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We present a nonlinear multigrid method to solve the Cahn–Hilliard (CH) equation on 

nonuniform grids. The CH equation was originally proposed as a mathematical model to 

describe phase separation phenomena after the quenching of binary alloys. The model has 

the characteristics of thin diffusive interfaces. To resolve the sharp interfacial transition, 

we need a very fine grid, which is computationally expensive. To reduce the cost, we can 

use a fine grid around the interfacial transition region and a relatively coarser grid in the 

bulk region. The CH equation is discretized by a conservative finite difference scheme in 

space and an unconditionally gradient stable type scheme in time. We use a conservative 

restriction in the nonlinear multigrid method to conserve the total mass in the coarser 

grid levels. Various numerical results on one-, two-, and three-dimensional spaces are pre- 

sented to demonstrate the accuracy and effectiveness of the nonuniform grids for the CH 

equation. 

© 2016 Elsevier Inc. All rights reserved. 

 

1. Introduction 

We consider a nonlinear multigrid solution for the following Cahn–Hilliard (CH) equation on nonuniform grids: 

∂φ( x , t) 

∂t 
= �μ(φ(x , t)) , x ∈ �, t > 0 , (1) 

μ(φ(x , t)) = F ′ (φ(x , t)) − ε2 �φ(x , t) , (2) 

where � ⊂ R 

d (d = 1 , 2 , 3) , φ is a conserved scalar field, F (φ) = 0 . 25(φ2 − 1) 2 , and ε is a positive constant. The CH equation

was introduced to describe phase separation phenomena [1] . This equation arises from the Ginzburg–Landau free energy 

E(φ) = 

∫ 
�

(
F (φ) + 

ε2 

2 

|∇φ| 2 
)

dx . (3) 

The natural and no-flux boundary conditions are 

n · ∇φ = n · ∇μ = 0 on ∂ �, where n is a normal vector to ∂�. (4) 
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Fig. 1. Discretization of the domain with a nonuniform grid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, we have 

d 

dt 
E(φ) = −

∫ 
�

|∇μ| 2 dx , (5)

d 

dt 

∫ 
�

φdx = 0 , (6)

where we used the no flux boundary condition Eq. (4) . Therefore, the total energy is non-increasing and the total mass is

conserved in time. 

Most existing finite difference methods for the CH equation employed the uniform grid [2–8] or adaptive mesh refine-

ment [9–11] . There are some cases which need non-square domains or adaptive mesh grids. Generally, adaptive mesh re-

finement technique is very complex to implement and even it is extremely difficulty to incorporate fluid flows into the CH

equation. Various studies were performed on nonuniform grids to solve the Poisson [12,13] , Euler [14,15] , and Navier–Stokes

[16,17] equations. However, to the authors’ knowledge, the CH equation has not been solved using a multigrid method on

nonuniform grids. Therefore, the main purpose of the present paper is to present a multigrid solution for solving the CH

equation on nonuniform grids. 

The remainder of this paper is organized as follows. In Section 2 , we describe the numerical solution algorithm. The

numerical results demonstrating the performance of the proposed algorithm on nonuniform grids are presented in Section 3 .

Finally, Section 4 gives our conclusions. 

2. Numerical solution 

2.1. Discretization 

In this section, we discretize the CH equation on a nonuniform grid. For simplicity of exposition, we discretize the CH Eqs.

(1) and (2) in one-dimensional space, i.e., � = (a, b) . Two- and three-dimensional discretizations are defined analogously.

Let x i be the nonuniform grid points, that is, x i = x i −1 + h i −1 for 1 < i ≤ N x , where N x is a positive even integer and h i is

the nonuniform grid-spacing as shown in Fig. 1 . 

Let φn 
i 

and μn 
i 

be approximations of φ( x i , t n ) and μ( x i , t n ), respectively. Here t n = (n − 1)�t and �t is the time step. We

discretize Eqs. (1) and (2) using the semi-implicit scheme and the nonlinear splitting algorithm [18] : 

φn +1 
i 

− φn 
i 

�t 
= �d μ

n +1 
i 

, 1 ≤ i ≤ N x , n ≥ 0 , (7)

μn +1 
i 

= (φn +1 
i 

) 3 − φn 
i − ε2 �d φ

n +1 
i 

, (8)

where the discrete Laplacian is defined as �d φi = 2(φi +1 − φi ) / [ h i (h i + h i −1 )] − 2(φi − φi −1 ) / [ h i −1 (h i + h i −1 )] . Here h 0 =
2(x 1 − a ) and h N x = 2(b − x N x ) . The Neumann boundary condition Eq. (4) is implemented as φ0 = φ1 and φN x +1 = φN x . Let

φn = (φn 
1 
, φn 

2 
, . . . , φn 

N x 
) and μn = (μn 

1 
, μn 

2 
, . . . , μn 

N x 
) . We define the discrete l 2 -norm as 

‖ φ‖ 2 = 

√ ∑ 

1 ≤i ≤N x 

φ2 
i 

h i −1 + h i 

2 

. (9)

We define the discrete energy functional by 

E d ( φ
n 
) = 

N x ∑ 

i =1 

F (φn 
i ) 

h i −1 + h i 

2 

+ 

ε2 

2 

N x −1 ∑ 

i =1 

(φn 
i +1 

− φn 
i 
) 2 

h i 

. (10)

We also define the discrete total mass as 

M d ( φ
n 
) = 

N x ∑ 

φn 
i 

h i −1 + h i 

2 

. (11)
i =1 
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Fig. 2. Successively coarser grids when N x = 8 , �k for k = 3 , 2 , 1 , and 0. 

 

 

 

 

 

 

 

 

 

2.2. Multigrid method on a nonuniform grid 

Next, we describe a nonlinear full approximation storage (FAS) multigrid method [19,20] to solve the nonlinear discrete

system of (7) and (8) . Let us rewrite Eqs. (7) and (8) as 

N( φn +1 
, μn +1 ) = (f n , g 

n ) , (12) 

where the nonlinear system operator N is defined as 

N i ( φ
n +1 

, μn +1 ) = 

(
φn +1 

i 

�t 
− �d μ

n +1 
i 

, μn +1 
i 

− (φn +1 
i 

) 3 + ε2 �d φ
n +1 
i 

)
and the source term is 

( f n i , g n i ) = 

(
φn 

i 

�t 
, −φn 

i 

)
. 

Given { φn , μn }, we want to calculate { φn +1 
, μn +1 } . We iterate the following FAS multigrid cycle until the discrete l 2 -norm of

the two consecutive approximations is less than a given tolerance, i.e., ‖ φn +1 ,m +1 − φn +1 ,m ‖ 2 < tol. Let �K = { x i | i = 1 , . . . , N x }
be the original finest grid, where K satisfies N x = p · 2 K and p is an odd number. Then, for k = K, K − 1 , . . . , 1 , we define suc-

cessively coarser grids as �k −1 = { y i | y i = 0 . 5(x 2 i −1 + x 2 i ) and x 2 i −1 , x 2 i ∈ �k for i = 1 , . . . , p · 2 k −1 } . Fig. 2 shows a schematic

illustration of the discrete domains for N x = 8 case. 

We now introduce the multigrid iteration for solving the discretized problem Eq. (12) on grid level �k . 

{ φn +1 ,m +1 
k , μn +1 ,m +1 

k 
} = F AScycle ( φn +1 ,m 

k , μn +1 ,m 

k 
, N k , f 

n 
k , g 

n 
k , ν) , 

where { φn +1 ,m 

k , μn +1 ,m 

k 
} and { φn +1 ,m +1 

k , μn +1 ,m +1 
k 

} are the approximations of { φn +1 
, μn +1 } before and after an FAS cycle. By

starting from an initial value { φn +1 , 0 
, μn +1 , 0 } = { φn 

, μn } , one step of the iteration is given in the following step: 

Step 1) Presmoothing 

{ ̄φn +1 ,m 

k , μ̄n +1 ,m 

k 
} = SMOOT H 

ν ( φn +1 ,m 

k , μn +1 ,m 

k 
, N k , f 

n 
k , g 

n 
k ) on �k grid . 

This means performing ν smoothing steps with the initial approximations φn +1 ,m 

k , μn +1 ,m 

k 
, source terms f n 

k 
, g n 

k 
, and SMOOTH

relaxation operator to get the approximations φ̄
n +1 ,m 

k , μ̄n +1 ,m 

k 
. First, let us discretize Eq. (7) as a Gauss–Seidel type. 

φn +1 ,m,s +1 
i 

�t 
+ 

2 

h i h i −1 

μn +1 ,m,s +1 
i 

= f n i + 

2 

h i (h i + h i −1 ) 
μn +1 ,m,s 

i +1 
+ 

2 

h i −1 (h i + h i −1 ) 
μn +1 ,m,s +1 

i −1 
, (13) 

Here, the indices s and s + 1 denote the current and the new approximations. Next, let us discretize Eq. (8) . Since

(φn +1 ,m,s +1 
i 

) 3 is nonlinear term, we linearize it at φn +1 ,m,s 
i 

, i.e., 

(φn +1 ,m,s +1 
i 

) 3 ≈ (φn +1 ,m,s 
i 

) 3 + 3(φn +1 ,m,s 
i 

) 2 (φn +1 ,m,s +1 
i 

− φn +1 ,m,s 
i 

) . 

Therefore, Eq. (8) can be rewritten as 

−
(

2 ε2 

h i h i −1 

+ 3(φn +1 ,m,s 
i 

) 2 
)

φn +1 ,m,s +1 
i 

+ μn +1 ,m,s +1 
i 

= g n i − 2(φn +1 ,m,s 
i 

) 3 

− 2 ε2 

h i (h i + h i −1 ) 
φn +1 ,m,s 

i +1 
− 2 ε2 

h i −1 (h i + h i −1 ) 
φn +1 ,m,s +1 

i −1 
. (14) 

One SMOOTH relaxation operator step consists of solving the system Eqs. (13) and (14) by 2 × 2 matrix inversion for each i

on �k grid. After taking ν smoothing steps, we let { ̄φn +1 ,m 

k , μ̄n +1 ,m 

k 
} 
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Fig. 3. Illustration for conservative restriction from �h to �2 h . 

 

 

 

 

 

Step 2) Compute the defect 

(αk , βk ) = (f n k , g 

n 
k ) − N k ( ̄φ

n +1 ,m 

k , μ̄n +1 ,m 

k 
) . (15)

Step 3) Restrict the defect and { ̄φn +1 ,m 

k , μ̄n +1 ,m 

k 
} 

(αk −1 , βk −1 ) = I k −1 
k 

(αk , βk ) , ( ̄φ
n +1 ,m 

k −1 , μ̄n +1 ,m 

k −1 
) = I k −1 

k 
( ̄φ

n +1 ,m 

k , μ̄n +1 ,m 

k 
) . 

The conservative restriction: to preserve the mass conservation property, we apply the following conservative restriction

(see Fig. 3 ): 

αk −1 (i ) = I k −1 
k 

αk (i ) 

= 

(
αk (2 i − 1) 

h 

k 
2 i −2 

+ h 

k 
2 i −1 

2 

+ αk (2 i ) 
h 

k 
2 i −1 

+ h 

k 
2 i 

2 

)/ 

(
h 

k −1 
i −1 

+ h 

k −1 
i 

2 

)
, 

where αk ( i ) is the i th component of the vector αk . βk −1 also can be similarly defined and the restriction operator I k −1 
k 

maps

k -level functions to (k − 1) -level functions. 

Step 4) Compute the right-hand side 

(f n k −1 , g 

n 
k −1 ) = (αk −1 , βk −1 ) + N k −1 ( ̄φ

n +1 ,m 

k −1 , μ̄n +1 ,m 

k −1 
) . 

Step 5) Compute an approximate solution { ̂  φn +1 ,m 

k −1 
, ˆ μn +1 ,m 

k −1 
} of the coarse grid equation on �k −1 , i.e., 

N k −1 ( φ
n +1 ,m 

k −1 , μn +1 ,m 

k −1 
) = (f n k −1 , g 

n 
k −1 ) . (16)

If k = 1 , we apply the SMOOTH relaxation operator. If k > 1, we solve Eq. (16) by performing an FAS k -grid cycle using

{ ̄φn +1 ,m 

k −1 
, μ̄n +1 ,m 

k −1 
} as an initial approximation: 

{ ̂  φn +1 ,m 

k −1 
, ˆ μn +1 ,m 

k −1 
} = FAS cycle ( ̄φn +1 ,m 

k −1 
, μ̄n +1 ,m 

k −1 
, N k −1 , f 

n 
k −1 , g 

n 
k −1 , ν) . 

Step 6) Compute the coarse grid correction (CGC) 

ˆ v n +1 ,m 

k −1 
= 

ˆ φn +1 ,m 

k −1 
− φ̄n +1 ,m 

k −1 
, ˆ w 

n +1 ,m 

k −1 
= ˆ μn +1 ,m 

k −1 
− μ̄n +1 ,m 

k −1 
. 

Step 7) Interpolate the correction 

ˆ v n +1 ,m 

k 
= I k k −1 ̂

 v n +1 ,m 

k −1 
, ˆ w 

n +1 ,m 

k 
= I k k −1 ̂

 w 

n +1 ,m 

k −1 
. 
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Fig. 4. (a) Evolution of the initial concentration φ(x, 0) = 0 . 1 rand( ) . Here, the arrows represent the direction of the increasing time. (b) Evolution of the 

discrete normalized total energy E d ( φ
n 
) / E d ( φ

0 
) (solid line) and the total mass (dashed line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, the coarse values are simply transferred to the two closet fine grid points, i.e., v k (2 i ) = v k (2 i − 1) = I k 
k −1 

v k −1 (i ) =
v k −1 (i ) for 1 ≤ i ≤ p · 2 k −1 . 

Step 8) Compute the corrected approximation on �k 

φn +1 ,m, after CGC 
k = φ̄n +1 ,m 

k 
+ ̂

 v n +1 ,m 

k 
, 

μn +1 ,m, after CGC 
k 

= μ̄n +1 ,m 

k 
+ 

ˆ w 

n +1 ,m 

k 
. 

Step 9) Postsmoothing 

{ φn +1 ,m +1 
k 

, μn +1 ,m +1 
k 

} = SMOOT H 

ν (φn +1 ,m, after CGC 
k 

, μn +1 ,m, after CGC 
k 

, N k , f 
n 
k , g 

n 
k ) . 

This completes the description of a nonlinear FAS cycle. More details can be found in [19,20] . 

3. Numerical results 

We perform all the numerical tests on Intel(R) Core(TM) i5-2320 CPU @ 3.00 GHz. 

3.1. One-dimensional space 

3.1.1. Spinodal decomposition 

First, we perform a spinodal decomposition using the CH equation on a randomly distributed nonuniform grid in the one-

dimensional domain � = (0 , 1) . The initial condition is set to be φ(x, 0) = 0 . 2 rand() , where rand() is uniformly distributed

random number between −1 and 1. With this initial condition, we examine the evolution of φn on the nonuniform mesh. In

this test, we take ε = 0 . 0375 , N x = 64 , �t = 0 . 01 , and T = 3 . The numerical solutions are shown in Fig. 4 (a), where arrows

indicate the direction of increasing time. The normalized total energy E d ( φ
n 
) / E d ( φ

0 
) and the total mass with respect to

time t are plotted in Fig. 4 (b). These results confirm that the total energy is non-increasing and the total mass is conserved.

3.1.2. Resolving the sharp interfacial transition 

To demonstrate the efficiency of the nonuniform multigrid method, we present an example with the following initial

condition on � = (0 , 1) : 

φ(x, 0) = 

{
1 , if 0 . 31 < x < 0 . 69 

−1 , otherwise . 

In this test, we use three different grids such as uniform grids with N x = 16 , N x = 144 , and a nonuniform grid with N x = 32 .

A time step size �t = 0 . 01 and ε = 0 . 0075 in Fig. 5 are used. Fig. 5 (a)–(c) represent the numerical solution φn at T = 1 on

the uniform grids with N x = 16 , N x = 144 , and a nonuniform grid with N x = 32 , respectively. When we use the finer uniform

grid, we can obtain the well-resolved interfacial transition than the coarser grid. Using a nonuniform grid with N x = 32 , we

get a comparable result to the finest uniform grid with N x = 144 (see Fig. 5 (d)). These results demonstrate the effectiveness

and efficiency of the nonuniform grid for sharp interfacial transition problems. 



Y. Choi et al. / Applied Mathematics and Computation 293 (2017) 320–333 325 

Fig. 5. Numerical results on three different grids: (a) uniform grid with N x = 16 , (b) N x = 144 , and (c) nonuniform grid with N x = 32 on � = (0 , 1) . (d) 

Three overlapped numerical results at T = 1 . �t = 0 . 01 and ε = 0 . 0075 are used. 

Fig. 6. Schematic illustration of a nonuniform grid on � = (0 , 1) for convergence test. 

 

 

 

 

 

 

 

 

 

 

3.2. Convergence test 

In this section, we investigate the convergence and accuracy of numerical solution with nonuniform multigrid method. 

For the convergence test, the nonuniform spatial grid is composed of 2 n points. Here, the coarse grid over the

whole discrete domain has equidistant grid-spacing h c = (0 . 8 − h r ) / 2 n −1 and the fine grid has equidistant grid-spacing

h f = 0 . 2 / (2 n −1 − 1) on [0.4, 0.5]. Specifically, we put the fine grid across the diffuse interface. This nonuniform grid is illus-

trated in Fig. 6 . 

In this test, we fix the parameter ε = 0 . 0300187 and set the following initial condition as 

φ(x, 0) = 0 . 9 tanh ((x − 0 . 5) / (2 

√ 

2 ε)) 

on the computational domain � = (0 , 1) . 

Since there is no closed-form analytic solution for this problem, we consider a reference numerical solution, φref , which

is obtained with very fine spatial step h r and temporal step �t r . Then, we denote the error by e := φ − φref . The convergence

rate is defined as the ratio of successive errors, log 2 (‖ e N x ‖ 2 / ‖ e N x / 2 ‖ 2 ) . Here, ‖ e N x ‖ 2 is measured by the discrete l 2 -norm. 

To verify the convergence of numerical solution with respect to spatial grid, we obtain the numerical solutions on the

defined nonuniform grids with 2 n points when n = 4 , 5 , 6 and 7. In all cases, we use the time step size �t = 1.0e −6 and the

total time T = 0 . 001 . The reference solution is evaluated with h r = 1 / 4096 and �t r = 1.0e −6 on uniform spatial grid. We

measure the error between the reference solution and the numerical solution on each grid by using the linear interpolation.

Table 1 lists the discrete l 2 -norm of errors and convergence rates with respect to different spatial step sizes. The results

suggest that the proposed numerical method is second-order accurate in space. 
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Table 1 

Convergence test with respect to spatial step size. 

N x 16 Rate 32 Rate 64 Rate 128 

‖ e N x ‖ 2 4.8213e −3 1.959 1.2399e −3 2.017 3.0630e −4 2.021 7.5478e −5 

Table 2 

Convergence test with respect to time step size. 

N t 10 Rate 20 Rate 40 Rate 80 

‖ e N t ‖ 2 6.0342e −3 0.981 3.0563e −3 0.992 1.5367e −3 0.971 7.8405e −4 

Fig. 7. Schematic illustration of a nonuniform grid on the two-dimensional space � = (a, b) × (c, d) . 

 

 

 

 

Now, we investigate the accuracy of numerical solution with respect to time step size. For this, we consider the four

different time step sizes �t = 0 . 01 / 2 n for n = 0 , 1 , 2 , and 3. And the numerical solution is solved up to time T = 0 . 1 . In all

tests, we use the nonuniform grid in the previous test with N x = 256 . The reference solution φref is set by the numerical

solution at T = 0 . 1 with �t r = 1 . 0 e-6 and N x = 256 on the nonuniform grid. 

Table 2 represents the discrete l 2 -norm of errors and convergence rates with respect to different time step sizes. For

smaller �t , we can see that the rate of convergence is first-order. 

3.3. Two-dimensional space 

We discretize Eqs. (1) and (2) in time by a nonlinear splitting algorithm on a nonuniform grid (see Fig. 7 ): 

φn +1 
i j 

− φn 
i j 

�t 
= �d μ

n +1 
i j 

, 1 ≤ i ≤ N x , 1 ≤ j ≤ N y , n ≥ 0 , (17) 

μn +1 
i j 

= (φn +1 
i j 

) 3 − φn 
i j − ε2 �d φ

n +1 
i j 

, (18) 

where the discrete Laplacian is defined as 

�d φi j = 

2(φi +1 , j − φi j ) 

h 

x 
i 
(h 

x 
i 
+ h 

x 
i −1 

) 
− 2(φi j − φi −1 , j ) 

h 

x 
i −1 

(h 

x 
i 
+ h 

x 
i −1 

) 
+ 

2(φi, j+1 − φi j ) 

h 

y 
j 
(h 

y 
j 
+ h 

y 
j−1 

) 
− 2(φi j − φi, j−1 ) 

h 

y 
j−1 

(h 

y 
j 
+ h 

y 
j−1 

) 
. 

Here, h x 
i 

and h 
y 
j 

are nonuniform space step sizes in the x - and y -directions, respectively. 

We define the discrete energy functional E d and the total mass M d by 

E d ( φ
n 
) = 

1 

4 

N x ∑ 

i =1 

N y ∑ 

j=1 

F (φn 
i j )(h 

x 
i −1 + h 

x 
i )(h 

y 
j−1 

+ h 

y 
j 
) + 

ε2 

2 

N x −1 ∑ 

i =1 

N y −1 ∑ 

j=1 

[
h 

y 
j 

h 

x 
i 

(φn 
i +1 , j − φn 

i j ) 
2 + 

h 

x 
i 

h 

y 
j 

(φn 
i, j+1 − φn 

i j ) 
2 

]
, (19) 

M d (φ
n ) = 

1 

4 

N x ∑ 

N y ∑ 

φn 
i j (h 

x 
i −1 + h 

x 
i )(h 

y 
j−1 

+ h 

y 
j 
) . (20) 
i =1 j=1 
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Fig. 8. Spinodal decomposition on a square domain. (a) A snapshot of φ at t = 20�t with the initial condition φ(x, y, 0) = 0 . 1 rand( ) . (b) Temporal evolu- 

tions of the normalized discrete total energy E d ( φ
n 
) / E d ( φ

0 
) (solid line) and the total mass (dashed line) of the numerical solutions. 

Fig. 9. Spinodal decomposition on a non-square domain. (a) A snapshot of φ at t = 20�t with the initial condition φ(x, y, 0) = 0 . 1 rand( ) . (b) Temporal 

evolutions of the normalized discrete total energy E d ( φ
n 
) / E d ( φ

0 
) (solid line) and the total mass (dashed line) of the numerical solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1. Spinodal decomposition 

To confirm that the proposed algorithm can operate on a two-dimensional nonuniform grid, we perform spinodal de-

composition simulation on a square domain � = (0 , 1) × (0 , 1) . A mesh of 64 × 64 grid points, �t = 1 / 64 , and ε = 0 . 0156

are used with a randomly distributed nonuniform grid spacing. Fig. 8 (a) shows a snapshot of φ at t = 20�t with the initial

condition φ(x, y, 0) = 0 . 1 rand( ) , where rand() is a random number between −1 and 1. Fig. 8 (b) shows temporal evolutions

of the normalized discrete total energy E d ( φ
n 
) / E d ( φ

0 
) (solid line) and the discrete total mass M d ( φ

n 
) (dashed line) of the

numerical solutions. We can observe that the energy is decreasing and the total mass is conserved. 

We also perform a spinodal decomposition simulation on a non-square domain � = (0 , 
√ 

2 ) × (0 , 1) (see Fig. 9 ). The

other parameters are the same in the simulation for Fig. 8 . 

3.3.2. Locally refined 2D grid 

We perform a numerical simulation on a locally refined grid as shown in Fig. 10 (a) to highlight the usefulness of the

nonuniform grid. Fig. 10 (b) represents a magnified view of the marked part in Fig. 10 (a). Here, the larger grid size is h = 1 / 16

and the smaller grid size is h = 1 / 512 . 

A numerical test is performed on � = (0 , 1) × (0 , 1) with a 64 × 64 grid, �t = 0 . 0 0 01 , and total simulation time

T = 0 . 01 . Across the interfacial regions, the concentration field varies from −0.9 to 0.9 over a distance of approximately

2 
√ 

2 ε tanh 

−1 (0 . 9) . Therefore, if we want this value to be approximately m grid points, the ε value needs to be taken as

follows [21] : 

ε = εm 

= 

hm 

2 

√ 

2 tanh 

−1 
(0 . 9) 

. (21)
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Fig. 10. (a) Locally refined 2D grid. Here, the larger grid size is h = 1 / 16 and the smaller grid size is h = 1 / 512 . (b) Magnified view of the boxed region in 

(a). 

Fig. 11. (a)–(d) Snapshots of φ at (a) t = 0 , (b) t = 20�t, (c) t = 30�t, and (d) t = 100�t . (e) Temporal evolutions of the normalized discrete total energy 

E d ( φ
n 
) / E d ( φ

0 
) and the total mass of the numerical solutions. 

 

 

 

 

We use ε = 4 h/ [2 
√ 

2 tanh 

−1 (0 . 9)] , where h is the finer grid size, i.e., h = 1 / 512 . For this test, we use the following the initial

condition: 

φ(x, y, 0) = tanh 

0 . 04 + 0 . 01 cos (4 θ ) −
√ 

(x − 0 . 5) 2 + (y − 0 . 5) 2 √ 

2 ε
, 

where 

θ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

tan 

−1 

(
y − 0 . 5 

x − 0 . 5 

)
, if x > 0 . 5 

π + tan 

−1 

(
y − 0 . 5 

x − 0 . 5 

)
, otherwise . 

Here, we use ε = 0 . 001876 and �t = 0 . 0 0 01 . Fig. 11 represents the evolution of a four-fold shaped interface on the uniform

grid ( h = 1 / 512 ) and the nonuniform grid which is defined in Fig. 10 . In Fig. 11 (a)–(d), the initial star shape deforms to

a circular shape over time. The figures show that the results from the two grid systems are almost identical. Fig. 11 (e)

confirms that the total energy decreases and mass is conserved. 
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Fig. 12. (a) The number of V-cycles and (b) CPU time (in seconds) versus ν with the various mesh sizes. 

Fig. 13. (a) The number of V-cycles and (b) CPU time (in seconds) versus tol . 

 

 

 

 

 

 

 

 

 

 

 

3.4. Effect of SMOOTH relaxation operator number ν

In this section, we show the relation between SMOOTH relaxation operator number ν and CPU time on the nonuniform

grid in two-dimensional space. Also, we check average number of V-cycle for each value of ν . We run 10 iterations. In this

simulation, we use the same initial condition and parameters in Fig. 11 except the value of ν . Fig. 12 (a) shows that when the

value of ν is increasing, the number of V-cycles is decreasing. However, as shown in Fig. 12 (b), the CPU time is increasing. In

a relatively find mesh, 256 2 , the curve of the CPU time is not monotone. There is an optimal relaxation number, 2. Therefore,

we use the SMOOTH relaxation operator number from ν = 3 to ν = 5 for the computational efficiency. 

3.5. Effect of tolerance, tol 

Next, we study the relation between tolerance ( tol ) and average number of V-cycles on the nonuniform grid in two-

dimensional space. Also, we check the CPU time in seconds. We use various values of tol with the same initial condition and

parameters as in Fig. 11 . From Fig. 13 , we can see that the number of V-cycles and the CPU times are inversely proportional

to the value of tol . 

3.6. Effect of time step �t 

We measure the iteration of V-cycle and CPU time for various �t . Initial condition and other parameters are the same

as in Fig. 11 . When the time step size �t is large, the number of V-cycle iterations and the CPU time in seconds increase as

shown in Fig. 14 . 

3.7. Three-dimensional space 

We discretize Eqs. (1) and (2) in time by a nonlinear splitting algorithm: 

φn +1 
i jk 

− φn 
i jk = �d μ

n +1 
i jk 

, 1 ≤ i ≤ N x , 1 ≤ j ≤ N y , 1 ≤ k ≤ N z , n ≥ 0 , (22)

�t 
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Fig. 14. (a) The number of V-cycles and (b) CPU time (in seconds) versus �t . 

Fig. 15. Schematic illustration of a nonuniform grid on the three-dimensional space � = (a, b) × (c, d) × (e, f ) . 

 

μn +1 
i jk 

= (φn +1 
i jk 

) 3 − φn 
i jk − ε2 �d φ

n +1 
i jk 

, (23) 

where the discrete Laplacian is defined as 

�d φi jk = 

2(φi +1 , jk − φi jk ) 

h 

x 
i 
(h 

x 
i 
+ h 

x 
i −1 

) 
− 2(φi jk − φi −1 , jk ) 

h 

x 
i −1 

(h 

x 
i 
+ h 

x 
i −1 

) 
+ 

2(φi, j+1 ,k − φi jk ) 

h 

y 
j 
(h 

y 
j 
+ h 

y 
j−1 

) 
(24) 

−2(φi jk − φi, j−1 ,k ) 

h 

y 
j−1 

(h 

y 
j 
+ h 

y 
j−1 

) 
+ 

2(φi j,k +1 − φi jk ) 

h 

z 
k 
(h 

z 
k 
+ h 

z 
k −1 

) 
− 2(φi jk − φi j,k −1 ) 

h 

z 
k −1 

(h 

z 
k 
+ h 

z 
k −1 

) 
. 

Here, h z 
k 

is the nonuniform space step size in the z -direction. Fig. 15 shows a schematic illustration of a nonuniform grid in

three-dimensional space. 

We define the discrete energy functional as 

E d ( φ
n 
) = 

1 

8 

N x ∑ 

i =1 

N y ∑ 

j=1 

N z ∑ 

k =1 

F (φn 
i jk )(h 

x 
i −1 + h 

x 
i )(h 

y 
j−1 

+ h 

y 
j 
)(h 

z 
k −1 + h 

z 
k ) (25) 

+ 

ε2 

2 

N x −1 ∑ 

i =1 

N y −1 ∑ 

j=1 

N z −1 ∑ 

k =1 

[
h 

y 
j 
h 

z 
k 

h 

x 
i 

(φn 
i +1 , jk − φn 

i jk ) 
2 + 

h 

x 
i 
h 

z 
k 

h 

y 
j 

(φn 
i, j+1 ,k − φn 

i jk ) 
2 + 

h 

x 
i 
h 

y 
j 

h 

z 
k 

(φn 
i j,k +1 − φn 

i jk ) 
2 

]

and the total mass as 

M d ( φ
n 
) = 

1 

8 

N x ∑ 

N y ∑ 

N z ∑ 

φn 
i jk (h 

x 
i −1 + h 

x 
i )(h 

y 
j−1 

+ h 

y 
j 
)(h 

z 
k −1 + h 

z 
k ) . (26) 
i =1 j=1 k =1 
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Fig. 16. (a) A snapshot of φ at t = 80�t with the initial condition φ(x, y, z, 0) = 0 . 1 rand( ) . (b) Discrete total energy E d ( φ
n 
) / E d ( φ

0 
) (solid line) and the 

total mass (dashed line) of the numerical solutions. 

Table 3 

List of parameters for numerical simulations. 

Case Initial condition Domain �t N t h f ε

1D Fig. 5 (c) (0, 1) 0.01 10 0 0 1/144 0.0075 

2D Fig. 11 (a) (0, 1) 2 0.0 0 01 300 1/512 0.0019 

3D Fig. 17 (a) (0, 1) 3 0.01 10 0 0 1/128 0.0075 

Table 4 

Average number of V-cycles and average CPU time per iteration. 

Aver. #V-cycle Aver. CPU time 

Case UMG NMG UGS NGS UMG NMG 

1D 1.3600 1.7167 6.7333e −4 1.0333e −4 5.20 0 0e −4 1.0333e −4 

2D 3.2967 6.0867 8.0598e −0 0.1046e −0 2.9576e −0 0.0765e −0 

3D 3.1410 4.8370 384.9715e −0 46.2913e −0 28.6154e −0 5.6378e −0 

 

 

 

 

 

 

 

 

 

 

3.7.1. Spinodal decomposition 

We perform a spinodal decomposition simulation on a unit cube � = (0 , 1) × (0 , 1) × (0 , 1) with a mesh of 32 × 32 ×
32 grid points, �t = 0 . 01 , ε = 0 . 0192 , and a randomly distributed nonuniform grid spacing. Fig. 16 (a) shows a snapshot of

φ at t = 80�t with the initial condition φ(x, y, z, 0) = 0 . 1 rand( ) , where rand( ) is the random number between −1 and 1.

Fig. 16 (b) shows temporal evolutions of the normalized discrete total energy E d ( φ
n 
) / E d ( φ

0 
) (solid line) and the total mass

(dashed line) of the numerical solutions. The discrete energy is decreasing and the total mass is conserved. 

3.7.2. Locally refined 3D grid 

The first and the second rows in Fig. 17 represent the evolutions of a modified cube in three-dimensional space with

uniform (128 × 128 × 128) and nonuniform (64 × 64 × 64) grids, respectively. Fig. 17 (i) is the normalized discrete total

energies and total masses with respect to time. In this simulation, the parameters are ε = 0 . 007493 and �t = 0 . 01 on a

computational domain of � = (0 , 1) × (0 , 1) × (0 , 1) . The find grid size in the nonuniform mesh is same to the uniform

mesh. We obtain the almost same results from both grid systems. 

3.7.3. Efficiency test on the various dimensions 

In this section, we evaluate the efficiency by comparing the averaged CPU time in seconds and the average number of

multigrid cycles for the four cases, which are uniform Gauss–Seidel (UGS), nonuniform Gauss–Seidel (NGS), uniform multi-

grid (UMG), and nonuniform multigrid (NMG). 

The initial conditions and parameters used to show the efficiency are listed in Table 3 . Common parameters are SMOOTH

relaxation operator step ν = 3 and a given tolerance tol = 1.0e −7. Here, N t is the number of the total iteration time steps. 

In Table 4 , the average number of V-cycles and the average CPU time, i.e., 

Aver . #V − cycle = 

Total # V − cycle 

N 

, Aver . CPUtime = 

Total CPU time 

N 

. 

t t 
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Fig. 17. (a) and (e) are the initial conditions on a uniform grid (128 × 128 × 128) and nonuniform grid (64 × 64 × 64), respectively. (b) and (f) are at 

t = 10�t, (c) and (g) are at t = 50�t, (d) and (h) are at t = 10 0 0�t . (i) is the normalized discrete total energies and total masses with respect to time. 

 

 

 

 

 

 

 

 

 

 

are listed. We can confirm that NMG’s CPU times are smaller than those from other three cases (UGS, NGS, UMG). Therefore,

nonuniform multigrid method is efficient when compared with other techniques. 

4. Conclusions 

In this paper, we developed a nonlinear multigrid method for solving the CH equation on nonuniform grids. We applied

an unconditionally gradient stable type scheme for the temporal discretization and a conservative finite difference scheme

for the spatial discretization. Various numerical results in the one-, two-, and three-dimensional spaces were presented

to demonstrate the accuracy and effectiveness of the nonuniform grids for the CH equation. The results showed that the

proposed method is a promising approach for the numerical computations of the CH equation on non-square domains and

adaptive grid systems. In future research, the methodology introduced in this paper will be applied to crystal growth and

tumor growth simulations by incorporating morphology-dependent adaptive grid structures. 
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