
= 

1 

P e 
∇ d ·

(
M 

n 
i j ∇ d μ

n +1 
i j 

)
− ∇ d · ( φu ) 

n 
i j , (12) 

n +1 
i j 

= (φn 
i j ) 

3 − φn 
i j + ε2 �d φ

n +1 
i j 

, (13) 
ig. 6. Temporal evolutions of RTI for the classical model with M = 1 and Pe = 1 /ε (a) an

o right in each row are: t = 0 , 1 . 01 , 2 . 02 , 2 . 525 , 3 . 2825 , 4 . 2925 , and 5.3025. 

4 
here M 

n 
i j 

= (φn 
i j 
) 2 . A nonlinear multigrid method [29] with 

auss–Seidel-type iteration is used to solve Eqs. (12) and (13) . For 

ore details of nonlinear multigrid method, see [29,31] . Here, the 

lassical five-point discretization of Laplacian operator is used, i.e., 

d φi j = 

(
φi +1 , j + φi −1 , j + φi, j+1 + φi, j−1 − 4 φi j 

)
/h 2 . The mass con- 

ervation is an important issue for two-phase flow simulation. 

herefore, the following conservative discretization of the convec- 
d the proposed model with M = φ2 and Pe = 1 /ε (b). The snapshots from the left 



J. Yang and J. Kim Computers and Fluids 213 (2020) 104755 

Fig. 8. Interface region ( φ = −0 . 9 , 0 , 0 . 9 ) at t = 2 for the model with M = 1 and 

Pe = 1 /ε (a), the model with M = 1 and Pe = 2 /ε (b), and the model with M = φ2 

and Pe = 1 /ε (c). 

Fig. 9. Interfacial positions ( φ = 0 ) at t = 2 in shear flow. 

Fig. 10. Temporal evolutions of deformation parameter D for Re = 1 , and Ca = 

0 . 2 , 0 . 4 , 0 . 9 . 
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5 
ion term in Eq. (12) is used: 

 d · ( φu ) 
n 
i j = 

(
φn 

i +1 , j 
+ φn 

i j 

)
u 

n 
i + 1 2 , j 

−
(
φn 

i j 
+ φn 

i −1 , j 

)
u 

n 
i − 1 

2 , j 

2 h 

+ 

(
φn 

i, j+1 
+ φn 

i j 

)
v n 

i, j+ 1 2 

−
(
φn 

i j 
+ φn 

i, j−1 

)
v n 

i, j− 1 
2 

2 h 

. (14) 

hus, we complete the numerical solution in one time cycle. 

. Numerical experiments 

For the parameter ε, we use the formulation: εm 

= 

h/ [ 
√ 

2 tanh 

−1 (0 . 9)] , which indicates that the interface re- 

ion occupies approximately m grid points [32] . Unless otherwise 

pecified, we use ε = ε4 . The viscosity-matched condition, i.e., 

1 = η2 = 1 , is considered in the following numerical tests. 

.1. Effect of Peclet ( Pe ) number 

We investigate the effect of Pe number on the evolution of in- 

erface. The dynamics of the CH model is sensitive for the Pe num- 

er in the simulation. As reported in the previous studies [28] , a 

mall Pe number delays the evolution of interface, while a large 

e number makes the interface region not to be relaxed. Therefore, 

sing a proper Pe is important in the simulation. Here, we con- 

ider the evolution of Rayleigh–Taylor instability (RTI) with con- 

tant mobility M = 1 and variable mobility M = φ2 in the domain 

= (0 , 1) × (0 , 2) . The initial conditions are defined to be 

(x, y, 0) = tanh 

(
y − 1 − 0 . 1 cos (2 πx ) √ 

2 ε

)
, (15) 

 (x, y, 0) = v (x, y, 0) = 0 . (16) 

he following numerical parameters are used: h = 1 / 64 , �t = 

 . 0025 , Re = 3000 , and F r = 1 . The density ratio of fluid 1 and

uid 2 is ρ1 : ρ2 = 3 : 1 . The surface tension is ignored, i.e., W e =
 . The results at t = 2 . 125 are illustrated in Fig. 3 , where the first

ow and second row represent the results for M = 1 and M = φ2 ,

espectively. Three columns (a), (b), and (c) are the results for 

e = 0 . 5 /ε, 1 /ε, and 2/ ε, respectively. As we can observe, a larger

e number makes the interface region, i.e., φ = −0 . 9 ∼ 0 . 9 , to be

ot uniform, while a smaller Pe number delays the evolution be- 

ause of the dominating dynamics of the CH model. Therefore, 

e = 1 /ε is a proper choice for both M = 1 and M = φ2 . In the fol-

owing tests, we will use Pe = 1 /ε unless otherwise stated. 

.2. Two-dimensional RTI 

First, the two-dimensional RTI is considered to compare the dif- 

erent dynamics of the models with constant mobility, M = 1 and 

ariable mobility, M = φ2 . We use the following initial conditions 

n the domain � = (0 , 1) × (0 , 4) : 

(x, y, 0) = tanh 

(
y − 2 − 0 . 1 cos (2 πx ) √ 

2 ε

)
, (17) 

 (x, y, 0) = v (x, y, 0) = 0 . (18) 

he numerical parameters keep the same as those in Section 3.1 . 

or the model with variable mobility: M = φ2 , the Pe number: 1/ ε
s used. For the model with constant mobility M = 1 , two different

e numbers: 1/ ε and 2/ ε are considered. Fig. 4 (a)–(c) illustrate the 

nterface region ( φ = −0 . 9 ∼ 0 . 9 ) at t = 2 . 2725 for the model with

 = 1 and Pe = 1 /ε, the model with M = 1 and Pe = 2 /ε, and the

odel with M = φ2 and Pe = 1 /ε, respectively. The interfacial po- 

itions ( φ = 0 ) at t = 2 . 2725 are shown in Fig. 5 . For the same Pe
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Fig. 11. Interface region ( φ = −0 . 9 , 0 , 0 . 9 ) at t = 2 for the model with M = 1 and Pe = 1 /ε (a), the model with M = 1 and Pe = 2 /ε (b), and the model with M = φ2 and 

Pe = 1 /ε (c). 

Fig. 12. Interfacial positions ( φ = 0 ) at t = 1 . 7 of the rising bubble. 
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Fig. 13. Temporal evolutions of two droplets under shear flow by (a) the CACNS 

model and (b) the proposed model. The snapshots from the top to bottom are: t = 

0 , 0 . 625 , 1 . 25 , and 1.75. 

3

M

b

c

φ

u  

i  

t  
umber: 1/ ε, the model with variable mobility minimizes the ef- 

ect of the CH dynamics and captures a more accurate interfacial 

osition than the model with constant mobility. By taking a larger 

e number: 2/ ε, although the model with constant mobility can 

apture a more accurate interfacial position, the interface region 

s not uniform. We can confirm that the proposed model can ac- 

urately capture the interfacial position without using a larger Pe 

umber and the interface region is approximately uniform. 

To compare the dynamics of the classical model: M = 1 and 

e = 1 /ε and the proposed model: M = φ2 and Pe = 1 /ε. The tem-

oral evolutions of RTI are illustrated in Fig. 6 (a) and (b), we can

nd that the proposed model captures more details during the in- 

erface evolution. 

Then, we verify the solution of the proposed model by com- 

arison with previous works performed by Zu and He [33] , Ding 

t al. [20] , Li et al. [34] , and Guermond and Quartapelle [35] .

he parameters are kept unchanged and the computation stops at 
˜ 
 = 2 . 5 which is related to ours by the time scale: ˜ t = t 

√ 

At , where

t = (ρ1 − ρ2 ) / (ρ1 + ρ2 ) = 0 . 5 is the Atwood number. Fig. 7 shows

he temporal evolutions of normalized positions of rising bubble 

nd falling spike, we can find that our solution and previous re- 

ults are in good agreement. 
6 
.3. Two-dimensional drop deformation 

Next, we compare the classical models: M = 1 and Pe = 1 /ε; 

 = 1 and Pe = 2 /ε and the proposed model: M = φ2 and Pe = 1 /ε
y simulating the droplet deformation in shear flow. The initial 

onditions are defined as: 

(x, y, 0) = tanh 

( 

0 . 25 −
√ 

(x − 1) 2 + (y − 0 . 5) 2 √ 

2 ε

) 

, (19) 

 (x, y, 0) = 2 y − 1 , v (x, y, 0) = 0 (20)

n the domain � = (0 , 2) × (0 , 1) . To achieve the large deforma-

ion in the shear flow, a larger Weber number: W e = 100 is used.
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Fig. 14. Temporal evolution of local mass A enclosed by interface of each droplet. 
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ther numerical parameters are: h = 1 / 64 , �t = 2 h 2 , Re = 10 ,

nd ρ1 : ρ2 = 1 : 1 . Fig. 8 (a)–(c) illustrate the interface region ( φ =
0 . 9 ∼ 0 . 9 ) at t = 2 for the model with M = 1 and Pe = 1 /ε, the

odel with M = 1 and Pe = 2 /ε, and the model with M = φ2 and

e = 1 /ε, respectively. The interfacial positions ( φ = 0 ) at t = 2 are

hown in Fig. 9 . For the same Pe number: 1/ ε, we can find that

he model with variable mobility captures a more accurate interfa- 

ial position than the model with constant mobility. Although the 

odel with constant mobility can capture a more accurate interfa- 

ial position by using Pe = 2 /ε, the interface region is not uniform.

n the shear flow, the proposed model can still accurately capture 

he interfacial position under the large deformation. Moreover, The 

nterface region can be approximately uniform at most when the 

roposed model is used. 

The droplet deformation in shear flow is an important bench- 

ark problem to verify the accuracy of surface tension. The con- 

inuous surface tension model in phase-field method requires an 

pproximately uniform interface region to have an accurate com- 
Fig. 15. (a) Initial state. Evolutions of interface ( φ = 0 ) at t = 3 : (b) M = 

7 
utation. Thus, we verify the solution of the proposed model in 

hear flow by comparison with previous work performed by Sheth 

nd Pozrikidis [36] . The initial conditions are set to be 

(x, y, 0) = tanh 

( 

0 . 5 −
√ 

(x − 1) 2 + (y − 1) 2 √ 

2 ε

) 

, (21) 

 (x, y, 0) = y, v (x, y, 0) = 0 (22) 

n the domain � = (0 , 2) × (0 , 2) . The parameters are: h =
 / 32 , �t = 0 . 2 h 2 , Re = 1 , and Pe = 1 /ε. Three different Capillary

umbers: Ca = W e/Re = 0 . 2 , 0 . 4 , and 0.9 are considered. Fig. 10 is

he time evolutions of deformation parameter, D . We can find that 

ur solution and previous results are in good agreement. 

.4. Two-dimensional rising bubble 

Then, we compare the classical models: M = 1 and Pe = 1 /ε; 

 = 1 and Pe = 2 /ε and the proposed model: M = φ2 and Pe = 1 /ε
y simulating the rising bubble in ambient liquid with the follow- 

ng initial conditions: 

(x, y, 0) = tanh 

( √ 

(x − 1) 2 + (y − 1) 2 − 0 . 5 √ 

2 ε

) 

, (23) 

 (x, y, 0) = v (x, y, 0) = 0 . (24) 

n the domain � = (0 , 4) × (0 , 2) . In this test, we use h =
 / 32 , �t = 0 . 2 h 2 , Re = 35 , W e = 125 , F r = 1 , and ρ1 : ρ2 = 20 :

 , where ρ1 and ρ2 are the densities of ambient liquid and light 

ubble, respectively. Fig. 11 (a)–(c) illustrate the interface region 

 φ = −0 . 9 ∼ 0 . 9 ) at t = 1 . 7 for the model with M = 1 and Pe = 1 /ε,

he model with M = 1 and Pe = 2 /ε, and the model with M = φ2 

nd Pe = 1 /ε, respectively. The interfacial positions ( φ = 0 ) at t =
 . 7 are shown in Fig. 12 . Comparing with the classical model, we

an observe that the proposed model can accurately capture the 

nterfacial position of rising bubble. 
1 and Pe = 1 /ε, (c) M = 1 and Pe = 2 /ε, (d) M = φ2 and Pe = 1 /ε. 
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Fig. 16. Cross profiles along y = 0 , y = 0 . 5 , and y = x at t = 3 , where the dashed, solid, and dash-dotted lines represent φ = −0 . 9 , 0 , and 0.9, respectively. (a) M = 1 and 

Pe = 1 /ε, (b) M = 1 and Pe = 2 /ε, (c) M = φ2 and Pe = 1 /ε. 
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.5. Comparison with other phase-field model 

We compare the proposed model with another well-known 

hase-field model, i.e., the conservative Allen–Cahn–Navier–Stokes 

CACNS) model. As shown in previous work [37] , the CACNS model 

an be applied to various two-phase fluid flow problems and the 

umerical solution of CAC model is easier than the CH model. 

owever, the classical two-phase CACNS model is difficult to use 

or simulating multiple droplets system. Because of the basic dy- 

amics of motion by mean curvature with mass conservation of 

he CAC model, the large droplets will grow and small droplets 

ill shrink in time. Note that an effective way to prevent this 

on-physical evolution is to use the recently developed multi- 

hase CACNS model [38] , however we only focus on the two-phase 

odel in this research. The proposed model is derived from the 

wo-phase CH model, thus the non-physical growth or shrink of 

roplets can be avoided, i.e., each droplet maintains the original 

e

8 
ass with temporal evolution. In this test, we consider the defor- 

ations of two droplets under shear flow. The initial conditions 

re defined to be 

φ(x, y, 0) = tanh 

( 

0 . 3 −
√ 

(x − 1) 2 + (y − 1) 2 √ 

2 ε

) 

+ tanh 

( 

0 . 15 −
√ 

(x − 1) 2 + (y − 1) 2 √ 

2 ε

) 

+ 1 , (25) 

 (x, y, 0) = 2 y − 1 , v (x, y, 0) = 0 (26)

n the domain � = (0 , 2) × (0 , 1) . For both the CACNS model and

he proposed model, we use h = 1 / 64 , �t = 2 h 2 , Re = 10 , W e =
0 , Pe = 1 /ε, and ρ1 : ρ2 = 1 . The gravity is ignored. Fig. 13 (a) and

b) show the temporal evolutions for the CAC model and the pro- 

osed model, respectively. The temporal evolutions of local mass A 

nclosed by the interface for each droplet are illustrated in Fig. 14 . 
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Fig. 17. Interface region at t = 2 . 5 for different models: (a) M = 1 and Pe = 1 /ε, (b) 

M = 1 and Pe = 2 /ε, (c) M = φ2 and Pe = 1 /ε. Here, the white gray, gray, and black 

gray represent the level-sets: φ = −0 . 9 , φ = 0 , and φ = 0 . 9 , respectively. 

Fig. 18. Cross profiles of Interfacial positions ( φ = 0 ) at t = 2 . 5 . 
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s we can see, the non-physical growth and shrink of droplets oc- 

ur if the CACNS model is used. On the contrary, the proposed 

odel maintains the local mass of each droplet ( Fig. 18 ). 

.6. Three-dimensional RTI 

To verify the accuracy and practicability of the proposed model 

n three-dimensional space, we consider the temporal evolution of 

hree-dimensional RTI which has two-layer roll-up phenomenon 

nd this phenomenon cannot be found in two-dimensional sim- 

lation [39] . The initial conditions are defined as: 

(x, y, z, 0) = tanh 

(
z − 2 − 0 . 1( cos (2 πx ) + cos (2 πy )) √ 

2 ε

)
, (27) 

 (x, y, z, 0) = v (x, y, z, 0) = 0 . (28)

he following numerical parameters: h = 1 / 64 , �t = 0 . 0025 , Re =
0 0 0 , F r = 1 , W e = ∞ , and ρ1 : ρ2 = 3 : 1 are used. The evolu-

ions of interface ( φ = 0 ) at t = 3 for the classical models: M = 1

nd Pe = 1 /ε; M = 1 and Pe = 2 /ε, and the proposed model: M =
9 
2 and Pe = 1 /ε are shown in Fig. 15 (b)–(d). Fig. 16 illustrates the

ross profiles along y = 0 , y = 0 . 5 , and y = x at t = 3 for three dif-

erent models: (a) M = 1 and Pe = 1 /ε, (b) M = 1 and Pe = 2 /ε,

c) M = φ2 and Pe = 1 /ε. As we can see, the three-dimensional RTI

as different evolutions along different cross views which is not 

ound in two-dimensional simulation. For each cross profile, the 

roposed model not only captures the interfacial position, but also 

ffectively keeps the interface region ( φ = −0 . 9 ∼ 0 . 9 ) being uni-

orm. 

.7. Three-dimensional drop deformation 

Finally, we compare the proposed model and the classical 
odel by considering the large deformation of three-dimensional 

roplet in shear flow. The initial conditions are: 

(x, y, z, 0) = tanh 

( 

0 . 25 −
√ 

(x − 1) 2 + (y − 0 . 5) 2 + (z − 0 . 5) 2 √ 

2 ε

) 

, (29) 

 (x, y, z, 0) = 2 z − 1 , v (x, y, z, 0) = 0 (30)

n the domain � = (0 , 2) × (0 , 1) × (0 , 1) . The numerical parame-

ers are: h = 1 / 64 , �t = 2 h 2 , Re = 100 , W e = 100 , and ρ1 : ρ2 =
 : 1 . The gravity is ignored. Fig. 17 (a)–(c) show the evolutions of

nterface region ( φ = −0 . 9 : white gray, φ = 0 : gray, and φ = 0 . 9 :

lack gray) at t = 2 . 5 for three models: M = 1 and Pe = 1 /ε, M = 1

nd Pe = 2 /ε, and M = φ2 and Pe = 1 /ε, respectively. The cross

rofiles of interface ( φ = 0 ) along y = 0 . 5 for three different mod-

ls at t = 2 . 5 are illustrated in Fig. 17 . In the three-dimensional

ase with large deformation of interface, the proposed model can 

lso work well in capturing the interfacial position. On the con- 

rary, the interface region is obviously relaxed or not uniform as 

he constant mobility is used. 

Remarks . From various numerical experiments above, we can 

onclude that the variable mobility M = φ2 has the following two 

dvantages: (i) The diffusion is suppressed at the center of the 

nterfacial region where M ≈ 0 and hence the interfacial posi- 

ion driven by the flow can be accurately captured without using 

 large value of Pe . (ii) The diffusion is only weakly suppressed 

way from the center of the interfacial region, and hence the inter- 

ace can relax to maintain an approximately uniform thickness. In 

ther words, the variable mobility achieves (a) an effectively large 

alue of Pe at the center of the interfacial region to accurately cap- 

ure the interfacial position and (b) an effectively small value of 

e away from the interfacial region to maintain an approximately 

niform interfacial thickness. 

. Conclusions 

In this article, we proposed a novel and accurate NSCH model 

ith a nonstandard variable mobility for two-phase incompressible 

uid flow. Compared to the classical mobility, the proposed phase- 

ependent mobility has small values nearby the interface and large 

alues away from the interface. By minimizing the dynamics of the 

H model nearby the interface, we could avoid using a large Pe 

umber which usually caused a non-uniform interface region. Var- 

ous benchmark problems, such as the RTI, droplet deformation in 

hear flow, and rising bubble, were performed to show that our 

odel not only accurately capture the interfacial position, but also 

eep the interface region from being too much distorted. The pro- 

osed model can be easily extended to N -component ( N > 2) fluid 

ows. 
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