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AN UNCONDITIONALLY GRADIENT STABLE NUMERICAL

METHOD FOR THE OHTA–KAWASAKI MODEL

Junseok Kim and Jaemin Shin

Abstract. We present a finite difference method for solving the Ohta–
Kawasaki model, representing a model of mesoscopic phase separation
for the block copolymer. The numerical methods for solving the Ohta–
Kawasaki model need to inherit the mass conservation and energy dissipa-
tion properties. We prove these characteristic properties and solvability
and unconditionally gradient stability of the scheme by using Hessian
matrices of a discrete functional. We present numerical results that val-
idate the mass conservation, and energy dissipation, and unconditional

stability of the method.

1. Introduction

We consider a diblock copolymer consisting of two homopolymer blocks A
and B. The order parameter φ(x) = ρA(x) − ρB(x) is defined as the differ-
ence between the local volume fractions of A and B at the point x. Below a
critical temperature, two sequences are incompatible and the copolymer melt
undergoes a spatial segregation. On the mesoscopic scale, the phase separa-
tion occurs where the microdomains of A-rich and B-rich regions emerge. The
Ohta–Kawasaki model [21, 22] is

φt(x, t) = ∆µ(x, t)− α(φ(x, t) − φ̄),(1)

µ(x, t) = F ′(φ(x, t)) − ǫ2∆φ(x, t),(2)

where Ω ⊂ R
d (d = 1, 2, 3) is a domain, φ̄ =

∫

Ω
φ(x, t)dx/

∫

Ω
dx is the average

concentration, F (φ) = (φ2−1)2/4 is the Helmholtz free energy, ǫ is the gradient
energy coefficient related to the interfacial thickness, and α is inversely propor-
tional to the square of the total chain length of the copolymer. The periodic
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boundary conditions are considered for φ and µ, because the equilibrium states
of block copolymers prefer periodic structures such as spherical, cylindrical,
gyroid, and lamellar [3].

Various numerical methods for solving the Ohta–Kawasaki model have been
studied [1, 7, 16]. For the other numerical approach to simulate the block
copolymer, we can refer the dynamic mean field theory [9], based on the self-
consistent field theory. In soft materials science, these numerical methods have
been used to study the phenomenological structure of the copolymer [23, 24].

Note that if α = 0, Eq. (1) is the Cahn–Hilliard equation. The Cahn–Hilliard
equation is a diffuse interface model for describing the spinodal decomposition
in binary alloys [5]. Various numerical schemes [2, 6, 10, 11, 12, 13, 14, 15,
17] have been used to solve the Cahn–Hilliard equation. Among them, an
unconditionally stable scheme [11, 12] were introduced by the convex-concave
splitting of the nonconvex free energy as F (φ) = Fc(φ) − Fe(φ). The convex
parts F ′

c(φ) is treated implicitly and the concave part F ′
e(φ) is treated explicitly.

The main purpose of this paper is applying the nonlinear splitting method
[11, 12] to the Ohta–Kawasaki model and proving the mass conservation and
energy dissipation properties and its solvability and stability.

We now briefly review a free energy functional of nonlocal type which is
considered to describe the phase separation of diblock copolymer. The free
energy functional E(φ) is represented as the sum of two parts as E(φ) = Es(φ)+
El(φ). Es(φ) denotes the short-range part of E(φ)

Es(φ) =

∫

Ω

(

F (φ) +
ǫ2

2
|∇φ|2

)

dx,(3)

and El(φ) denotes the long-range part of E(φ)

(4) El(φ) =
α

2

∫

Ω

∫

Ω

G(x− y)
(

φ(x) − φ̄
) (

φ(y) − φ̄
)

dydx,

where G is the Green’s function, satisfying ∆G(x − y) = −δ(x − y). Here,
periodic boundary conditions are assumed and δ is Dirac delta function. By
taking a variational derivative, we have

δEs(φ)

δφ
= F ′(φ) − ǫ2∆φ = µ,(5)

δEl(φ)

δφ
= α

∫

Ω

G(x− y)
(

φ(y) − φ̄
)

dy.(6)

Next, we deduce Eq. (1) by substituting Eqs. (5) and (6) into the mass con-
served gradient flow.

(7) φt = ∆

(

δEs(φ)

δφ
+
δEl(φ)

δφ

)

= ∆µ− α
(

φ− φ̄
)

.
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Note that if ν satisfies −∆ν = φ − φ̄ with the periodic boundary condition,
then we can represent El(φ) as follows [8, 21]:

(8) El(φ) =
α

2

∫

Ω

∆xν(x)

[
∫

Ω

∆yG(x− y)ν(y) dy

]

dx =
α

2

∫

Ω

|∇ν(x)|
2
dx.

This form is convenient for the numerical analysis and numerical evaluation.
Thus, we can represent the energy functional as

E(φ) =

∫

Ω

(

F (φ) +
ǫ2

2
|∇φ|2 +

α

2
|∇ν|

2

)

dx.(9)

Differentiate E(φ) and
∫

Ω φdx with respect to time, using the periodic boundary
condition, we have

d

dt
E(φ) =

∫

Ω

(

F ′(φ)φt + ǫ2∇φ · ∇φt + α∇ν · ∇νt
)

dx(10)

=

∫

Ω

((

F ′(φ)− ǫ2∆φ
)

φt − αν∆νt
)

dx

=

∫

Ω

(µ+ αν)φt dx = −

∫

Ω

|∇ (µ+ αν)|
2
dx ≤ 0

and

d

dt

∫

Ω

φ dx =

∫

Ω

φt dx =

∫

Ω

(

∆µ− α
(

φ− φ̄
))

dx(11)

=

∫

∂Ω

∂µ

∂n
ds − α

∫

Ω

(

φ− φ̄
)

dx = 0.

Therefore, the energy is not increased and the mass is conserved in time.
This paper is organized as follows. In Section 2, we present the numerical

scheme and prove its mass conservation, solvability, energy dissipation, and
stability. In Section 3, a brief numerical solution procedure is given to condense
the discussion. Numerical results are described in Section 4 and conclusions
are stated in Section 5.

2. Numerical analysis

We present a finite difference scheme for the Ohta–Kawasaki equation. We
discretize the equation in a domain Ω = [a, b]. Let M and N be positive
integers, h = (b − a)/M be the uniform mesh size, ∆t = T/N be the uniform
time step, and Ωh = {xi = (i−0.5)h, i = 1, 2, . . . ,M} be the set of cell-centers.
Let φni be the approximation of φ(xi, n∆t) and φn = (φn1 , φ

n
2 , . . . , φ

n
M ). The

periodic boundary condition for φn is implemented as φn0 = φnM and φnM+1 =
φn1 .We define the discrete differentiation and Laplacian operators as∇hφ

n
i+ 1

2

=

(φni+1 − φni )/h and ∆hφ
n
i = (∇hφ

n
i+ 1

2

− ∇hφ
n
i− 1

2

)/h. For φ and ψ, we define
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discrete inner products by

(12) 〈φ,ψ〉h = h

M
∑

i=1

φiψi, (∇hφ,∇hψ)h = h

M
∑

i=1

∇hφi+ 1

2

∇hψi+ 1

2

.

We define the discrete norms as ‖φ‖2h = 〈φ,φ〉h and ‖φ‖∞ = max1≤i≤M |φi|. If
the periodic boundary condition for φ and ψ is assumed, we have a summation
by parts, 〈∆hφ,ψ〉h = 〈φ,∆hψ〉h = −(∇hφ,∇hψ)h.

We denote the matrix version of ∆h with the periodic boundary condition
as

∆d =
1

h2















−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2















.(13)

Matrix −∆d is the positive semi-definite with eigenvalues λi =
4
h2 sin

2 (i−1)π
M ,

for i = 1, 2, . . . ,M . Let vi be the orthonormal eigenvector corresponding to

the eigenvalue λi. For X and Y in R
M , we can represent as X =

∑M
i=1 αivi

and Y =
∑M

i=1 βivi, where αi = 〈X,vi〉h and βi = 〈Y,vi〉h. We define

〈X,Y〉−1,h := h

M
∑

i=2

λ−1
i αiβi.(14)

Note that if α1 = 0 or β1 = 0, we have the identity 〈X,Y〉h = 〈−∆dX,Y〉−1,h.

And, we define the discrete norm ‖X‖2−1,h = 〈X,X〉−1,h. Let us define a
discrete free energy functional

(15) Eh(φn) = 〈F (φn),1〉h +
ǫ2

2
(∇hφ

n,∇hφ
n)h +

α

2
(∇hν

n,∇hν
n)h ,

where F (φn) = (F (φn1 ), F (φ
n
2 ), . . . , F (φ

n
M )) and −∆dν

n = φn−φ̄ with 〈νn,1〉h
= 0. We then separate Eh(φn) into four parts:

E(1)(φn) = 〈Fe (φ
n) ,1〉h , E(2)(φn) =

ǫ2

2
(∇hφ

n,∇hφ
n)h ,(16)

E(3)(φn) = 〈Fc (φ
n) ,1〉h , E(4)(φn) =

α

2
(∇hν

n,∇hν
n)h ,(17)

where Fe(φ) = φ2/2 and Fc(φ) = (φ4 + 1)/4. We denote the discrete bihar-
monic operator as ∆2

hφi = ∆h(∆hφi) and usual gradient in R
M as ∇Eh(φ) =

(

Eh(φ)φ1
, Eh(φ)φ2

, . . . , Eh(φ)φM

)

, and we have

(18) ∇Eh(φ)i = h
[

(φi)
3 − φi − ǫ2∆hφi + ανi

]

.

For more details, the derivations of the last two terms are

E(2)(φn)φi
= ǫ2h

(

∇hφ
n,∇hφ

n
φi

)

h
= −ǫ2h

〈

∆hφ
n,φn

φi

〉

h
= −ǫ2h∆hφ

n
i ,(19)

E(4)(φn)φi
= αh

(

∇hν
n,∇hν

n
φi

)

h
= −αh

〈

νn,∆hν
n
φi

〉

h
= αhνni .(20)
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Since −∆hν
n = φn − φ̄ and 〈φn,1〉h = φ̄, we have the useful identity as

∆d (∇ν
n) = ∇ (∆dν

n) = ∇
(

−φn + φ̄
)

= −I.(21)

The Hessian of E(1)(φ), denoted by H(1), is the Jacobian of ∇E(1)(φ) and
therefore, it is given by H(1) = ∇2E(1)(φ) = hIM , where IM is an identity
matrix of order M . In the similar manner, Hessian matrices of E(2)(φ) and
E(3)(φ) are given as H(2) = −hǫ2∆d and H(3) = 3h

(

φ21, φ
2
2, . . . , φ

2
M

)

. The

eigenvalues of H(1), H(2), and H(3) are λ
(1)
i = h, λ

(2)
i = hǫ2λi, and λ

(3)
i = 3hφ2i

for i = 1, 2, . . . ,M . Note that λ
(1)
i , λ

(2)
i , and λ

(3)
i are non-negative.

To apply a nonlinear stabilized splitting scheme [11, 12] to the Ohta–Kawasa-
ki model, we split the discrete function as Eh

c (φ
n) = E(2)(φn) + E(3)(φn) +

E(4)(φn) and Eh
e (φ

n) = E(1)(φn) so that Eh(φn) = Eh
c (φ

n) − Eh
e (φ

n), and we
obtain

φn+1 − φn

∆t
=

∆d

h

(

∇Eh
c

(

φn+1
)

−∇Eh
e (φn)

)

= ∆d

(

(

φ
n+1

)3
− φn − ǫ2∆dφ

n+1
)

(22)

for i = 1, 2, . . . ,M . The numerical system is completed by imposing the peri-
odic boundary condition to φn+1 and µn+1. Since φ̄ = 〈φn,1〉h, we have

〈

φn+1,1
〉

h
= 〈φn,1〉h +∆t

〈

∆hµ
n+1,1

〉

h
− α∆t

〈

φn+1 − φ̄1,1
〉

h

= 〈φn,1〉h − α∆t
〈

φn+1 − φn,1
〉

h
.

(23)

The positiveness of α implies the mass conservation
〈

φ
n+1,1

〉

h
= 〈φn,1〉h.

2.1. Solvability

Here, we construct an appropriate functional of our scheme, and then prove
the existence and uniqueness of a solution for the minimizer of the functional.
Bearing in mind that we want to have Eq. (22) as the first variation of a
functional, we consider the functional G(φ) for φ satisfying 〈φ,1〉h = φ̄

(24) G(φ) =
1

2∆t
‖φ− φn‖

2
−1,h + Eh

c (φ)−
1

h

〈

∇Eh
e (φ

n),φ
〉

h
.

The first variation of G(φ) is

(25) δG(φ;ψ) =
1

∆t
〈φ− φn,ψ〉−1,h +

1

h

〈

∇Eh
c (φ)−∇Eh

e (φ
n),ψ

〉

h
.

In addition, the second variation of G(φ) is

δ2G(φ;ψ) = h ‖ψ‖
2
−1,h +∆t

〈

∇2Eh
c (φ)ψ,ψ

〉

h
(26)

= h(1 + α∆t) ‖ψ‖
2
−1,h +∆t

〈(

H(2) +H(3)
)

ψ,ψ
〉

h
> 0.
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Let us consider the critical point φ∗ of G(φ). From Eq. (25), for any ψ, we
have

δG(φ∗;ψ) =

〈

φ∗ − φn

∆t
−

∆d

h

(

∇Eh
c (φ

∗)−∇Eh
e (φ

n)
)

,ψ

〉

−1,h

= 0.(27)

Strict convexity of G(φ) implies that φ∗ is the unique minimum in H . Fur-

thermore, by substituting φn+1 for φ∗ into Eq. (27), we have

φn+1
i − φni

∆t
=

∆h

h

(

∇Eh
c (φ

n+1)i −∇Eh
e (φ

n)i
)

(28)

for i = 1, 2, . . . ,M , which is identical to Eq. (22).

2.2. Unconditional gradient stability

We provide a simple proof of the energy dissipation property for the sake of
completeness. Suppose that φn+1 is the solution of Eq. (22) with given φn.
We begin with introducing the following inequality

F
(

φn+1
i

)

− F (φni ) ≤
1

2

(

(

φn+1
i

)2
− (φni )

2
)(

(

φn+1
i

)2
− 1

)

(29)

using a2 − b2 = 2 (a− b) a− (a− b)
2
≤ 2 (a− b) a. Now, the energy difference

can be manipulated as

Eh
(

φn+1
)

− Eh (φn)

≤
1

2

〈

(

φ
n+1

)2
− (φn)

2
,
(

φ
n+1

)2
− 1

〉

h

+ ǫ2
〈

∇h

(

φ
n+1 − φn

)

,∇hφ
n
〉

h
+
〈

∇h

(

νn+1 − νn
)

,∇hν
n
〉

h

=
〈

φn+1 − φn,
(

φn+1
)3

− φn − ǫ2∆φn+1 + ανn+1
〉

h

−

〈

(

φn+1 − φn
)2
,
1

2
+
(

φn+1
)2
〉

h

≤ ∆t
〈

∆dµ
n+1,µn+1

〉

h
≤ 0.

(30)

Therefore, we prove the decrease of discrete functional, i.e., Eh(φn)≥Eh(φn+1),
for any time step ∆t. Furthermore, we note that the energy dissipation implies
unconditional stability following the similar manner in [18]. The decrease of
discrete functional Eh(φn) implies that

(31) Eh(φ0) ≥ Eh(φn) ≥ 〈F (φn),1〉h ≥ hF (φni ) =
h

4

(

φ2i − 1
)2

for any i. We then have the pointwise boundedness of the numerical solution

as ‖φn‖∞ ≤

√

1 + 2
√

Eh(φ0)/h for all n. Therefore, we deduce that the

proposed numerical scheme is unconditionally stable.
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3. Numerical solution

We recall the proposed numerical method (22) to solve the Ohta–Kawasaki
equation

φn+1
i − φni

∆t
= ∆hµ

n+1
i − α

(

φn+1
i − φ̄

)

,(32)

µn+1
i =

(

φn+1
i

)3
− φni − ǫ2∆hφ

n+1
i ,(33)

where φ̄ = 〈φn,1〉h for i = 1, 2, . . . ,M and n = 0, 2, . . . , N − 1.
We use a multigrid method to solve the discretized system (32) and (33). To

condense the discussion, we describe only the nonlinear system for the multigrid
method.

(1 + α∆t)φn+1
i −∆hµ

n+1
i = φni + α∆tφ̄,(34)

−
(

φn+1
i

)3
+ ǫ2∆hφ

n+1
i + µn+1

i = −φni(35)

for i = 1, 2, . . . ,M . Because of the nonlinearity for φn+1
i , we linearized

(

φn+1
i

)3

at φn,ki

(36)
(

φn+1
i

)3
≈

(

φn,ki

)3

+ 3
(

φn,ki

)2 (

φn+1
i − φn,ki

)

.

We then consider the nonlinear iterative method as

(1 + α∆t)φn,k+1
i −∆hµ

n,k+1
i = φni + α∆tφ̄,(37)

−3
(

φn,ki

)2

φn,k+1
i + ǫ2∆hφ

n,k+1
i + µn,k+1

i = −φni − 2
(

φn,ki

)3

,(38)

where φn,0i = φni . A pointwise Gauss–Seidel relaxation is used as the smoother

in the multigrid method. If the l2 norm of the consecutive error ‖φn,k+1 −

φn,k‖2 is less than 10−9, we have φn+1
i = φn,k+1

i . For more details, we refer to
[17, 26].

4. Numerical results

First, we consider the local Fourier analysis for the nonlinear scheme and
estimate the numerical convergence factor. Next, we confirm the numerical
accuracy of the proposed scheme for solving the Ohta–Kawasaki equation. Fi-
nally, we perform numerical experiments for demonstrate the mass conserva-
tion, energy dissipation, and unconditional stability.

4.1. Local Fourier analysis

To analyze the behavior of the multigrid method, we linearize the nonlinear
scheme and perform a local Fourier analysis (LFA), which is introduced by
Brandt [4]. In LFA, a current approximation and its residual are represented
by a linear combination of Fourier modes. A unitary basis of the Fourier modes
is defined by eiθx/h where θ ∈ (−π, π] is called Fourier frequency.
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Since the performance of the multigrid method depends strongly on the
smoother, we analyze the smoother to evaluate its effect on the Fourier com-
ponents using LFA [20]. LFA allows us to obtain quantitative estimates of the
performance of multigrid method. Although LFA was originally designed for
the linear problem, it can also be employed for the analysis of the nonlinear
problem by using freezing coefficients [26].

Let φni and µn
i be solutions of the discrete Ohta–Kawasaki equation (34)

and (35). After linearizing the nonlinear term
(

φn+1
i

)3
= βφn+1

i , where β is a

freezing constant for (φm)
2
. Substituting µn

i into Eq. (34), it becomes

(39) Lhφ
n
i = fn

i ,

where

Lhφ
n
i = φn+1

i − β
∆t

h2
(

φn+1
i−1 − 2φn+1

i + φn+1
i+1

)

(40)

+ ǫ2
∆t

h4
(

φn+1
i−2 − 4φn+1

i−1 + 6φn+1
i − 4φn+1

i+1 + φn+1
i+2

)

+ α∆tφn+1
i

and

(41) fn
i = φni −∆hφ

n
i + αφ̄.

For the Gauss–Seidel iteration with a lexicographic ordering of the grid points
applied to the above equation, we have the following operator decomposition:

L+
h φi = φi − β

∆t

h2
(φi−1 − 2φi) + ǫ2

∆t

h4
(φi−2 − 4φi−1 + 6φi) + α∆tφi,(42)

L−
h φi = −β

∆t

h2
φi+1 + ǫ2

∆t

h4
(−4φi+1 + φi+2) .(43)

Now, the Gauss–Seidal iterative method can be written as

(44) L+
hφ

n,m+1 + L−
hφ

n,m = fn,

where φn,m+1 is the new approximation after the relaxation step, given the old
approximation φn,m for φn+1. Subtracting Eq. (44) from the discrete equation

Lhφ
n+1 = fn and defining ψn,m+1 = φn+1−φn,m+1 and ψn,m = φn+1−φn,m,

we obtain the equation

(45) L+
hψ

n,m+1 + L−
hψ

n,m = 0,

or, equivalently,

(46) ψn,m+1 = Shψ
n,m,

where we denote Sh = −
(

L+
h

)−1
L−
h as the resulting smoothing operator. Ap-

plying L+
h and L−

h to the formal eigenfunctions eiθx/h, we obtain

L+
h e

iθx/h = L̂+
h e

iθx/h,(47)

L−
h e

iθx/h = L̂−
h e

iθx/h,(48)
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where L̂+
h and L̂−

h are the eigenvalues of the operators L+
h and L−

h , respectively,

L̂+
h (θ) = 1− β

∆t

h2
(

e−iθ − 2
)

+ ǫ2
∆t

h4
(

e−2iθ − 4e−iθ + 6
)

+ α∆t,(49)

L̂−
h (θ) = −β

∆t

h2
eiθ + ǫ2

∆t

h4
(

−4eiθ + e2iθ
)

.(50)

The amplification factor of the relaxation scheme is

(51) Ŝh (θ) = −
L̂−
h (θ)

L̂+
h (θ)

.

Figure 1 displays the absolute value of amplification factor with respect to
the Fourier frequency mode. We consider two examples of β = 0 and β = 0.25,
and other parameters are ∆t = 0.1h, ǫ = 0.01, and α = 100. In the figure, we
observe the standard smoothing property of the relaxation scheme which makes
it effective at eliminating the high-frequency, while leaving the low-frequency
relatively unchanged. By the restriction procedure from the fine grid to coarse
grid, a mode becomes more oscillatory in the view of the coarse grid. Therefore,
the relaxation in the coarse grid will be more effective. For more interested
readers for the multigrid method, we refer to [26].
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Figure 1. Amplification factor via the Fourier frequency.

Now, we define the high frequency smoothing (HFS) factor as

(52) µloc (Sh) =
{∣

∣

∣Ŝh (θ)
∣

∣

∣ :
π

2
≤ |θ| ≤ π

}

.

HFS factor can be a measurement of the multigrid method by assuming that
the coarse grid operators are ideal and annihilate the low frequency error com-
ponents.

The convergence factor is estimated numerically using our nonlinear code
with the parameters ǫ = 0.01, the mesh-dependent time step ∆t = 0.1h and
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initial conditions

(53) φ0 (x) =

{

0.0 + 0.01 cos(0.5πx/h), β = 0,
0.5 + 0.01 cos(0.5πx/h), β = 0.25.

We define a defect reduction factor as q(m) = ‖dm+1
h ‖/‖dmh ‖, where dmh are

the defect for m = 1, 2, . . .. Here, the defect is defined as dmh = fn
h − Lhφ

m
h .

We numerically estimate a convergence factor as an averaged defect reduction
factor

(54) q̂(m) =
m

√

q(m)q(m−1) · · · q(1).

We measure the V (m,n)-cycle convergence factors, where m and n are the
numbers of pre-smoothing and post-smoothing, with different grid sizes. We
focus on (1, 1) as these yield the most efficient algorithms. In addition, we set
α = 100 and consider β = 0 and β = 0.25, where the values correspond to
linearization in the stable ranges of the evolution. Note that

√

V (1, 1)-cycle
means the square root of V (1, 1)-cycle convergence factor.

Tables 1 and 2 show HFS factors and measured
√

V (1, 1)-cycle convergence
factors with different mesh sizes and β. The numerically measured convergence
factors are uniformly bounded below the theoretical estimate 0.8024 with in-
creasing resolution.

Table 1. HFS factors and convergence factors with different
mesh size, α = 100, β = 0, ∆t = 0.1h, and h = 1/M .

Case M = 16 M = 32 M = 64 M = 128
µloc 0.1389 0.4586 0.6149 0.6402
√

V (1, 1)-cycle 0.2090 0.3563 0.4437 0.5317

Case M = 256 M = 512 M = 1024 M = 2048
µloc 0.6435 0.6439 0.6439 0.6439
√

V (1, 1)-cycle 0.5639 0.5852 0.5964 0.6114

Table 2. HFS factors and convergence factors with different
mesh size, α = 100, β = 0.25, ∆t = 0.1h, and h = 1/M .

Case M = 16 M = 32 M = 64 M = 128
µloc 0.2102 0.4258 0.5823 0.6302
√

V (1, 1)-cycle 0.3136 0.3819 0.4550 0.5022

Case M = 256 M = 512 M = 1024 M = 2048
µloc 0.6409 0.6432 0.6438 0.6439
√

V (1, 1)-cycle 0.5448 0.5751 0.5839 0.6077
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4.2. Convergence test

We demonstrate the time and space convergence rate for the proposed
scheme. The initial state for the test is φ(x, 0) = 0.15 + 0.01 cos(10πx) +
0.02 cos(5πx) in a domain Ω = [0, 1]. All simulations are run up to time
Tf = 0.01 with ǫ = 0.015 and α = 100. To calculate the convergence rate in
space, we perform a number of simulations on a set of increasing finer grids. The
numerical solutions are computed on the grids h = 1/2n for n = 6, 7, 8, 9 with a
fixed time step ∆t = 1E-4. We define the error of a grid to be the l2-norm of the

difference with the next finer grid, ehi = φhi−
1
2

(

φh

2 2i−1
+ φh

2 2i

)

. The rate of

the convergence is defined as the ratio of successive errors as log2

(

‖eh‖/‖e h

2

‖
)

.

Table 3 shows the error and rates of convergence. The results suggest that the
scheme is second-order accurate in space.

Table 3. Errors and convergence rates in space.

case 64–128 rate 128–256 rate 256–512 rate 512–1024
l2-error 2.22E-2 2.17 4.81E-3 2.03 1.18E-3 2.01 2.93E-4

Next, to estimate the convergence rate in time, we execute a number of
simulations with different time steps. The numerical solutions are computed
with the time steps ∆t = Tf/2

m for m = 8, 9, 10, 11 with a fixed space step
h = 1/27. We define the error of a grid to be the l2-norm of the difference with
the smaller time step, e∆t = φ∆t − φ∆t

2

. Table 4 shows the error and rates

of convergence. The results suggest that the scheme is first-order accurate in
time.

Table 4. Errors and convergence rates in space.

case Tf/2
8 rate Tf/2

9 rate Tf/2
10 rate Tf/2

11

l2-error 9.39E-3 1.20 4.10E-3 1.08 1.93E-3 1.03 9.43E-4

4.3. Mass conservation and energy dissipation

Figure 2 shows the energy and solution evolutions with an initial state
φ(x, 0) = 0.15 + 0.01 · rand(x), where rand(x) is a random value between −1
and 1. We take the simulation parameters as Ω = [0, 1], ǫ = 0.01, h = 1/512,
∆t = 0.0001, and α = 100. In Fig. 2(a), we illustrate the discrete total energy
and average concentration of numerical solutions. The energy is not increased
and the average concentration is conserved. And, Fig. 2(b) draws the solutions
at three different times.
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Figure 2. (a) Non-dimensional discrete total energy
Eh(φn)/Eh(φ0) (solid line) and the average concentration
〈φn,1〉h (diamond). (b) Solution profiles at three different
times

4.4. Unconditional stability test

We simulate the numerical test to confirm the unconditional stability of the
proposed scheme. We use the initial state φ(x, 0) = 0.01rand(x) in Ω = [0, 1].
The parameter ǫ = 0.01, α = 100, and h = 1/512 are used with three different
time steps ∆t = 0.01, 1, and 100. Figure 3 shows that the solutions are not
blow up even we use large time steps.
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Figure 3. Snapshots after ten iterations with different time steps

5. Conclusions

We proposed an unconditionally stable scheme for the Ohta–Kawasakimodel
based on the finite difference method. We then proved the mass conservation,
solvability, energy dissipation, and unconditionally gradient stability. And,
these properties was confirmed through numerical experiments.
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