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Abstract

In this article, we present optimal non-uniform finite difference grids for the Black–Scholes (BS) equation. The finite
ifference method is mainly used using a uniform mesh, and it takes considerable time to price several options under the
S equation. The higher the dimension is, the worse the problem becomes. In our proposed method, we obtain an optimal
on-uniform grid from a uniform grid by repeatedly removing a grid point having a minimum error based on the numerical
olution on the grid including that point. We perform several numerical tests with one-, two- and three-dimensional BS equations.
omputational tests are conducted for both cash-or-nothing and equity-linked security (ELS) options. The optimal non-uniform
rid is especially useful in the three-dimensional case because the option prices can be efficiently computed with a small
umber of grid points.
c 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Black–Scholes equations; Optimal non-uniform grid; Finite difference method; Equity-linked securities

1. Introduction

The structure of financial derivatives has recently become more complex. Equity-linked security (ELS) is an
utocallable financial product, a complex structure commonly traded in South Korea. The most popular ELS product
s based on three underlying assets. Currently, three-asset ELS products are the most traded in South Korea’s
nancial market. We surveyed the ELS products traded from March 1, 2019, to February 29, 2020, in three financial
ompanies, and the three-asset products account for more than 75% of the total trades, see Fig. 1.

The recent trend of constructing ELS products with multiple underlying assets complicated the structure of the
roduct. Hence, pricing these complicated autocallable products efficiently and accurately [11] is practical and
mportant. Three-asset step-down ELS, which is the most commonly traded structure, is automatically exercised on
ach redemption date based on the condition of each product. Step-down indicates that the strike price condition at
ach redemption date decreases until maturity. Usually, the price of the underlying asset represents the minimum
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Fig. 1. Survey on the ELS products of three financial companies.

price among the underlying assets. On the redemption date, whether it will be exercised is decided. When the price
of the underlying asset is higher than the strike price, the option is automatically exercised with a coupon rate. If
the early exercise does not happen, the option continues until the next redemption date. At maturity, if the price of
the underlying asset is above the knock-in barrier during the contract, the option ends with a dummy rate. If not,
the option ends with the price of the underlying asset at maturity, i.e., with a loss.

The option price can be obtained by solving the Black–Scholes (BS) equation. Let si (i = 1, 2, . . . , n) indicate
he price of the underlying i th asset and u(s1, s2, . . . , sn, t) indicate the value of the option. Consider the n-asset
S equation as follows [3,17]:

∂u(s, t)
∂t

+
1
2

n∑
i, j=1

σiσ jρi j si s j
∂2u(s, t)
∂si∂s j

+ r
n∑

i=1

si
∂u(s, t)

∂si
= ru(s, t), (1)

or (s, t) = (s1, s2, . . . , sn, t) ∈ Rn
+

× [0, T ). Here, σi denotes a constant volatility of the i th asset, r > 0 is a
onstant interest rate and ρi j denotes the correlation coefficient between two underlying i th and j th assets. The
nal condition is the payoff function Φ(s) at maturity T

u(s, T ) = Φ(s). (2)

There are two popular numerical methods for computing option pricing [8,9,14]: Monte Carlo simulation (MCS)
and finite difference method (FDM). The advantage of MCS is that it can be applied to higher dimensions with only
a small additional computing time. It differs from the FDM in that its price is not the same for every simulation.
The advantage of FDM is that it can obtain the same price for every simulation; however, applying it to multi-asset
option pricing is difficult. The FDM takes considerable cost to price options with multi-assets because it mainly
uses a uniform grid. Therefore, FDM with a uniform grid is inappropriate for pricing the three-asset ELS in terms
of efficiency.

Several studies using non-uniform grids have been conducted to reduce computational cost while having the
same accuracy [2,4,19]. Shojaei et al. [25] coupled uniform grids with different grid spacing to make a non-uniform
grid at a much smaller computational cost. Dilloo and Tangman [7] demonstrated the performance of a high-order
accurate FDM through a proposed local mesh refinement strategy that creates the non-uniform grid by adding two
nodes to a uniform grid. The additional two nodes in the proposed strategy are located near the singular point
usually found in the payoff of options. Mishra and Lu [24] used non-uniform grid in pricing multi-asset options for
practical purposes. They used a dense and uniform grid on the interval of interest and used a sparse and non-uniform
grid outside the interval of interest. Milovanović and von Sydow [22] used a non-uniform grid to price European-

and American-type multi-asset options using a radial basis function generated finite difference (RBF-FD) method.
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Furthermore, in [23], the authors placed more nodes in the area for higher accuracy. The sparse grid showed high
accuracy even with a relatively small number of nodes. In [15], the authors priced a multi-dimensional European
option with a numerical method based on RBF. They used the operator splitting method to price the two-asset option.
In addition, the computational time and errors with respect to the number of discretized grid points was checked.
They refined the nodes in areas of interest to reduce computational costs while having an accurate solution. In [28],
the author solved the 3D Heston–Hull–White partial differential equation on a non-uniform grid for efficiency.
Zhang and Li [29] suggested piecewise uniform grids (PU-MidK) with a grid point at every barrier and tested the
proposed method to price the barrier call option. The test was based on error analysis and demonstrated that the
PU-MidK is efficient compared to the uniform and non-uniform grids suggested in [21]. Most non-uniform grid
methods were refined to be finer in the hot zone, representing the interval of interest. Soleymani and Barfeie [26]
used a non-uniform grid to solve the stochastic volatility jump model. The tests on the several jump models with
the constructed grid showed improved computational efficiency and accuracy. In [5], the authors constructed a non-
uniform grid to price European- and American-type options using Merton’s jump diffusion model. The suggested
non-uniform grid was dense near the strike price and at expiry. They used FDM for the spatial differential operators
and the Galerkin finite element method for time stepping. In [20], the author used FDM on refined two-dimensional
non-uniform grids composed of repeatedly finer rectangular grids. A previous study [18] used a non-uniform grid to
price three-asset ELS. However, the suggested non-uniform grid was obtained by trial and error. To make progress,
we are going to obtain a non-uniform grid using the systematic approach.

In this paper, we propose an algorithm to construct a non-uniform grid using systematic error. We can obtain
n optimal non-uniform grid by sequentially removing a node having the minimum error based on the numerical
olution on the grid including that point.

The remainder of this paper is structured as follows. In Section 2, we describe FDM to solve three-dimensional
S equation and propose an algorithm to construct the non-uniform finite difference grid. In Section 3, the numerical
xperiments demonstrate the performance of the proposed algorithm. Finally, the conclusions are provided in
ection 4.

. Numerical solutions

By changing the variable with τ = T − t , Eq. (1) can be rewritten as follows:

∂u(s, τ )
∂τ

=
1
2

n∑
i, j=1

σiσ jρi j si s j
∂2u(s, τ )
∂si∂s j

+ r
n∑

i=1

si
∂u(s, τ )

∂si
− ru(s, τ ), (3)

for (s, τ ) = (s1, s2, . . . , sn, τ ) ∈ Rn
+

× (0, T ].

he initial condition is the payoff function Φ(s) at expiry τ = 0:

u(s, 0) = Φ(s). (4)

.1. Three-dimensional Black–Scholes equation

Let x , y and z be the price of the three underlying assets, and τ = T − t be the time to maturity. The option
rice u(x, y, z, τ ) for (x, y, z) ∈ Ω and τ ∈ (0, T ] follows the BS partial differential equation:

uτ (x, y, z, τ ) = r xux (x, y, z, τ ) + r yu y(x, y, z, τ ) + r zuz(x, y, z, τ )

+
1
2
σ 2

x x2uxx (x, y, z, τ ) +
1
2
σ 2

y y2u yy(x, y, z, τ )

+
1
2
σ 2

z z2uzz(x, y, z, τ ) + ρxyσxσy xyuxy(x, y, z, τ )

+ ρyzσyσz yzu yz(x, y, z, τ ) + ρzxσxσz xzuzx (x, y, z, τ )

− ru(x, y, z, τ ), (x, y, z, τ ) ∈ Ω × (0, T ], (5)
u(x, y, z, 0) = Φ(x, y, z),
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where Φ denotes the payoff function at maturity T and Ω is the computational domain. The subscripts of u
enote partial derivatives with respect to the corresponding parameters. ρxy , ρyz and ρzx are the correlation
alues between the two asset variables. σx , σy and σz are the volatilities of the underlying assets x , y and z,
espectively. First, we discretize the computational domain Ω = [L x , Rx ] × [L y, Ry] × [L z, Rz] with variable steps

hx
i−1 = xi − xi−1, h y

j−1 = y j − y j−1 and hz
k−1 = zk − zk−1. Here, x0 = L x , y0 = L y , z0 = L z , xNx = Rx , yNy = Ry

nd zNz = Rz . Nx , Ny , Nz and Nτ are the number of grid intervals in the x-, y-, z- and τ -directions, respectively.
τ = T/Nτ denotes the time step size. Let un

i jk ≡ u(xi , y j , zk, n∆τ ) be the numerical approximation of the
olution, where i = 0, . . . , Nx , j = 0, . . . , Ny , k = 0, . . . , Nz and n = 0, . . . , Nτ . For both the cash-or-nothing
ption and ELS, we use the zero Dirichlet boundary conditions at x = L x , y = L y and z = L z . We use zero
eumann boundary conditions [12] when pricing the cash-or-nothing option and hybrid condition [6] when pricing
LS at x = Rx , y = Ry and z = Rz . Subsequently, we apply the operator splitting method (OSM) [13] to solve
q. (5):

un+1
i jk − un

i jk

∆τ
=

(
Lx

BSu
)n+

1
3

i jk +
(
Ly

BSu
)n+

2
3

i jk +
(
Lz

BSu
)n+1

i jk , (6)

here
(
Lx

BSu
)n+

1
3

i jk ,
(
Ly

BSu
)n+

2
3

i jk and
(
Lz

BSu
)n+1

i jk are defined as

(
Lx

BSu
)n+

1
3

i jk =
(σx xi )

2

2
Dxx u

n+
1
3

i jk + r xi Dx u
n+

1
3

i jk +
1
3
σxσyρxy xi y j Dxyun

i jk

+
1
3
σyσzρyz y j zk Dyzun

i jk +
1
3
σzσxρzx zk xi Dzx un

i jk −
1
3

ru
n+

1
3

i jk ,

(
Ly

BSu
)n+

2
3

i jk =

(
σy y j

)2

2
Dyyu

n+
2
3

i jk + r y j Dyu
n+

2
3

i jk +
1
3
σxσyρxy xi y j Dxyu

n+
1
3

i jk

+
1
3
σyσzρyz y j zk Dyzu

n+
1
3

i jk +
1
3
σzσxρzx zk xi Dzx u

n+
1
3

i jk −
1
3

ru
n+

2
3

i jk ,(
Lz

BSu
)n+1

i jk =
(σzzk)

2

2
Dzzun+1

i jk + r zk Dzun+1
i jk +

1
3
σxσyρxy xi y j Dxyu

n+
2
3

i jk

+
1
3
σyσzρyz y j zk Dyzu

n+
2
3

i jk +
1
3
σzσxρzx zk xi Dzx u

n+
2
3

i jk −
1
3

run+1
i jk .

or the discretization of Eq. (6), we use

Dx ui jk = −
hx

i

hx
i−1(hx

i−1 + hx
i )

ui−1, jk +
hx

i − hx
i−1

hx
i−1hx

i
ui jk +

hx
i−1

hx
i (hx

i−1 + hx
i )

ui+1, jk,

Dxx ui jk =
2

hx
i−1(hx

i−1 + hx
i )

ui−1, jk −
2

hx
i−1hx

i
ui jk +

2
hx

i (hx
i−1 + hx

i )
ui+1, jk,

Dxyui jk =
ui+1, j+1,k − ui−1, j+1,k − ui+1, j−1,k + ui−1, j−1,k

hx
i h y

j + hx
i−1h y

j + hx
i h y

j−1 + hx
i−1h y

j−1
.

2.2. Proposed algorithm

We propose an optimal non-uniform grid with a minimum number of grid points for the BS equation. The
algorithm is as follows:

tep (1) Let Ω0
= {xi |xi = L x + hi, i = 0, 1, . . . , Nx } be the starting uniform discrete domain with step size

h = (Rx − L x )/Nx . Set the desired number of grid points Np. Let ure f be a reference solution of Eq. (3) on
Ω0 at the current price of an underlying asset of the product.
We repeat Step (2) from k = 1 to k = Nx − Np + 1.

tep (2) Let Ω k
i be the grid without i th element of Ω k−1, i.e., Ω k

i ⊊ Ω k−1. Calculate an error ek
i = |uk

i − ure f |/ure f ,
where uk

i is a solution to Eq. (3) on Ω k
i at the current price of an underlying asset of product. Then, we obtain

k k k k
an index j satisfying e j = min1≤i≤Nx +1−k ei and set Ω = Ω j .
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Fig. 2. (a) Schematic representations of an optimal non-uniform grid in one-dimensional space, and its extension to (a) two and (b) three
imensions.

Fig. 2(a) represents a non-uniform grid from this process. We take the optimal non-uniform grid obtained from
he one-asset option and extend it to two- and three-asset options. Fig. 2(b) and (c) show how to construct two- and
hree-dimensional non-uniform grids from the one-dimensional optimal non-uniform grid.

. Numerical experiments

In this section, depending on the number of underlying assets for each product, we create a non-uniform grid
tructure with the proposed algorithm in Section 2. As the payoff function is not differentiable at the strike price,
ore grid points were added near the strike price [7,10]. Here, we use the interest rate r = 0.03 and set ure f as the

reference price computed on a uniform grid with grid spacing of 1.

3.1. Cash-or-nothing option

We consider the pricing of the cash-or-nothing option of one underlying asset. This option is a derivative with
a fixed payment. Fixed payment is paid if the underlying asset closes above the strike price at maturity; otherwise,
it is not paid, i.e., the payment is zero. The parameters used are as follows: maturity time T = 1, time step
∆t = 1/30, current price S0 = 100, strike price K = 100, payment (cash) C = 100 and computational domain

= [L x , Rx ] × [L y, Ry] × [L z, Rz] with L x = L y = L z = 0.5 and Rx = Ry = Rz = 300.5. We fix some grid
points on the boundary of the domain Ω and neighboring points of the strike of the derivative product, see blue
dots in Fig. 3.

3.1.1. Cash-or-nothing option on one asset
The volatility used is σx = 0.3. The payoff function of the cash-or-nothing option is

φ(x, τ = 0) =

{
100, if x ≥ K ,

0, otherwise.
(7)

Fig. 3 shows the results of the process of the proposed algorithm. Markers (black dots, red dots and blue dots)
indicate Ω k grid points for some k, points to be excluded, and fixed points for each operation, respectively.
694
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Fig. 3. Distribution of grid points with respect to the number of grid points for cash-or-nothing option of the one asset. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. (a) and (b) denote the distribution of non-uniform grid points for cash-or-nothing option with the number of grid points 20, 50 and
100 on Ω = [0.5, 300.5] and [80, 120], respectively.

Fig. 4(a) shows the distribution of the non-uniform grid obtained with Np = 20, 50, and 100 on Ω =

[0.5, 300.5]. Fig. 4(b) shows the distribution of the non-uniform grid enlarged on [80, 120] for better visualization.
Fig. 5 shows the prices and elapsed times of the computation with uniform grids with respect to the number

f grid points. Furthermore, the price of using the non-uniform grid with Np = 20 is shown as a dotted line. We
an confirm that a uniform grid requires a very large amount of time compared to the non-uniform grid to produce
imilar results.

.1.2. Cash-or-nothing option on two assets
We consider the pricing of the cash-or-nothing option of two underlying assets. The parameters used are volatility

f each underlying asset σ = 0.3, σ = 0.3, and correlation of underlying assets ρ = 0.5. The payoff function
x y xy
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Fig. 5. Option price with the non-uniform grid of Np = 20 and uniform grids from Nx = 19 to Nx = 300. CPU time is in seconds.

Fig. 6. Option price with a non-uniform grid of Np = 20 and uniform grids from Nx = Ny = 19 to Nx = Ny = 300. CPU time is denoted
n seconds.

f the cash-or-nothing option of the two assets is

φ(x, y, τ = 0) =

{
100, if min(x, y) ≥ K ,

0, otherwise.
(8)

The two-dimensional non-uniform mesh is constructed using the non-uniform grid found in the one-dimensional
pace. Fig. 6 represents the prices and the elapsed times of the computation with uniform grids with respect to the
umber of grid points. Furthermore, the price of using a non-uniform grid with Np = 20 is illustrated as dotted
ine. The result shows the price of uniform grid converges to the price with the non-uniform grid from our proposed
lgorithm.

.1.3. Cash-or-nothing option on three assets
We consider the pricing of cash-or-nothing option of three underlying assets. The parameters used are: maturity

ime T = 1, volatility of each underlying asset σ = 0.3, σ = 0.3, σ = 0.3, correlation of each underlying asset
x y z
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Fig. 7. Option price with a non-uniform grid of Np = 20 and uniform grids from Nx = Ny = Nz = 19 to Nx = Ny = Nz = 200. CPU
time is denoted in seconds.

ρxy = 0.5, ρxz = 0.5, ρyz = 0.5. The payoff function of the cash-or-nothing option of the three assets is

φ(x, y, z, τ = 0) =

{
100, if min(x, y, z) ≥ K ,

0, otherwise.
(9)

A three-dimensional non-uniform mesh is constructed using the non-uniform grid observed in a one-dimensional
space, similar to the two-dimensional space.

Fig. 7 shows the prices and the elapsed times of the computation with uniform grids with respect to the number
of grid points. Herein, we perform the test until Nx = Ny = Nz = 200 owing to the high computational cost in
three-dimensional space. The price of using a non-uniform grid with Np = 20 is shown as a dotted line. We can
conclude that the optimal non-uniform grid has similar results compared to a uniform grid in three-dimensions as
well.

3.2. ELS option

We fix points on the strike prices and knock-in barrier for the ELS options. We conduct tests on ELS depending
on the number of underlying assets. We proceed with a numerical test for checking the efficiency and accuracy of
the proposed algorithm. We perform a convergence test using a reference value. The markers in each figure are the
same as in the cash-or-nothing option. Unless otherwise specified, the parameters used are maturity time T = 3,
time step ∆t = 1/360, and the computational domain is Ω = [L x , Rx ]×[L y, Ry]×[L z, Rz] with L x = L y = L z = 0
and Rx = Ry = Rz = 300 [16]. We fix some grid points that are on the boundary of the domain Ω , strike and
neighboring points of the strike of the derivative product.

In the numerical test for ELS options, the parameters with current price S0 = 100, strike prices [K1, K2, K3, K4,

K5, K6] = [95, 95, 90, 90, 85, 85], coupon rates [c1, c2, c3, c4, c5, c6] = [0.05, 0.10, 0.15, 0.20, 0.25, 0.30], knock-
in barrier D = 50, face value F = 100 and dummy rate d = 0.3 are used. Parameters for one- and two-asset ELS
are similarly defined.

Fig. 8 shows the payoff function at early redemption dates. When numerically solving the equation, we define
two option values u(S, τ ) and v(S, τ ) for hitting knock-in barrier or not, respectively. As shown in Fig. 9, v(S, τ )
is above u(S, τ ). We define Dirichlet boundary condition for v(S, τ ) at the knock-in barrier after solving u(S, τ ).
Subsequently, we solve v(S, τ ) in the range from the knock-in barrier to the upper bound. Therefore, we reflect the

case when the stock price has been under the knock-in barrier and reduce the computational cost simultaneously.
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Fig. 8. Payoff function at early redemption dates.

Fig. 9. Option values u and v at τ = 2.

3.2.1. One-asset ELS option
We consider the pricing of one-asset ELS option. The parameters used are maturity time T = 3 and volatility of

nderlying asset σx = 0.3. Let u(x, τ ) be the solution with the knock-in barrier event and v(x, τ ) be the solution
without a knock-in barrier event. The payoff function of the one-asset ELS option is

u(x, τ = 0) =

⎧⎨⎩Fx/S0, if x < K6,

F(1 + c6), otherwise,

v(x, τ = 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(1 + c6), if x ≥ K6,

F(1 + d), if D < x < K6,

Fx/S0, otherwise.

(10)

Fig. 10 shows the non-uniform grids for each operation and presents the results of the process of the proposed
lgorithm for one-asset ELS option. In Fig. 10, the markers indicate the same things as in the cash-or-nothing

ption.
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Fig. 10. Generating an optimal non-uniform grid for one-asset ELS.

Fig. 11. Option price with a non-uniform grid of Np = 20 and uniform grids from Nx = 19 to Nx = 300. CPU time is denoted in seconds.

Fig. 11 shows the prices and the elapsed times computed on uniform grids with respect to the number of grid
oints. Furthermore, the price of using a non-uniform grid with Np = 20 is plotted as a dotted line. We can also
onclude that the option price obtained in the optimal non-uniform grid is not only accurate but also takes less
omputation time.

.2.2. Two-asset ELS option
We consider pricing the two-asset ELS option. The parameters are as follows: volatility of each underlying asset
= 0.3, σ = 0.3, and correlation of underlying assets ρ = 0.5. Let S = min(x, y) be the minimum of two
x y xy
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Fig. 12. Option price with a non-uniform grid of Np = 20 and uniform grids from Nx = Ny = 19 to Nx = Ny = 300. CPU time is denoted
n seconds.

nderlying assets, x and y. The payoff function of the two-asset ELS option is

u(S, τ = 0) =

⎧⎨⎩F S/S0, if S < K6,

F(1 + c6), otherwise,

v(S, τ = 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(1 + c6), if S ≥ K6,

F(1 + d), if D < S < K6,

F S/S0, otherwise.

(11)

Fig. 12 shows the prices and the elapsed times of using uniform grids with respect to the number of grid points,
nd the price of using a non-uniform grid with Np = 20 is illustrated as a dotted line.

.2.3. Three-asset ELS option
We consider the pricing of the three-asset ELS option. The parameters used are as follows: volatility of each

nderlying asset σx = 0.3, σy = 0.3, σz = 0.3, and correlation of each underlying asset ρxy = 0.5, ρxz = 0.5,
yz = 0.5. Let S = min(x, y, z) be the minimum of the three underlying assets, x , y and z. The payoff function of

hree-asset ELS option is

u(S, τ = 0) =

⎧⎨⎩F S/S0, if S < K6,

F(1 + c6), otherwise.

v(S, τ = 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(1 + c6), if S ≥ K6,

F(1 + d), if D < S < K6,

F S/S0, otherwise.

(12)

The prices and the elapsed times using the uniform grids are shown in Fig. 13 and the prices converge to the
rice of using a non-uniform grid with Np = 20.

Given some tolerance of option prices, we determine the number of uniform grids corresponding to the non-
niform grid (Np = 20) from our algorithm in one asset. Table 1 lists the results with the cash-or-nothing option
nd the ELS option. It demonstrates that using non-uniform grid 20 points yields equivalent results using uniform
rids with more points for each product. We also confirm that the computational cost is significantly reduced by

sing the optimal non-uniform grid.
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Fig. 13. Option price with a non-uniform grid of Np = 20 and uniform grids from Nx = Ny = Nz = 19 to Nx = Ny = Nz = 200. CPU
ime is denoted in seconds.

Table 1
Comparing the performance of the optimal non-uniform grid with 20 points to the uniform grids.

Product Uniform (Nx ) CPU time ratio Relative error

Two-asset cash-or-nothing 300 77.24 0.0135
Three-asset cash-or-nothing 200 592.86 0.0279
Two-asset ELS 300 115.05 0.0018
Three-asset ELS 200 391.68 0.0001

3.3. Comparison test

In this section, we compare the results using the proposed algorithm with the results of the cash-or-nothing
ption of one underlying asset using two different non-uniform grids. We use the reference price ure f , solved by a

uniform grid with a space step size of 1 and parameters as used in Section 3.1. The authors in [27] considered the
following distribution of the grid points for option pricing:

xi =

⎧⎪⎨⎪⎩
x L + d sinh(ξi ), ξmin ≤ ξi < 0,

x L + dξi , 0 ≤ ξi ≤ ξint , 1 ≤ i ≤ Nx

x R + d sinh(ξi − ξint ), ξint < ξi ≤ ξmax ,

(13)

where sinh(·) denotes the hyperbolic sine function, ξmin = sinh−1(L x − x L/d), ξint = (x R − Lx)/d , ξmax =

int + sinh−1((Rx −x R)/d), d = K/20, x L = K max(0.5, exp(−0.25T )), x R = K , and so that [x L , x R] ⊂ [L x , Rx ].
n [1], the authors used the following non-uniform grid for option pricing:

xi =
1
ξ

sinh(si sinh−1(ξ (L − K )) − (1 − si ) sinh−1(ξ K )) + K , (14)

here ξ = 0.5 and si are uniform nodes on [0, 1] for 1 ≤ i ≤ Nx .
Fig. 14 shows the distribution of the non-uniform grid by Eq. (13), Eq. (14) and the proposed algorithm for

ne-asset cash-or-nothing option with Np = 20.
Table 2 lists the relative errors using the three different non-uniform grids with Np = 20, 30, . . . , 100. We can

ecognize that as the number of grid points increases, the relative error converges to zero, as shown in Fig. 15. The
roposed algorithm, however, performs well even with fewer grid points compared to the other two methods.

. Conclusions

The BS equation using FDM is generally solved with a uniform grid of underlying assets. However, using a

niform grid is not an efficient method to evaluate option prices as it incurs a high computational cost when pricing

701



J. Lyu, E. Park, S. Kim et al. Mathematics and Computers in Simulation 182 (2021) 690–704
Fig. 14. Distribution of non-uniform grid points with Np = 20, (a) grid generated by Eq. (13), (b) grid generated by Eq. (14), and (c)
proposed grid points for one-asset cash-or-nothing option.

Fig. 15. Relative errors of three different non-uniform grids with the number of grid points 20, . . . , 160.

Table 2
Relative errors of three different non-uniform grids with Np = 20, 30, . . . , 100.

Np Proposed Eq. (13) Eq. (14)

20 0.00120205 0.00944987 0.01829768
30 0.00000068 0.01497975 0.00325043
40 0.00010051 0.01588143 0.00326732
50 0.00005997 0.00140081 0.00446850
60 0.00001433 0.01303634 0.00022335
70 0.00001480 0.00353232 0.00273891
80 0.00000402 0.00589805 0.00210764
90 0.00000329 0.00604714 0.00036742
100 0.00000289 0.00176875 0.00233099

options with three underlying assets. Generally, financial derivatives are composed of multiple assets. Therefore,
calculating the price of these derivatives using FDM is difficult. For this reason, we need to obtain a non-uniform

grid with fewer grid points that also produces a result similar to that of a uniform grid with many points. We
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proposed an algorithm that finds an optimal non-uniform grid from a uniform grid by removing the node with the
smallest relative error. The computational results confirmed the accuracy and efficiency of our proposed method.
From this study, we obtained an optimal non-uniform grid that expedites pricing multi-asset options, including
three-asset ELS. We also obtain the optimal non-uniform grid for particular financial derivatives. If these products
have different parameters, then the optimal non-uniform grid formed from our proposed algorithm is also different.
Thus, in future work, we will intend to obtain the optimal non-uniform grid in many different types of parameter
cases.
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